
772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-25, NO. 9, ISEFTEMBER 1978 

Kronecker Products and Matrix Calculus 
in System Theory 

JOHN W. BREWER 

I 

Absfrucr-The paper begins with a review of the algebras related to 
Kronecker products. These algebras have several applications in system 
theory inclluding the analysis of stochastic steady state. The calculus of 
matrk valued functions of matrices is reviewed in the second part of the 
paper. This cakuhs is then used to develop an interesting new method for 
the identification of parameters of linear time-invariant system models. 

I. INTRODUCTION 

T HE ART of differentiation has many practical ap- 
plications in system analysis. Differentiation is used 

to obtain necessary and sufficient conditions for optimiza- 
tion in a.nalytical studies or it is used to obtain gradients 
and Hessians in numerical optimization studies. Sensitiv- 
ity analysis is yet another application area for. differentia- 
tion formulas. In turn, sensitivity analysis is applied to the 
design of feedback and adaptive feedback control sys- 
tems. 

The c’onventional calculus’ could, in principle, be ap- 
plied to the elements of a matrix valued function of a 
matrix to achieve these ends. “Matrix calculus” is a set of 
differentiation formulas which is used by the analyst to 
preserve the matrix notation during the operation of dif- 
ferentiat:ion. In this way, the relationships between the 
various element derivatives are more easily perceived and 
simplifications are more easily obtained. In short, matrix 
calculus provides the same benefits to differentiation that 
matrix algebra provides to the manipulation of systems of 
algebraic equations. 

The first purpose of this paper is to review matrix 
calculus [5], [16], [22], [24], [28], with special emphasis on 
applications to system theory [I], [2], [6]-[lo], [15], [19],. 
[20], [26]~, [29], [30]. After some notation is introduced in 
Section II, the algebraic basis for the calculus is developed 
in Section III. Here the treatment is more complete than 
is required for the sections on calculus since the algebras 
related to the Kronecker product have other applications 
in system theory [3], [ 121, [ 131, [ 171, [ 181. Matrix calculus is 
reviewed. in Section IV and the application to the sensitiv- 
ity analysis of linear time-invariant dynamic systems [7], 
[9], [IO] :is discussed. 

The second purpose of this paper is to provide a new 
numerical method for solving parameter identification 
problem;s. These new results are presented in Section V 
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and are based on the developments of Section IV. Also, a 
novel and interesting operator notation will ble introduced 
in Section VI. 

Concluding comments are placed in Section VII. 

II. NOTATION 

Matrices will be denoted by upper case boldface (e.g., 
A) and column matrices (vectors) will be denoted by 
lower case boldface (e.g., x). The kth row of a matrix such. 
as A will be denoted A,. and the kth colmnn will be 
denoted A.,. The ik element of A will be denoted ujk. 

The n x n unit matrix is denoted I,,. The q-dimensional 
vector which is “I” in the kth and zero elsewhere is called 
the unit vector and is denoted 

The parenthetical underscore.is omitted if the dimension 
can be inferred from the context. The elementary matrix 

Edi’ xq) g eieL (1) 
(P)(4) 

has dimensions (p x q), is “1” in the i - k element, and is 
zero elsewhere. The parenthetical superscript .notation will 
be omitted if the dimensions can be inferred f.rom context. 

The Kronecker product [4] of A (p X q) and B (m X n) is 
denoted A @B and is a pm X qn matrix defined by 

a,,B ’ a.. ’ a,,B 
I I ------------.- 
I I 1 

-I- - - + - - 4 - - .- 

(2) 

The Kronecker sum [4] of N (n x n) and A4 (m X m) is 
defined by 

NCT3M=N@I,,,+I,,C3M. (3) 
Define the permutation matrix by 

u pxq 4 i $ E,$XWE~XP). 
i k 

(4) 

This matrix is square (pq Xpq) and has precisely a single 
“1” in each row and in each column. Define a related 
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TABLE I 
THE BASICRELAT~ONSHIPS 

&, Denotes the Kronecker Delta 

T1.l e, = 6, 
tf, (P) 

T1.2 Ei~x~)E(~xr)=~k,Ei~Px’) 

T1.3 A = 5 5 AikE&-) 
i k 

Tl.4 Ei~xP)AE~xr)=AhEiS,xX’) 

Tl.5 (Up,,)‘= Uqxp 
Tl.6 up;;= fJqxp 

Tl.; (Ei$‘x@)‘=E&x”) 

Tl.8 Up,,= UIxp 

=I P 

Tl.9 U,,,,= U,& 

= U”>‘, 

Symmetric and Orthogonal 

T1.10 U,,x,,&xn= &.,, 

Dimensions of Matrices Used in Text and in Tables II-VI 

A(pxq) 
B(s x t) 
C(r X I) 
D(q x 4 
44 x 4 
G(t x u) 
WP X 4) 
L(n X n) 
M(m X m) 
N(n X n) 

R(s x t) 
Q(q x 4) 
P(qXd 
w XP) 
X(n X n) 
Y(n X n) 
x(n X 1) 
Y(4 x 1) 
z(n X 1) 

matrix by 

opxq p $ $ EiJPXq)@EJfXq). 

This matrix ‘is rectangular (p2 X q2). 
An important vector valued function of a matrix was 

defined by Neudecker [ 161: 

A.1 -___ 
A.2 

-___ 
vet(A) p * . 
(P4XI) * 

-___ 
A., 

(6) 

Barnett [3] and Vetter [28] introduced other vector valued 
functions which can be simply related to vet (e). These 
functions can simplify matrix calculus formulas some- 
what, but will not be discussed further here. Let M be 
(m X m) and define the vector valued function [ 191 

ml1 

m22 

vecd (M) g 

I.1 

: (7) 
rnX1’ 

TABLE II 
TIIE ALGEBRAOFKRONECKERPRODUCTSANDKRONECKJZRSIJMS 

Refer to Table I (bottom) for a list of dimensions. a, is an eigenvector 
of M with eigenvalue &; flk is a eigenvector of N with eigenvalue /.tk; 
f( .) is an analytic function. 

Theorems References 

T2.1 (A@B@‘C=A@(B@C) [41 

T2.2 (A+Zf)@(B+R)=A@B+A@R 141 

+ZZ@B+H@R 

T2.3 (A@B)‘=A’@B’ 141 

T2.4 (A@B)(D@G)=AD@BG 141 

The “Mixed Producf Rule” 

T2.5 

T2.6 

T2.7 

T2.8 

T2.9 

T2.10 

T2.11 

T2.12 

T2.13 

T2.14 

T2.15 

T2.16. 

T2.17 

T2.18 

B@A= Us,,(A@B)Uq,, 

(N@M)-‘=N-‘@M-’ 

det (N @M) = (det N)” (det M)” 

trace (N C9 M) = trace N trace M 

(Z,,,@N)(M@Z,,)=(M@Z,,)(I,‘X’N) 

fV,n 8 N) = L @‘f(N) 

f(N~4,,)=fVPL 
exp (N@M)=exp (N)@exp (M) 

vet (ADB) = (B’@ A) vet D 

#Ik Qai is an eigenvector of N @ M 
with eigenvalue &pk and is also an 
eigenvector of N @ M with 
eigenvalue 4 + pk. 

N @M is positive definite if N, M 
are symmetric and sign definite 
of the same sign. N@M is 
negative definite if N and M are 
sign definite of opposite sign. 

If N and M are symmetric and 
sign definite of the same sign 
then N@M is also sign 
definite of that sign. 

(Zp8z)A=A@z 

A(Z,@z’)=A’X’z’ 

131, [281 

141 

[41 

[41 

El71 

131, [71, UOI 

[31 

1171 

1161 

141 

that is, the vector formed from the diagonal elements of 
Al. 

III. THE ALGEBRAIC BASIS FOR MATRIX CALCULUS 

A. Basic Theorems 

The implications of the above definitions are listed in 
Tables I and II. The dimensions of the matrices in Table 
II are given in Table I (bottom). The proofs of T1.1, Tl.3, 
Tl.7, Tl.8, T2.1, T2.2, T2.3, and T2.8 are obvious. Tl.2 
follows from (1) and Tl.l. Entry Tl.4 follows from T1.2 
and T1.3. T1.5 follows from T2.3. 

Use the rules of multiplication of partitioned matrices 
to show that the i-k partition of (A@ B) (D @G) is 
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which is also the i - k partition of AD @ BG so that very 
important T2.4 is established. This “mixed product rule” 
(T2.4) is used to establish many of the other theorems 
listed in this review. 

The mixed product rule appeared in a paper published 
by Steljhanos in 1900. 

T1.6 follows from (4), T2.4, and T1.2. T1.10 is derived 
in a similar manner. Entries T2.6 and T2.9 are immediate 
consequences of T2.4. An analytic function, f(e), can be 
expressed as a power series so that T2.10 and T2.11 are 
also derived from T2.4. Theorem T1.9 is merely a special 
case of T1.5 and T1.6. 

T2.14 is also a consequence of the mixed product rule. 
For insta.nce, notice that 

which is a proof of the first part of T2.14. The proof of the 
second part proceeds in a similar manner. 

T2.5 is proved by substituting (4) for both permutation 
matrices and then applying T2.4, and then applying T1.4, 
and then applying T1.3. 

T2.7 follows from T2.14 and the fact that the determi- 
nant of any matrix is equal to the product of its eigenval- 
ues. 

T2.12 follows from (3), T2.9, T2.10, T2.11, and the fact 
that the exponential of the sum of commuting matrices is 
the product of exponentials. Notice however, that it is not 
required that M, N themselves commute (indeed M and N 
need not even be conformable). It is remarkable that the 
exponential algebra with Kronecker products and sums is 
more analogous to the scalar case than is the exponential 
algebra with normal matrix products and sums. ’ 

Neude:cker [ 161 proved T2.13 in the following way: 
partition AD into columns and partition the kth column 
of B into single elements bik. It follows from the rule for 
the multiplication of partitioned matrices that the parti- 
tion 

(ADB)., = x (AD).ib, 
i 

= [ (B.,)‘@A] vet D 

= [ (B’)k. @A] vet D 

which establishes T2.13 partition by partition. 
T2.15 follows directly from T2.14. Note that many 

permutations and refinements of theorem T2.15 are possi- 
ble. For instance, if M is positive semidefinite and N is 
positive Idefinite, then M @ N is positive semidefinite. 

T2.16 is an immediate consequence of T2.14. 
Substitute the obvious identity A = A @ 1 into the left- 

hand sid.e of T2.17 and use T2.4 to prove T2.17. Entry 
T2.18 is established in a similar manner. 

Example I: The matrix equation 

LX+XN= Y (8) 

where X is unknown, appears often in system theory [3], 
[14], [17], [29]. It is assumed that all matrices in (8) are 
(n x n). Stability theory and steady-state ianalysis of 
stochastic dynamic systems are examples of such oc- 
currences. It follows from T2.13 that 

[(Zn63L)+(N’63L,,)] vecX=vec Y 

so that 

vet X=(N’@L)-’ vet Y. (9) 

if N’@ L is nonsingular. Since the determinant of a matrix 
is equal to the product of its eigenvalues, it flollows from 
T2.14 that solution (9) exists if 

Pk+ Yizo (10) 

for any i, k where pk is an eigenvalue of N and yi is an 
eigenvalue of L. This existence, theorem is well known [4]. 

It is commonly thought that (9) is not useful for com- 
putations because N’@ L is n* x n*. Vetter has done much 
to reduce the severity of this dimensionality problem [29]. 
An alternate computational technique based on (9) will 
now be presented. 

A matrix and its inverse share eigenvectors and the 
eigenvalues of the inverse are reciprocals of those of the 
matrix. It follows from the principle of spectral repre- 
sentation [32] and from T2.14 that 

ill) 

where bk, wi, flk, and ui are, respectively, eigenvectors of 
N’, L, N, and L’. The “reciprocal basis vectors” bk and ui 
must be normalized so that [32] 

bj$lk = 1 = u; wi. 

Combine (9) and (11) with T2.3, T2.4, and T2.13 to obtain 
the solution: 

WiU; Yfi,b; 

i k 
pk+y, * 

I 
(12) 

This solution is restricted to the case where N’@L is 
“nondefective” (has a full set of linearly independent 
eigenvectors). The above derivation is original in detail 
but the same result could have been obtained by using the 
more general theory attributed by Lancaster to Krein [ 141. 
A reviewer of this paper also succeeded in deriving (12) by 
substituting the similarity transformations to diagonal 
form for L and N into (8). 

B. Auxiliary Results 
Additional algebraic relations are displayed in Table 

III. 
T3.1 is obtained immediately from (6). 
T3.4 are immediate consequences of T2.13, 
Notice that (D’)., is the kth row of D as a column 
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TABLE III 
AUXILIARY THEOREMS 

right-hand side of T3.8 becomes 
0 ” 

For the vet- and vecd-functions, Kronecker powers and the Khatri- 
Rao product. The matrices are dimensioned as in Table I Ibottom). 

References 

5 (vet (A[$)) Dw ek = 2 e; ADW ek 
(P) k (P) (P) 

Theorems = trace (ADW) 

vet (A + H) = vet (A) + vet (H) 

vet (A’)= Upxq vet (A) 

so that T3.8 is established. 
T3.9 is a consequence of T3.8. 
Define the Kronecker square of a matrix by 

T3.1 

T3.2 

T3.3 

T3.4 

T3.5 

T3.6 

T3.7 

T3.8 

T3.9 

T3.10 

T3.11 

T3.12 

T3.13 

T3.14 

vet (A)= 5 (ek CGZJA ek 
k (4) (4) 

vet (AD) = (Z, @A) vet (D) 

=(D’@Z,) vet (A) 

=(D’@A) vet (Z,) 

vet (AD)= 5 (D’).k@A.k 
k 

A[k+ll=A@A[kl 

(AD)[kl = A [*ID Wl 

trace (AD IV) = (vet (A’))‘(Z, C3 D) vet ( FV) 

trace (A’H) = (vet (A))’ vet (H) 

AO(D’OF’)=(AOD’)OF’ 

LOiv= U,,,(NOL) 

(AOB)(FOG)=AFOBG 

vet (AVD)=(D’OA) vecd (v) 
if Y is diagonal and (q x q) 

A.,=A ek 

(4) 

WI 

WI, 1281 

1161 
WI 
1161 

WI 

141 

141 

1161 
WI 
P31 

1131 

1191 

A [*I .k A @,A (13) 

with the Kronecker power, Atkl, defined in a similar 
manner. T3.6 is an obvious result of this definition. T3.7 
follows from T3.6 and T2.4 and is remarkable since it is 
not required that A and D commute. 

If G is (t x u) and F is (q x u) (that is, they have the 
same number of columns) the Khatri-Rao product is 
denoted I;0 G and is defined by [ 131: 

FOG& [ F.,@G., j F.2’8G.2 ; .-. [ F.,@G.,]. 

(14) 
T3.10 is easily obtained and T3.11 is a consequence of 

(14) T2.5, the rule for multiplication of partitioned 
matrices and the fact that U, X, = 1. 

T3.12 is obtained from the rule for multiplication of 
partitioned matrices, T2.4, and the facts that AFk = (AF)., 
and BG., = (BG).,. 

It follows from T3.5 that 

VW (A VD ) = i (D’).k@(A v)., . 
. k 

However, if V is diagonal 

vector and obtain T3.5 from the rule of multiplication of (A V).k =A .kt&k 
partitioned matrices. so 

It follows from (4), T1.7, and T2.13 that 
VeC (AV.)= 5 (~‘).,@A,tJ,,. 

Up,, vet (A)=vec 5 i E~~xp)AEf,?xJ’) 
k 

. 
i k But ’ 

Use T1.4 to show that the right-hand side becomes 

vet 5 5 AikEifXf’) =vec (A’) 
( i k 1 

so that T3.2 is established. 
To establish T3.3, merely notice that Ae,=A., (hence, 

T3.14) and that e, @$ is qp Xp with 4 thepth partition 
(4) 

and all other elements zero. T3.3 then follows from the 
rule of multiplication for partitioned matrices. 

Notice that, by T2.13 and T3.3 

(I,@D) vet W=vecDW 

= 5 (ek @&)Dw ek . 
k (PI (P) 

Use this relation with the second of T3.4 to show that the 

(15) 

(D’OA) vecd (V)= 5 (D’OA).,u,, 
k 

= i (~‘).k@‘A.,&k. (16) 
k 

Equations (15) and (16) establish T3.13. 

IV. THE MATRIX CALCULUS 

Take the derivative of a matrix A with respect to a 
scalar b to be 

(17) 

Vetter’s definition of the matrix derivative is used here 
[24], [28]. CIA/S? is taken to be a partitioned matrix whose 
i-k partition is 

3A 
ab, . (18) 
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Vetter’s calculus was built upon the foundation laid ‘by TABLE IV 

Dwyer [:l 1] and Neudecker [ 161. Turnbull developed a THB, BASIC DIFFERINIUTION THEOREMS 
i 

calculus along alternative lines [22], [23]. 
- 

Basic theorems are listed in Table IV. All matrices are dimensioned in Table I (bottom). I 

T4.1 follows from definition (18). 
T4.2 follows from T4.1, T’2.3, and T1.7. 
To establish T4.3, note that 

Theorem 

T4.1 &! = 2 @‘)I&% 
aB i, k .’ % 

References 

T4.2 a) aA’ 

09) 
=aB’ 

T43 a(AF) aA . - = $Z,W’)+(Zs@A)~ an 
and combine this fact with T4.1, the fact that Eitx’)= 
I,EiJsx’):=Eijsx’)l~, and T2.4 to show T4.4 b) +yp = g coc+(zs8 Up,,) 

we -- 
=I( aB i,k 

which .is T4.3. 
To prove T4.4 notice that 

a(Ac3c) 
abik 

=$?X+A@$. 
rk rk 

Combine this fact with T4.1 and T2.1 to show 

(281 

1281 

1281 

T4.6 aA(C(B)) =(I,@ t3A ) @[vet (C)l’ ‘8Z) an 
aB 

q 
a vet C 

= (a[vec C]’ C3zp)(Z,8 &4 ) 
as a vet c 

[28] ‘. 
.3 

the “chain rule.” 

T4.7 The scalar product rule is 

a(A@c) - 
aB 

=~~C+~Ei~““~A~~. (20) -=$%‘A+a~ a(4 
an 

i,k rk 
a) This is a very useful result that can be used to extend any of the 

results iti Table V. Notice also the theoretical use of this formula in 
. It foIllows from T2.5 that c Section V. 

b) This formula is at variance with that published by Vetter, wherein 

Upxr(a;bTA) U,,, 1 the subscript on the last permutation matrix is q X 1. 

rk 

where the last equality follows from repeated use of T2.4. 
T4.4 is the result of substituting (21) into (20). 

T4.5 is derived in a similar manner. 
Notice that uA = a @A for any scalar a and any matrix 

A. Combine this fact with T4.4 and T1.8 to derive T4.7. 
Begin the derivation of T4.6 by combining T4.1 with 

T1.3 and the chain rule to obtain 

Now use T2.4 with the above equation and the facts that 
ac, ac, 
.yg=+t 

and 
aA=,&! 
3% p ac, 

to obtain 

which is the same as the second equality in T4.6. The first 
equality is obtained in an analogous manner. 

Table V lists a set of theorems easily obtained from the 
first four tables. The readers can prove ihese results 
themselves or study the references. The only point worthy 
of note is that “partitioned matrix rule” T5.13, which is 
easily obtained from T4.4 and T2.5, is used to obtain the 
derivative of a partition from the derivative of the matrix. 
For instance consider 
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TABLE V 
APPLICATIONSOFTHEBASIC DERIVA~VEFORMULAS 

The symmetric matrix Q= Q’ and the skew-symmetric matrix P= - 
P’ are (q X q). The elements of A are matbematictiy independent. All 
other matrices are dimensioned in Table I (bottom). 

Theorem 

T5.1 

T5.2 

T5.3 

T5.4 

T5.5 

T5.6 

T5.7 

T5.8 

T5.9 

T5.10 

T5.11 

T5.12 

T5.13 

aA - 
z = %9 

aA’ 
w = UPW 

aM-’ aM 
- = -(zpM-‘)~(zq@M-‘) 

aA 

ay 
Jj = vet v,> 

!X=‘, 
ay q 

v =(Z,@A) vet (I,) 

=vec A 

WY) -A 
ayf 

atYet9 am4 -=- 
w w 

=Zqc3y+y@Zq 

$p’QvPQv+vec WQ) 

=Q+Q’v 
a(y’OA) a(AOy’) -Ei- 

ay ay 
=Z,OA , 

Ll,,,(r,~~,,)~(Ex’)~B) 

-(ZqBU,,,)Uq,,,=Ei~x%3~ 

The partitioned matrix rule. 

T5.14 ib! cvec ay - 
ax [ 1 axI 

T5.15 aA, aA + = z(Zt@ ek) 
Cd 

References 

WI 

WI 

f61, [91 

WI 

1281 

1281 

1281 

WI 

Psi 

WI 

I91 

where all partitions are n x n. Notice that 

M= i E{;x2)CM4ik. 
i,k 

Apply T5.13 to this equation to find 

u,x,(I,~~~x~)~(~q~Ux~~~q~x~=~~~~x2~~~~ 
. i,k 

Thus if the matrix derivative is transformed in the manner 
indicated, the partitions of the result are the derivatives of 
the corresponding partitions. 

Theorem T5; 13 is useful only when all partitions of the 
matrix have the same dimensions. 

Example 2 [ 7 1, [IO]: The sensitivity of the fundamen- 
tal solution of a set of unforced linear, time invariant 
differential equations to parameter variation is studied 
here. All matrices, vectors, and eigenvalues are defined in 
example 1. 

Denote the fundamental solution 

a(t) =exp (Nt). (22) 
As is well known [32] 

-$D=N@ (23) 

and 
@(O) = z,. (24) 

Let G(t x U) denote a matrix of parameters and use 
T4.3 to show that 

f g =(Z$N)z + ~(I,WD). (25) 

Also, from (24) 

(26) 

The solution to (25), (26) is 
am 
-SE= 0 / { ‘exp (I,@N)[t-7]}!${ZU@exp(N7)} d7. 

(27) 
Assume that N is nondefective and use T2.10 and spectral 
form to show that (27) becomes 

I,@exp(N[t-T])]$[l,@exp(NT)] d7 

n n aN 
(28) 

where gi,(t) is the inverse Laplace Transform of 

(29) 

These results have been greatly. generalized [lo]. The 
sensitivity of @ has also been determined with the aid of 
the conventional scalar calculus [21].’ 

V. APPLICATION TO PARAMETER ~TENTIFICATION BY 
NEWTON-RAPHSON ITERATION FOR LINEAR 

TIME-INVARIANT SYSTEMS 

Consider a system modeled by a -set of homogeneous 
time-invariant linear equations: 

Suppose that 

N=N(d ! (30 
where p represents a set of unknown parameters and is 
taken to be r-dimensional. 
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Suppose further, that an estimate p is to be deduced 
from a set of discrete measurements of the state 

x*(4Jj,x*(t,j,* . * J*(4J. wj 

For clonvenience, the arbitrary decision to take 

q&J =x*(&J (33) 

is made here. 
In wheat follows, the best estimate of p is taken to be 

that vector which minimizes the ordinary least squares 
criterion 

z= 2 [m/J - x*(h,]‘[ qtk> -ox*] 
k=l 

(34) 

where i(t) is the solution of (30) withp=$ and subject to 
assumption (33). This is a nonlinear estimation problem 
not amenable to closed form solution. A possible numeri- 
cal procfedure is Newton-Raphson iteration. The gradient 
and Hessian (matrix of second partial derivatives) of Z will 
be derived in order to implement this procedure. 

It follows from T4.3, T5.14, T3.4, and T3.2 

(35) 

Use T4.3 and T4.2 to show that the Hessian matrix 

‘(I,‘[x(tk,-x.(l,,])]. (36) 

It also follows from T4.2 that (46) 
where h,,,(t) is the inverse Laplace transform of. 

(37) 

As is well known, the solution to (30) and (33) is 

dtk> =a(tk)X*(tO) (38) 

so that 

(39) 

and 

$( $)= $( qy){,c3x*~t,,). (40) 

If N is nondefective, it follows from (28) that 

Combine (39) and (42): 

(43) 
The gradient of (35) is obtained by the use of (43) and 

T4.2. 
It is clear from (36) and (40) that the second derivative 

of the fundamental solution is required. Combine -(25) 

with T4.3 and T4.4 to show 

WI 
Also 

(45) 

Once again, (44) is a linear matrix differential equation 
for which the solution is well known [32].. If Z,.@N is 
nondefective, the principle of spectral representation leads 
to 

Equations (36), (37) (40) (43) and (46) completely 
specify the Hessian matrix. 

The parameter identification problem can be solved by 
the following iteration method: let p(,) denote the Zth 
iterated value of p, choose pcoj arbitrarily, and use the 
familiar Newton-Raphson formula 

P(r+l)=P(/) _ ( a*;$;)))-‘( !%!$). (48) 

. Before the method is further expounded for a particular 
iV, some remarks about the general method will be made. 

First, the method is restricted to the case of a nondefec- 
tive N at each iteration, this restriction can be removed by 
using the more general form of the spectral representation 
wi, 1321. 

Second, an eigenproblem must be re-solved at each 
iteration. This fact will limit the usefulness of the method 
to moderately high order systems at best. 

Third, iteration scheme (48) need not converge. One 
would expect the following to be true, however: Gradient 
search with (43) will bring p(,) close enough to a final 
value to allow the Newton-Raphson scheme to converge. 
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As is well known, switching from gradient search to Equations (53)-(55) complete the formulation for the- 
Newton-Raphson iteration greatly increases the rate of gradient and Hessian. For instance, (35), (43), and (53) 
convergence. and T4.2 lead to 1 

Fourth, assumption (33) greatly overweighs the value of 
the initial data point x,(t,). It may be better to change the 
lower summation limit in (34) to zero and treat i(t,J as 
unknown. Matrix calculus can then be used to obtain 
gradients and Hessians for the unknown vector 

-{WC (z,)~ee,:}biB:{~(tk)x*(t,)-x*(tk)}gi~(tk). 

(56) 

(49) VI. A NEW OPERATOR NOTATION 

Denote the matrix of differential. operators 
Also, it may be useful to include a positive definite 
weighting matrix in (34) to weight the value of particular 
components of the data vector. 

Fifth, the above procedure is easily extended to the case 
when data is taken on the vector 

y=cx (50) 

rather than on the state vector itself. 
These refinements are currently being studied by the 

author, as are the conditions for nonsingularity of the 
hessian matrix. 

Example 3: Suppose that (31) is in phase variable form 
so that 

0 1 0.:. 0 
0 0 l***‘O 

N= : 
0 0 0-e. 1 

* (51) 

-PI -P2 - * * * -P, 

First, it is assumed that the eigenvalues of N are distinct 
which is the only case for which this matrix is nondefec- 
tive. Second, it is assumed that thep, are mathematically 
independent. The latter assumption is sometimes not the 
case; but the assumption greatly simplifies this explora- 
tory discussion. First notice that n-l 

N= z Ek,k+F%@P’ 
k 

(52) 

so 

and 

Further 

= - Z,((vec (4))‘Qk)K@L) 

= -([vet (Z,)]‘@e,) (53) 

‘aN 
-=-(Z,C3U,,,) zC3en U,,, 
ap ( 1 

(54) 

a aN=O apapl . ( 1 

s 
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(57) 

Define the Vetter derivative of A by 

qB @A (58) 

because the result of this operation is the same as that 
defined by (18) or T4.1. 

Define the Turnbull derivative of G by 

%G (59) 

because of the similarity of the result of this operation to 
the definition of the matrix derivative proposed by Turn- 
bull [22]. Notice that the Turnbull derivative is only 
defined for conformable matrices. Following Turnbull, 
this definition is extended to a scalar G by using the usual 
rule for multiplication of a matrix by a scalar. 

Thus the operator notation provides a means for com- 
bining two apparently divergent theories of matrix calcu- 
lus. The results obtained by Turnbull are elegant, if some- 
what ignored, and it may be well to reinstitute this theory 
into the mainstream of the matrix calculus. A few of 
Turnbull’s results are listed in Table VI. 

The operator notation also promises to lead to new 
mathematical results. For instance, it follows from T2.5 
that 

V%@@c)= v,xr(~c@~B)u,xt. (60) 

This is a surprising result of mathematical significance 
because it shows that interchanging the order of partial 
Vetter differentiation is not as simple as is the case in the 
calculus of scalar variables. In this context, ‘it should be 
noted that if C is a single row, c’, and B is a single 
column, 6, it follows from (60) and T1.8 that 

which is the result that might have been expected. 
Finally, it is noted that, as is always the case with 

operator notation, some care must be exerted. For in- 
stance, T2.5 can be used to show 

%@A = v,x,W-‘dUqxr (62) 

only if the elements of A are mathematically independent 
of the elements of B. (55) 
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TABLE VI 
TURNB~LLDER~ATWES [22] 

All matrices dimensioned as in Table I (bottom). /.L~ is an eigenvalue of 
N. The scalar s,=z$.~i. The subscript c means that a matrix is held 
constant when operated upon by the matrix of differential operators. L 
is a constant matrix. The pk are the coefficients of the characteristic 
equation of N. The elements of N are mathematically independent. 

T6.1 9,(x+ Y)=q&r+Q~Y 

T6.2 “D,(XY)=6D(Xy,)+6D(XcY) 

T6.3 9,.(LN) = trace (L)Z, 

T6.4 ‘QN(LN) = L 

T6.5 ‘@,,v(NL) = nL 

T6.6 4$&L)= L 

T6.7 JDN.(N~)~=N~~-‘+NN~~-~+... 
+Niwr-i-l+... +~r-I 

T6.8 19,,uN’= i$, (N’-&‘ZJ(N-AiZn)-’ 

=,,N’-‘+s,N’-2+. . . +s.- 
I 1 

Nr:J’ 

+.*.+s,-,Z” 

T6.9 ‘%,v.s, = rN’- ’ 

T6.10 ‘6DNfP, = -z, 

T6.11 qD,.p,= -p,Z,,-p,-,N-p,-2N2 
_... e-N’-’ 

VII. CONCLUDING COMMENTS 

Equation (4) and Theorem T4.1 are quite transparent 
but, to the author’s knowledge, -they have not appeared in 
work previous to his own. This form of the definition of 
permuta.tion and this theorem enable one to more quickly 
and more concisely. derive several of the well known 
results hsted in Tables II-V. 

At least two other tabulations should be brought to the 
reader’s attention. Athans and Schweppe [l] provide an 
extensive tabulation of differentials of important trace 
and determinant functions. Vetter [27] provides a table of 
differentials of other scalar valued functions of matrices: 
eigenval.ues, specific elements, and matrix norms of poly- 
nomial type and of transcendental type. 

In this paper, applications to analysis of stochastic 
steady-state, to dynamic sensitivity analysis, and to 
parameter identification theory were studied. Discussion 
of other applications of Kronecker algebra [3], [8], [12], 
[13] were omitted but may be of interest to the reader. 
Other applications of matrix calculus [9], [I 11, [15], [19], 
[20], [30] were not touched upon here. In addition, space 
limitations did not allow for discussion of many important 
fundam’ental topics in matrix calculus: matrix variational 
calculus [2], matrix integrals [28], and matrix Taylor series 
1231, ]281. 

Equation (46) is a generalization of the author’s previ- 
ous results [7], [IO] to the second derivative of the ex- 
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The Quotient Signal Flowgraph for 
Large-Scale Systems 

MICHAEL K. SAIN, FELLOW, IEEE 

Abstmci-A system may have reached the large-sale condition either 
by displaying highly detailed element dynamics, or by exhibiting com- 
plicated couuection patterns, or both. The quotient signal flowgraph 
(QSFG) is au approach to simplification of element dynamics. ‘l%e prin- 
cipal feature of tbe QSFG concept is its stress upon makiog tbe simplifica- 
tion compatible with the couuection structure. A context for the discussion 
is established on the generalized linear signal flowgraph (GLSFG), baviug 
node vsriahles in an ahelian group and flows determined by tbe morpbisms 
of the group. A major cfass of examples is establiied, and an illustration 
is given from the applications literature. 

I. INTRODUCTION 

0 UR PURPOSE here is to make a number of rather 
fundamental observations about large-scale inter- 

connected systems. Intuitively speaking, a system can be 
considered large scale whenever a total accounting of all 
the connections and all the dynamics of all the elements is 
uneconomical for the purpose at hand. Such systems may 
have reached the large-scale condition either by displaying 
highly detailed element dynamics, or by exhibiting com- 
plicated connection patterns, or both. One may, accord- 
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ingly, consider simplifications based upon either the ele- 
ment dynamics or the interconnections, depending upon 
the physical constraints of the application under consider- 
ation. For example, in large interconnected power grids, it 
may be an economical necessity in many cases to consider 
the connections as fixed; attention then turns naturally to 
element dynamics. A recent national workshop on power 
systems has made this point clear: 

A key factor in the consideration pf reduced order mod- 
els for power systems is the concept of structure of the 
system.. . . All of the dynamics are contained in individual 
subsystems.. . . It is important that this general structure 
be retained in the reduced order model so that the loca- 
tion of various p&s of the system can be identified [l]. 
There are, of course, many wtiys to simplify dynamical 

elements. Surprisingly, however, little attention has been 
paid to the development of element simplifications that 
are compatible with system interconnections. This is the 
basic subject which we explore in the sequel. 

In order to proceed precisely on this issue, we have to 
select a notion of an interconnected system upon which to 
develop the resulting concepts. For this purpose, we have 
chosen the signal flowgraph (SFG) of Mason [2], [3]. 

Briefly, an SFG is a weighted directed graph in which 
the nodes are variables and the edge weights are functions 
relating them. The flow across an edge is determined by 
applying the edge weighting function to the variable ai the 
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