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2.4 State-Variable Representations and Feedback
Linearization

The robot arm dynamical equation in Table 2.3-1 is
M@+ Vg + Fg+ E@ + Gl +1,=r, (2.4-1)

with g(¢)s R the joint variable vector and 1(¢) the control input. M{(g) is the
inertia matrix, ¥{(g,q) the Coriolis/centripetal vector, F,g the viscous friction,
E,(@) the dynamic friction, G(g) the gravity, and 1, a disturbance. These
terms satisfy the properties shown in Table 2.3-1. We may also write the dy-
namics as

Mg + Ngg) +1,= 7, (2.4-2)
with the nonlinear terms represented by
Mg.9) = Vig.9) + Fg + F@) + G(g). (2.4-3)

In this section we intend to show some equivalent formulations of the arm
dynamical equation.
The nonlinear state-variable representation discussed in Chapter 1,

x = fix,u1) (2.4-4)

has many properties which are useful from a controls point of view. The
function u(?) is the control input and x(¢) is the state vector, which describes
how the energy is stored in a system. We show here how to place (2.4-1) into
such a form. In Chapter 3 we show how to use computers to simulate the be-
havior of a robot arm using this nonlinear state-variable form. Throughout
the book we shall use the state-space formulation repeatedly for controls de-
sign, either in the nonlinear form or in the linear form

x = Ax + Bu. (2.4-5)

In this section we also present a general approach to feedback lineariza-
tion for the nonlinear robot equation, which involves redefining variables in
a methodical way to yield a linear state equation in terms of a dynamical
variable we are interested in. This variable could be, for instance, the joint
variable g(f), a Cartesian position, or the position in a camera frame of
reference.
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Hamiltonian Formulation

The arm equation was derived using Lagrangian mechanics. Here, let us
use Hamiltonian mechanics [Marion 1965] to derive a state-variable formu-
lation of the manipulator dynamics [Arimoto and Miyazaki 1984, Gu and
Loh 1985]. Let us neglect the friction terms F(q) = Fg + F,@g) and the distur-
bance td for simplicity; they may easily be added at the end of our
development.

In Section 2.2 we expressed the arm Lagrangian as

L=K-P="%g"Mg)q - Pg) (2.4-6)

with g(¢) eR" the joint variable, K the kinetic energy, P the potential energy,
and M{(g) the arm inertia matrix. Define the generalized momentum by

aL .
p=5z= M(g)q. (2.4-7)
Then we have
qg=M"g)p (2.4-8)
and the kinetic energy in terms of p(z) is
K = WLpTM-Y(q)p. (2.4-9)
It is worth noting that
K = hp7q. ' (2.4-10)
Defining the manipulator Hamiltonian by
H=plg-1, (2.4-11)
Hamilton’s equations of motion are
. oH
g= W (2.4-12)
; = OH _
D= 23 T. (2.4-13)
~ Note that
H=Y%p™™M  g)p+ Plqgg =K+ P (2.4-14)
Evaluating (2.4-13) yields
s =L 8 ey 9P

which may be expressed (see the Problems) as

-1
p=-g3UemP @y iy pars
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where ((g) is the gravity vector and ® is the Kronecker product (see Section

2.3).
Defining the state vector x € R?" as
x=1[q" pPI. (2.4-16)
we see that the arm dynamics may be expressed as
4|4 M- (g)p 0 -
dt D =l (I, ® p") M) p + I, U, (2.4-17)
dq

with the control input defined by
) = 1 — G(g). (2.4-18)

This is a nonlinear state equation of the form (2.4-4). It is important to note
that this dynamical equation is /inear in the control input %, which excites
each component of the generalized momentum p(¢). ‘

This Hamiltonian state-space formulation was used to derive a PID con-
trol law using the Lyapunov approach in [Arimoto and Miyazaki 1984] and
to derive a trajectory-following control in {Gu and Loh 1985].

Position/Velocity Formulations

Alternative state-space formulations of the arm dynamics may be ob-
tained by defining the position/velocity state x & R?” as

x=[qg" §"I". (2.4-19)

For simplicity, neglect the disturbance 1, and friction Fg + F,(g) and note
that according to (2.4-2), we may write '

2§ = —M(@N ) + Mgy (2.4-20)

Now, we may directly write the position/velocity state-space repre-
sentation

- q 0
X = [—M—l(q)N(q,q)] * [M-l(q)] i (2-421)

which is in the form of (2.4.4) with u(?) = (?).
An alternative linear state equation of the form (2.4-5) may be written as

%= [g {)] X+ [?] u, (2.4-22)
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with control input defined by
wt) = —M Y (q)N(g.9) + M~Yg)t. (2.4-23)

Both of these position/velocity state-space formulations will prove useful in
later chapters.

Feedback Linearization

Let us now develop a general approach to the determination of linear
state-space representations of the arm dynamics (2.4-1)-(2.4-2). The tech-
nique involves a linearization transformation that removes the manipulator
nonlinearities. It is a simplified version of the feedback linearization tech-
nique in [Hunt et al. 1983, Gilbert and Ha 1984]. See also [Kreutz 1989].

The robot dynamics are given by (2.4-2) with g & R". Let us define a gen-
eral sort of output by

¥y = h(g) + s, (2.4-24)

with A(q) a general predetermined function of the joint variable g ¢ R” and
5(t) a general predetermined time function. The control problem, then, will
be to select the joint torque and force inputs 1(7) in order to make the output
¥(?) go to zero.

The selection of 4(g) and s(¢) is based on the control objectives we have in
mind. For instance, if #(q) = —qg and s(¢) = q,(?), the desired joint space tra-
Jectory we would like the arm to follow, then WD) = q,(f) — q(H) = e(t) the
Joint space tracking error. Forcing y(f) to zero in this case would cause the
joint variables g(f) to track their desired values q,(%), resulting in arm trajec-
tory following.

As another example, y(f) = [eT  €I]” could represent the Cartesian space
tracking error, with e, € R3 the position error and ¢, ¢ R? the orientation
error. Controlling y(#) to zero would then result in trajectory following di-
rectly in Cartesian space, which is, after all, where the desired motion is usu-
ally specified.

Finally, —~4(g) could represent the nonlinear transformation to a camera
Jrame of reference and s(f) the desired trajectory in that frame. Then ¥(f) is
the camera frame tracking error. Forcing y(f) to zero would then result in
tracking motion in camera space.

Feedback Linearizing Transformation. To determine a linear state-
variable model for robot controller design, let us simply differentiate the
output y(¢) twice to obtain

. __dh e Tha e i
-aqq+s Jg+ s (2.4-25)

J=Jg+Ji+3, (2.4-26)
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where we have defined the Jacobian

Ha) = %gl- (2.4-27)

If y & RF, the Jacobian is a p X n matrix of the form

3q, g, g, (2.4-28)

Given the function A(g), it is straightforward to compute the Jacobian J(g)
associated with A(g). In the special case where p represents the Cartesian ve-
locity, J{g) is the arm Jacobian discussed in Appendix A. Then, if all joints
are revolute, the units of J are those of length.

According to (2.4-2),

Gg=M"'(-N—-1,+n1), (2.4-29)
so that (2.4-26) yields
y=§+Jqg+IM (-N— 1, + ). (2.4-30)
Define the control input function
u(t) = § + Jg +JM-1 (=N + 7) (2.4-31)
and the disturbance function
Wo) = —~JM-'1,, (2.4-32)
Now we may define a state x(¢f) € R%* by
x=p" yJr (2.4-33)

and write the robot dynamics as

E e A R AR

This is a linear state-space system of the form
X=Ax+Bu+Dv (2.4-35)

driven both by the control input #(f) and the disturbance ¥(¢). Due to the
special form of 4 and B, this system is said to be in Brunovsky canonical
Jorm (Chapter 1). The reader should determine the controllability matrix to
verify that it is always controllable from u(?).

Equation (2.4-31) is said to be a linearizing transformation for the robot
dynamical equation. We may invert this transformation to obtain

T=MMu-§-Jj]+ N, (2.4-36)
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where J* is the Moore-Penrose inverse [Rao and Mitra 197 1] of the Jacobian
J(g). If J(g) is square (i.e., p = n) and nonsingular, then J* (g) = J-'(g) and we
may write

T=MIu-5§-Jj]+ N (2.4-37)

As we shall see in Chapter 3, feedback linearization provides a powerful
controls design technique. In fact, if we select u(7) so that (2.4-34) is stable
(e.g., a possibility is the PD feedback u = =K.,y — K ), then the control
input torque t(z) defined by (2.4-36) makes the robot arm move in such a
way that y(f) goes to zero.

In the special case y(f) = ¢(f), then J = I and (2.4-34) reduces to the linear
position/velocity form (2.4-22).

2.5 Cartesian and Other Dynamics

In Section 2.2 we derived the robot dynamics in terms of the time behavior
of ¢(#). According to Table 2.3-1,

M@i+Vigd +Fi+FE@Q+G@+1,=1 (2.5-1)
or
M(g)§ + Mq.g) + 1, =1, (2.5-2)
where the nonlinear terms are
Ma.q9) = Wa.g) + Fg + EG) + G(g). (2.5-3)

We call this the dynamics of the arm formulated in joint space, or simply the
Joint-space dynamics.

Cartesian Arm Dynamics

It is often useful to have a description of the dynamical development of
variables other than the joint variable q(¢). Consequently, define

y = hg) (2.5-4)

with /(g) a generally nonlinear transformation. Although y(2) could be any
variable of interest, let us think of it here as the Cartesian or task space posi-
tion of the end effector (i.e., position and orientation of the end effector in
base coordinates).

The derivation of the Cartesian dynamics from the Jjoint-space dynamics
is akin to the feedback linearization in Section 2.4. Differentiating (2.5-4)
twice yields

y=Jg (2.5-5)

y=Ji+Jg (2.3-6)



