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S imulation schemes for discrete event (DE) systems based on a
new DE matrix formulation are presented. This new formula-
tionis a hybrid system with logical and algebraic components that
allows fast, direct design and reconfiguration of rule-based con-
trollers for manufacturing systems. It applies for general DE sys-
tems that include shared resources, dispatching, circular waits,
and variable part routing. A certain DE matrix state equation to-
gether with the familiar Petri net marking transition equation yield
a complete dynamical description of a DE system. Our goal in this
article is to show that this provides a simplified computer tool that
allows efficient simulation and modeling for DE systems.

Introduction

As in many engineering fields, the design, simulation, and
analysis of discrete event (DE) systems can be carried out using
mathematical models. There are many approaches to modeling,
simulation, and controls design for DE systems [8], including
Petri nets [12, 17, 22, 31, 32, 34], alphabet-based approaches
[36], perturbation methods [6, 19, 20], control theoretic tech-
niques [25, 28, 29], expert systems design [9, 24], and so on.
Though these techniques allow the development of models, it is
often difficult to apply them to complex practical systems,
large-scale interconnected systems, or systems characterized by
standard industrial techniques including the bill of materials
(BOM). In this article we are presenting a simplified computer
software tool that allows efficient simulation and modeling for
DE systems. This tool is based on a new matrix-based formula-
tion for discrete event systems that affords radically new tech-
niques for modeling, analysis, simulation, and control of flexible
manufacturing systems (FMS) [21, 27]. The matrix formulation
is a hybrid system [1, 2, 48] with logical and algebraic compo-
nents that applies for general DE systems with shared resources,
dispatching, and variable part routings. The key is to separate the
functions of the FMS plant from those of the FMS controller. The
matrices come from standard industrial engineering data struc-
ture techniques, including the BOM, assembly tree, and resource
requirements matrix, and are straightforward to write down for
large-scale interconnected manufacturing systems using notions
of block matrices. Although the simulations presented all in-
volve some sort of manufacturing system, the formulation is also
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applicable for other DE systems, including autonomous guided
vehicles (AGV), communication networks, and computer oper-
ating systems.

Overview of Discrete Event System Simulation

Since analytical results are often difficult to obtain, particu-
larly for transient analysis, the performance of FMS, including
scheduling and dispatching rules and other algorithms, has often
been studied using simulation [3, 10, 23, 30, 38]. There are many
approaches to simulation of discrete event systems. However,
modeling actual manufacturing systems for simulation is com-
plicated, with program-specific languages being required. There
are available many packages for simulation of manufacturing sys-
tems (SIMFACTORY IL.5, Gert [ 7], etc.), Petri nets (Design/CPN,
Grafcet [11], TORA, etc.), queueing systems ([5]), and general
DE systems (SIMAN, Simscript IL.5, Simula, Smalltalk-80,
GPSS, Extend, Slam [35]). Object-oriented techniques are used in
[4], knowledge-based approaches in [39], and Prolog in [33]. A
system theory approach, TCT [47], for simulation of supervisory
controllers with subsystem analysis is now available; this package
models a DE system using a rule-based logical component plus an
algebraic component. The large number of techniques available
show the complications arising from simulation of DE systems.
Many of these tools use brute force approaches that do not take ad-
vantage of the protocol structures of manufacturing flow lines, as-
sembly lines, and job shop systems.

Manufacturing Systems

There are several standard structures of manufacturing sys-
tems, including the reentrant flow line, the assembly line, and the
job shop. In a tlexible manufacturing system (FMS), the control-
ler should be distinguished from the physical portion of the FMS,
which s captured in the notion of a manufacturing facility—a set
of resources (including the machines, tools, fixtures, robots,
transport devices, buffers, etc.), each of which has a distinct
function. Each one can denote a pool of more than one machine
that performs the same function.

The resources operate on parts; the job sequence for part type
is a sequence of jobs required to produce a finished product. The
sequence of jobs may be obtained from a task decomposition, as-
sembly tree, bill of material (BOM), etc. [26, 42]. Once the se-
quence of jobs for a part type has been assigned, resources must
be assigned to perform the jobs based on the facilities available.
The ordering of the jobs for a given part type can be either fixed
or variable; for instance, in an application it may be allowable ei-
ther to drill then machine a part, or to machine and then drill the
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Fig. 1. DEMS workcell.

part. Likewise, the resources assigned to each job can be either
fixed or variable. For instance, either of two machines of differ-
ent types (e.g.. from different resource pools) might be capable
of performing a given drilling job. In the general job shop, the se-
quencing of jobs is not fixed, or the assignment of resources to
the jobs is not fixed. The effect is that part routing decisions must
be made during processing.

In the flow line, the sequence of jobs for each part type is fixed
and the assignment of resource pools to the jobs is fixed. The re-
sult is that parts of each type visit the resources in the same se-
quence, though different part types may have different
sequences. A flow line is said to be reentrant if any part type re-
visits the same resource pool more than once in its job sequence
[25, 26]. This occurs if the same resource is assigned to different
jobs in the part’s sequence. The reentrant flow line has also been
called the job shop with fixed part routing,

In the reentrant flow line or the job shop, the parts can revisit
the same resource pool more than once, and/or the same resource
pools may be used to service several parts of different types.
Therefore, certain resources are shared, either by parts of the
same type at different stages of their processing, or across parts
of different types. Thus, one is faced with a decision at each
shared resource involving which part to process next. If the
buffer sizes are finite, this dispatching decision is a crucial one
which can cause severe problems in a manufacturing system if
not properly made.

Petri Nets

Event-driven systems are growing in popularity and com-
plexity. This is motivating the use of well-organized design
methodologies to avoid failures and to optimize performance.
These systems usually have characteristics such as concurrence,
conflicts, priorities, mutual exclusions, shared resources, and
many others. These properties are difficult to handle; however,
the design of these systems, and thus their simulations, can be
carried out using Petri nets (PN) [12, 17, 22, 31, 33, 34, 40, 43,
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49, 50]. There are many varieties of Petri nets, from binaries,
which are simple to analyze, to colored nets, which allow the
modeling of more complex systems but have fewer analytic re-
sults. A Petri net (PN) is nothing but a bipartite (e.g., having two
sorts of nodes) digraph described by 2, 7, 1, O, where Pis a set of
places, 7 is a set of transitions, I is a set of (input) arcs from
places to transitions, and Ois a set of (output) arcs from transi-
tions to places. Considering a PN as adigraph with nodes 7= 2U
Tand arcs A= I'V O, one may speak of PN paths, circuits, and ele-
mentary circuits. In a well-defined PN, the occurrences of places
and transitions alternate along any of these.

In our application, the PN places represent manufacturing re-
sources and jobs, and the transitions represent decisions or rules
for resource assignment/release and starting jobs. A standard
representation for a reentrant flow line is given in Fig. 1. The PN
representation for the same system is shown in Fig. 2, where the
places are drawn as circles and the transitions as bars. Note that
along the part path, some resources (e.g., Robot) is used more
than once. The part path in the figure has a set of pallets denoted
by PA; one pallet is needed to hold each part entering the cell. In
Fig. 2, places and transitions alternate along the part paths.
Places ending in % all on the job paths, correspond to jobs in
progress. Places ending in 4 correspond to the availability of re-
sources. Denote the set of jobs for part type j as J and the set of
all the jobs as 7=1;5. Itis noted that the parz input places PI and
part output places PO are not included as jobs. Places that occur

Fig. 2. Petri-net representation.
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off the part paths represent the availability of resources; the set of
resources R is the set of all such places. The set of resources may
be partitioned as R = Kns U Rs, With Rys the nonshared resources
and R the shared resources. The set of PN places is given by P=
R U 7, the set of resources plus the set of jobs. It is important to
note that all transitions occur along the part paths. The tokens
(drawn as dots) within the places shown in the figure denote the
initial numbers of resources assigned to the resource pools. For
instance, the tokens within the place BA in Fig. 2 denote that ini-
tially there are two buffer spaces available; the tokens in the place
PA indicate initial availability of four pallets for part type 1.

PN are very difficult to design for specific FMS of reasonable
complexity, and to modify if objectives, products, or resources
change. There is no repeatable design algorithm for PN. Several
researchers [12, 17,22, 37, 49] are confronting such PN deficien-
cies. “Top-down” and “bottom-up” design algorithms are emerg-
ing, and the shared-resource allocation problem is being
confronted using concepts such as series mutual exclusion
(SME), parallel mutual exclusion (PME), forbidden states, etc.
A major problem is that to date there is no complete mathemati-
cally rigorous evolution equation for a PN, so that properties
such as reachability mustbe verified for each given system using
simulation. Moreover, to accommodate manufacturing design
atgorithms in the PN framework, it is necessary to introduce col-
ored PN, hierarchical PN, generalized PN, multiple types of
places, or other esoteric notions that quickly go beyond the expe-
rience of the manufacturing engineer and invalidate most PN
analysis techniques.

Matrix Model For Discrete Event System

This section describes a new DE matrix description that
makes it straightforward to model and simulate DE systems.
From the DE matrix representation of a FMS, the PN represen-
tation may easily be derived if desired. The DE matrix represen-
tation is written down using manufacturing engineering
concepts. Some standard manufacturing engineering data
structure techniques are very useful for conceptualizing manu-
facturing processes and providing a limited capability for
analysis. The Bill of Materials (BOM) can be described as ama-
trix in which the (i,j) entry is equal to the number of subassem-
blies/parts of type j needed to produce one subassembly/part of
type i [13]. BOM information is an integral part of all MRP sys-
tems [44]. The BOM contains similar information as the assem-
bly tree [46], which shows the task decomposition of jobs
needed to manufacture a product.

Steward’s job sequencing matrix (JSM) 14,41, 45], comes
directly from the assembly tree [46] or the BOM. In this ma-
trix, the columns and rows correspond to jobs, and an (i,j) en-
try of 1 indicates that job j is a prerequisite for job i. The job
sequencing matrix is very useful for representing the partial
orderings needed for sequencing manufacturing jobs; it has
been shown that a lower triangular JSM corresponds to a
causal ordering of jobs, and that information on the hierarchi-
cal subsystem structure of a process can be extracted by rais-
ing the JSM to various powers.

The resource requirements matrix (RRM) comes directly
from the resources available to perform jobs, as reflected, for in-
stance, in the subassembly tree, which is an assembly tree anno-
tated to indicate the resources assigned to the jobs [46]. In this
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matrix, the columns correspond to resources (tools, fixtures, ma-
chines, robots) and rows correspond to jobs; an (i,j) entry of 1 in-
dicates that resource j is needed for job i. As resources change, it
is very easy to modify the RRM, and Kusiak has shown that
RRM provides the basis for dispatching of shared resources
(MDR rule).

The Matrix Discrete Event Model

A new rule-based DE matrix model is now described that al-
lows assembly/job sequencing, then addition of resources, then
deadlock analysis and avoidance, and facilitates dispatch-
ing/routing design. The model matrices provide a framework for
rigorous analysis of an FMS, including its structure, circular
waits, siphons, and deadlock. The model also allows a very con-
venient computer simulation of FMS. The DEDS model is based
on a matrix formulation (not the max-plus algebra) where each
matrix has a well-defined function for job sequencing, resource
assignment, and resource release. The matrix discrete event (DE)
model is described by the following equations:

Matrix DE Model State Equation:
Xx=Fv,+Fr+Fu+Fyu,, )
Start Equation:
v,=S8x, Q)
Resource Release Equation:

r =581, @)

r

Product Output Equation:
y=8x. “)

These are logical equations, where addition denotes logical
‘or’, multiplication denotes logical ‘and’, and the overbar indi-
cates logical negation. They are very easy to write down for a
specific FMS. F, is the job sequencing matrix of Steward it is de-
termined from the BOM (Elsayed and Boucher 1994) or assem-
bly tree (Wolter et al. 1992). Element F\(i,j) isequalto 1 if jobjis
required as an immediate precursor to job i (equiv. in the BOM, if
subassembly j is required to produce subassembly §). F' is the re-
source requiremenis matrix of Kusiak (1992), which is assigned
by the shop-floor engineer depending on the available manufac-
turing facilities. It has element F(i,j) equal to 1 if resource j is re-
quired for job i. Steward’s sequencing matrix F, and the resource
requirements matrix F, have long been used as heuristic design
aids by industrial engineers, with some possibility for limited
analysis (as described, e.g., by Warfield (1973) in the case of F,,
and Kusiak (1992) in the case of F}). The logical matrix model
elevates these design tools to formal computation elements. The
job start matrix S, and the resource release matrix S, are new ma-
trices that must be introduced to obtain a complete matrix de-
scription of DE systems; they are equally direct to write down.
Matrix S, has element S.(7,j) equal to 1 if job i should be started
when all the requirements of logical component x; are satisfied,
so that x; has been set high. In the flow line this matrix has diago-
nal 1’s. In the job shop, it has multiple ones in the same column
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are given by (4). (Subscript ¢
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Measures Due Dates, etc. denotes start). The upper third
of Fig. 3 represents shared-
Conflict Resolution Logic resour;e conﬂlct res.olgt-lon
and dispatching activities.
————p| Dispatching Rules This article focuses on the ma-
kel Routing Rules trix model (1)-(4) and the
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Resolution PN transition equation (7).
: Input It is easy to show that with
Next Task Logic u the or/and matrix algebra,
X=F, o+ R T+ F U+ Fplp -2 Equations (1)-(4) become
mathematical equations that
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Jo= S x <__‘ the rules in the FMS model.
s 7y This allows: (a) computer
simulation and (b) computer
Resource Release Logic implementation of the model
as a controller on an actual
rg=5.x workcell. The operations re-
quired in the DE model equa-
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using standard real-time con-
trol software on a personal
Workeell computer. It is notedpthat the
Parts in: coefficient matrices in (1) are
u u=T,ug sparse, so that real-time com-
Parts In — Sy u Parts Present | putations are very easy even
Tasks: for large manufacturing sys-
v V.= T Y% v tems. Moreover, (1) is nothing
Task S < Tasks Complete| but arulebase, so that the rules
Commands Resources: can be fired using efficient al-
[ orithms such as the Rete al-

Resource s ¢ 7;d s e Resources Idle gorﬁhm [16].
Release Commands
%w_t. y PN from Discrete Event
y's ————3» Products Out Matrices

It is straightforward to de-
rive the PN description of a

Fig. 3. Matrix-based DE model.

corresponding to job routing decisions. Matrix S, has element
S/{i,j) equal to 1 if resource i should be released when logical
state component x; is set high. Input u represents raw parts enter-
ing the cell and y products leaving the cell.

The DE model, shown in Fig. 3, observes the status outputs of
the workcell, namely, vector v, whose entries of ‘1’ represent
completed jobs and vector r., whose entries of ‘1’ represent re-
sources currently available. The DE model state equation (1),
analogous to the matrix differential equationx = 4x + Buin con-
trol system theory, checks the conditions required for performing
the next jobs in the manufacturing system. Based on these condi-
tions, stored in the logical state vector x, the job start equation (2)
computes which jobs are activated and may be started, and the re-
source release equation (3) computes which resources should be
released (due to completed jobs). Then the DE model sends com-
mands to the workcell dynamics, namely vector v, whose ‘1’ en-
tries denote which jobs are to be started, and vector 7, whose ‘1°
entries denote which resources are to be released. Products out
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manufacturing system from

the matrix DE model equa-
tions (1)-(4) [21, 27]. This allows all the PN analysis tools to be
used for DEDS analysis within the matrix DE model framework.
It results in a repeatable design algorithm for Petri nets for DE
controllers that formalizes some work in the literature (e.g.
“top-down” and “bottom-up” design [49]). In fact, given the
FMS model equations, define the activity completion matrix F
and the activity start matrix S as

F=[F, F, F, F], s=[s] sl s s7] )

Define Xas the set of elements of controller state vector x, and
4 (activities) as the set of elements of the job and resource vec-
torsvand . Then (4, X, F, S 7) is a Petri net. Here Fyand Sy are in-
troduced to complete the matrices and they are nothing but a
vector of zeros. This result identifies F as the input incidence ma-
trix and S” as the output incidence matrix of a PN, so that the PN
incidence matrix is given by
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1. % Simple DE simulation

2. clear all;

3. Fv = [(00000; 10000; 0100¢0C; O0100; 00010; 0000 11;
4, Fr =(11000; 0000122; 00010; 00100; 000O01; 000 0 0};
5. Svy = [L0Q0O0CO0; 010000; 001 00; 000100; 00O0O010]);
6. Sr = [000001;, 01 0000; 000 10, 000100; 00100 11;
7. Fu={10000D0];

8. Fy = [0 000 0 0]

9. su=[(0000O00];

10. Sy = [00 000 17;

11. F = [Fu Fv Fr Fyl;

12. S = [Su’ 8v’' Sr’ Sy'l’;

13. M=8" - F;

14. % Initial Conditions

15. % m{to) = [PI v r Ud PO];

16. % m{to) = [PI M1P RULl BS M2P RU2 PA M1A M2A BA RA PO];

17. output(l,:) = [ PI MIP RUl BS M2P RU2Z PA MIA M2A BA RA PO’']J;

18. m=1[1000004111210]";

19. output(2,:) = sprintf(’ %24 ‘, m);

20. % Running the simulation

21. for i = 3:10;

22. x = multoa(not (F), not{not(m)));

23. m=m+ (M * x);

24. output(i,:) = sprintf(’ %24 ‘', m);

25. end

26. % Displaying the results

27. output

Fig. 4. MATLAB file “DE1.M”.

1. function R = multoa(X,Y)

2. nx, mx] = size(X);

3. [ny, my] = size(Y);

4. for 1 = 1:nx

5. for j = l:my

6. R(i,J) = ((X(1,1)) | «(¥(1,3)));
7. for k = 2:mx

8. R{i,j) = R(i,J) & ((X(i,k}} |
9. end

10. end

11. end

% Matrix "and/or" multiplication

(Y(k,3)));

Fig. 5. MATLAB file “MULTOA.M".

M=§"-F=[Si-F, S/ -F S/ -F S]-F]. ©)

Based on this result, a PN such as the one in Fig. 2 is easily
drawn for a system described in matrix form. In this figure, initial
markings (mg) have been added; this is accomplished by deter-
mining the number of resources available in the workcell. The re-
sult makes it patently clear that the PN is the closed-loop
description of the workcell plus controller. As such, all attempts
to directly draw a PN for a workcell are fraught with danger, as
they are equivalent to an attempt to draw the workcell PN and de-
sign the dispatching/routing controller all in one step.
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Petri Net Marking Transition Equation

According to PN theory, a column vector p indexed by the set
of places ? is called the PN p-vector (place vector). The PN
marking vector is the marking vector m(p), where the marking of
p, is the number of tokens in p. Given a vector of places p = [p]
p2.. pq]T, the marking m(p) is the vector m(p) = [m(p1) m(p2) ...
m(pg)]! of markings of the individual places. It is common to
simplify the notation so that m(r) denotes the marking vector
m(p) at time . In terms of the PN incidence matrix, one can write
the PN marking transition equation

m(t)=m(t)+ M x=m(e)+[s"=F] x.
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1. function Y = not(X)
2. [nx, mx] = size(X);
3. for i = 1l:nx

4. for j = 1:mx

5. if (X(i,3) < 1)
6. Y({i,j) = 1;
7. else

8. Y(i,j) = 0;
9. end

10. end

11. end

Fig. 6. MATLAB file “NOT.M".

where m(1) is the PN marking vector at time ¢, #7 < f2, and x is a
vector denoting which transitions have fired between times #;
and £2; element x; = ; if the i-zh transition has fired #; times in the
interval. Unfortunately, this equation is not a complete descrip-
tion of a PN since it does not take into account the order of firing
of the transitions, nor whether a given transition can actually fire
at any point in time.

Thus, the matrix approach to PN has yielded some valuable
insight [34], but has never been extended to provide a com-
plete description of the firing dynamics of a PN. In subsequent
sections of this article, this deficiency is corrected. A matrix
formulation of discrete event systems is given that, together
with the PN marking transition equation (7), provides a com-
plete dynamical description that can be used for analysis and
computer simulation.

Complete Dynamical Description of Discrete Event Systems
The matrix formulation provides the rigorous framework
needed for the analysis and simulation of discrete event system
(DES). Thus the DE model presented here, designed to simulate
this sort of system, is based on this framework. Denoting the dis-
crete event iteration number by &, the following equations give
the basic description of a DES.

m,, =m+M -x,. ®)

Equation (8) is the Petri-net marking transition equation as in-
troduced in the previous section, where my is the marking vector
and M is the incidence matrix [1]. This equation attempts to pro-
vide a complete dynamical description of a PN. However, this
equation alone cannot be used without an allowable firing vector
xx. Assuming that this firing vector is given, then using Equation
(8) we can determine the next marking vector based on the previ-
ous one. Remember that M is fixed and defined by the structure
of the system itself. Therefore Equation (1) has to be introduced
inorder to determine the allowable firing vector x¢. This equation
may be written as

x,=F®m=[F, F, F, F]®[PI v r PO],. ©)

Equation (9), as opposed to (8), cannot be computed in stan-
dard matrix algebra. The overbar denotes logical negation; given

October 1997

a natural number, its negation is equal to zero if the number is
greater than zero, and 1 otherwise. The double overbar only indi-
cates that the logical negation is performed twice, making pro-
jecting the natural number vector my into a vector of zeros and
ones. The @ symbol indicates that the operation to be performed
is somehow like a matrix multiplication, but with the operations
of multiplication and addition replaced by “or’” and “and”, re-
spectively. On the example demonstrated in the next section, this
operation is described on the MATLAB function in Fig. 5. These
two equations constitute a hybrid system [1, 2, 48] with logical
and algebraic components (see the example below).

Using these equations itis very easy to write acomputer pro-
gramin MATLAB, MATRIXx, C, or any computer language, to
simulate a discrete event system. Once the equations have been
programmed, the program can easily simulate different discrete
event systems by only changing the matrix description of the
system (i.e., M and F). Moreover, it is straightforward to com-
pute and plot versus time various performance measures, such
as resource percent utilization, buffer lengths, part throughputs,
and so on.

Simulation of Discrete Event Systems: An Example

The use of the Equations (8) and (9) in the matrix framework
will now be illustrated by a reentrant-flow-line example. Though
the example is a simple one, the techniques extends directly to
complex systems. In fact, the basic structure of Fig. 4 can be con-
sidered a sort of “Runge-Kutta” integrator for all discrete part
DE systems, i.e., those that can be represented as a PN; only the
matrices F and S need to be changed. In this case, the example
consists of two machines M/ and M2, which could be either
available (M1A, M2A) or processing a part (M 1P, M2P); a buffer
(BA, BS); and a shared robot (RA, RUI, RU2).

AsshowninFig. 1, a partenters the workcell in PJ, it is drilled
by the first machine (M7), moved by the robot (RU) to the buffer
(BS), polished by the second machine (M2), and moved again by
the robot (RU2) to PO, which is the cell output. The figure also
shows that pallets (PA) are needed for the first machine and for
the derivative subassemblies. Fig. 2 shows the same example
represented as a Petri-net.

With the description proposed in the previous paragraph, we
can define the marking vector as my = [PI MIP RUI BS M2P
RU2 PAMIA M2A BA RA POJ". Evaluating successively the fir-
ing vector xx from Equation (9) and the next state of the system
from the Petri-net marking transition Equation (8), one can see
the progressive evolution of the net. These few calculations show
the power and simplicity of the basic equations and thus the use-
fulness of the matrix framework in DES simulations.

A simple MATLAB example is included in Fig. 4. The first
tew lines define the system matrices as explained by the matrix
DE model. These matrices correspond to the same discrete event
system shown in Figs. 1 and 2. In this case, with the initial condi-
tions established in line 18 (Fig. 4), the evolution of the net is
simply computed by the successive execution of lines 22 and 23
(Fig. 4). These two lines are the MATLAB equivalent of Equa-
tions (8) and (9). The output of this program shows the marking
vector for successive iterations, and thus the simulation of the
DE system under consideration.
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1. % Timed DE simulation

2. % v = [M1P RUl BS M2P RU2]

3. % r = [PA M1A M2A 3A RA]

4. % ud = [udl ud2]

5. clear all;

6. Fv = [00000; 10000; 01000; C010C0C; 00010; 0000 1];
7 Fr=[11000;, 00001; 00010; 00100; 00001, 0D 0O0O0O0];
8. Fud = [0 0; 10; 00; 00; 01; 0 0];:

9. Svw = [L00O00D0; 010000; 00100¢; 000100; 000010};
10. Sr = [000001X; 01C00O0; 000C010; 0002100; 001001];
11. Sud = [0 0 CO0OO0CO0;, 00CGO0OO0 O0];

12. Fu = [20000 0];

13. Fy = (00 0 00 0)’;

14. Su=[00000O0O0];

15. Sy = [0000O01];

16. F = [Fu Fv Fr Fud Fvy];

17. 8 = {8Su’ Sv’ 8r’ sud’ Sy'l’;

18. M= S - F;

1i9. % Initial Conditions

20. % m(tec) = [PI v r Ud PO];

21. % m(to) = [PI M1P RUl BS M2P RU2 PA M1A M2A BA RA udl ud2 PO];
22. mf =[900000412121¢00];

23, mi=([(0000000O00O00CO0CO0O0]";

24. PNtimes = [0 2.8 .4 1.2 3 .5 .2 000000 01;
25. udl = 12; ud2 = 13;

26. TotalTime = 25;

27. TimePeriod = .1;

28. Num_iter = TotalTime / TimePeriod;

29. T = [PNtimes PNtimes PNtimes PNtimes PNtimes];
30. U(:,1) = [00000000000D0D0C0]";

31. W{(:,1) = [00 0000000 0O0CO0CD0Q0}";

32. N{:,1}) = mf + mi;

33. time(l) = 0; % // Initial time

34, % Running the simulation

35. for i = 2:Num_iter;

36. % Conflict resclution Subroutine

37. mf (udl) = 1;

38. mf {ud2) = 1;

39. x = multoa(not(F), not(not(mf}));

40. conflict = (mf - (F" * x));

41. if any(conflict < 0)

42. % Random dispatching

43. if (fix{(2*rand(l)) == 0)

44 . mf (udl) = 1; mf(ud2) = 0;

45. else

46. nf (udl) = 0; mf(ud2) = 1;

47. end

48. end

49. % Deadlock Avoidance Subroutine (MAXWIP)

50. x = multca(not{(F), not(not{mf}));

51. mtest = mf + (M’ * x);

52. if ((mtest(3)4+mtest(4)+mtest(5)) >= 3)

53. % /// RUl-BS-M2P --- udl ///

54. mf (udl) = 0;

55. wf (ud2) = 1;

56. end

57. x = multoa{not(F), not(not(mf}));

58. mf = mf + {(-F" * x);

59. mi=mi+ (8 * x);

60. % Elapsed Times Subroutine

61. for j = l:length(mf);

62. % Computing Utilization (U), wasted time (W), number of tokens (N)

Fig. 7. MATLAB file “DE2.M”.
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63. if (mi(3) > 0)

64. U(j,i) = U(3,i-1) + TimePeriocd;
65. else

66. u(j,i) = u(j,i-1);

67. end

68. if (m£(j) > 0)

69. W(j,i) = w(j,i-1) + TimePeriod;
70. else

71. W(3,1i) = w(j, i-1);

72. end

73. N(:,i}) = mf + mi;

74. if {(mi(3) > Q)

75. for k = 1l:mi(3j)

76. if (T(j,k) > 0)

77. T{j,k}) = T(j,k) - TimePeriod;
78. else

79. for kt = 2:mi{j)

80. T(j,kt-1) = T(j,kt);
81. end

82. T(j,mi{j)) = PNtimes(]);
83. mf(j) = wf(3) + 1;

84. mi(j) = wi(j) - 1;

85. end

B6. end

87. end

88. end

89. time(i) = time(i-1) + TimePeriod;

90. end

91. % Displaying the results

92. plot(time,N(2, :)+12, ‘y-’,time , N(3,:)+10, ‘y-’',time,N(5, :)+8, 'y-',time,N(6,:)+6, 'y-
93. *,time,N(8B,:)+4,'y~-',time ,N(9, )42, y-",time,N{11,:),y-");
94. AXTS ([0 TotalTime -1 14])

95. text ((1.02)*TotalTime,12.5, 'M1P’);

92¢. text ((1.02)*TotalTime,10.5,'RUL1"});

97. text((1.02)*TotalTime, 8.5, '"M2P’);

98. text ((1.02)*TotalTime, 6.5, "RU2');

99. text ((1.02)*TotalTime, 4.5, 'M1A’ ) ;

100. text ((1.02)*TotalTime, 2,5, 'M2A');

101. text ((1.02)*TotalTime,0.5, "RA’);

102. xlabel{ 'Time’);

Fig. 7. MATLAB file “DE2.M" (continued).

Timed Simulations Fig. 7 shows the MATLAB code for a timed simulation. Once
It is easy to see from the MATLAB example in Fig. 4 how again, the same DE system is implemented, but now the code has
simple it is to simulate a basic DE system. However, any real  been modified to take into account the restrictions imposed by
workcell has nonzero times for performing operations, namely  timed simulations. Mainly, Equation (8) has been replaced by
for performing jobs and setting up resources once they are re- lines 58 and 59 (Fig. 7). as explained in this section. Also, a
leased. These times are interpreted herein as timed PN places. In  elapsed times subroutine has been included (/ines 60-88, Fig. 7).
this situation, one must split the place transition Equation (8)into  Now with this new code, we are able to compute different per-
two parts, adding also a subroutine that determines by computing ~ formance measures, such as resource percent utilization (Fig.
elapsed times which currently ongoing operations are com-  10), wasted time, overall activity of the DE system and so on.
pleted. To accomplish this, each i-th place is envisioned as hav-
ing two parts. The “input” part is m;, where tokens are positioned
as the place input transitions fire. After the time associated with
that place has lapsed, the token in m; is moved to the final part my;
then it becomes available to fire the place output transitions. A
subroutine must be written to compute, at each DE iteration k,
which currently ongoing workcell jobs and/or resource releases
are completed, appropriately moving entries of m; into mg. Then,
the following equations replace (8):

Dispatching: Conflict Resolution Subroutine

InFig. 4, the initial conditions (e.g., number of jobs in the sys-
tem, PI = ) were selected so that there 1s no shared resource con-
flict. In reality, shared resources present a problem in that failure
to properly dispatch the shared resource can lead to deadlock. In
the example shown in Fig. 4, this could happen if PI > 3. How-
ever, it is straightforward to simulate complex systems that con-
tain shared resources using (8) and (9). To accomplish this, an
m(k+1)=m(k)-F -x(k), extra step must be inserted between Equations (9) and (8). The

’ vector x; as initially computed should be considered as a re-
m(k+1) = m(k)+ 5 - x(k). quested or proposed transition firing vector (line 39, Fig. 7). If it
results in any negative values in 14, then there was a shared-
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Fig. 10. Resource percent utilization.

resource assignment problem (lines 40-41, Fig. 7). In this case,
one must call a dispatching subroutine that decides which job
involving that shared resource to perform and propose a new xz;
this amounts to selecting the dispatching input. The job selec-
tion is determined by extending the marking vector to include
dispatching places up. Then, myy; is computed and one pro-
ceeds with the iteration. The dispatching subroutine can con-
tain any dispatching rule desired (lines 42-47, Fig. 7). As you
can see a different choice of dispatching inputs is selected de-
pending whether or not a shared-resource assignment problem
has occurred. In this case the subroutine is implementing ran-
dom dispatching.

70

Simulation Results

Using this technique we are able to plot the evolution of a dis-
crete event system versus time. In Fig. 8, we see the operation of
several machines and robots in our reentrant-flow-line example.
For instance, in the last line the state of the shared robot is shown
(when RA is high, this means that the robot is available).

The following plot (Fig. 9) shows the same system with a dif-
ferent controller. In this case, deadlock is reached such that after
some time there is no more activity in the DE system. Such a case
was produced by implementing an erroneous deadlock avoid-
ance policy.

As another example, Fig. 10 shows the percent utilization of
the shared-robot. Assuming that the system is deadlock free, all
the plots reach some steady-state value. In the same way that this
plot was computed, one can plot versus time various perform-
ance measures, such as resource percent utilization, the elapsed
times, part throughputs, and so on.

Conclusions

A new matrix-based formulation of discrete event systems
was adopted that, together with the PN marking transition equa-
tion, provides a full dynamical description of a DE system. Com-
plete simulation equations were provided for a DE system. The
matrices in the DE model description come directly from indus-
trial engineering tools such as the bill-of-material, assembly tree,
and resource requirements matrix. Using these matrices, algo-
rithms were given to simulate and model discrete event systems.
The results show the power and simplicity of our approach.
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