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Introduction 
 The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at 
the University of California at Berkley, in the mid-1960's. Fuzzy Logic (FL) is a non-
linear problem-solving control system methodology that lends itself to implementation in 
systems ranging from simple, small, embedded micro-controllers to large, networked, 
multi-channel PC or workstation-based data acquisition and control systems. It can be 
implemented in hardware, software, or a combination of both. FL provides a simple way 
to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy, or 
missing input information. FL's approach to control problems mimics how a person 
would make decisions, only much faster. 
           FL is different from conventional control methods as it incorporates a simple, rule-
based IF X AND Y THEN Z approach to a solving control problem rather than 
attempting to model a system mathematically. The FL model is empirically-based, 
relying on an operator's experience rather than their technical understanding of the 
system. For example, rather than dealing with temperature control in terms such as 
"Temp =500F", "Temp <1000F", or "210C <Temp <220C", terms like "IF (process is too 
cool) AND (process is getting colder) THEN (add heat to the process)" or "IF (process is 
too hot) AND (process is heating rapidly) THEN (cool the process quickly)" are used. 
These terms are imprecise and yet very descriptive of what must actually happen. 
Consider what you do in the shower if the temperature is too cold: you will make the 
water comfortable very quickly with little trouble. FL is capable of mimicking this type 
of behavior but at a very high rate. 
 
Fuzzy Logic Architecture   

 The block diagram of a fuzzy controller is shown in Figure 1. The fuzzy 
controller is composed of the following four elements: 
1) A Rule-Base (a set of If-Then rules), which contains a fuzzy logic quantification of the 
expert’s linguistic description of how to achieve good control.       
2) An Inference Mechanism (also called an “inference engine” or “fuzzy inference” 
module), which emulates the expert’s decision making in interpreting and applying 
knowledge about how best to control the plant.              
3) A Fuzzification interface, which converts controller inputs into information that the 
inference mechanism can easily use to activate and apply rules. 
4) A Defuzzification interface, which converts the conclusions of the inference 
mechanism into actual inputs for the process. 



 
 
 

Fig 1.  Block diagram of Fuzzy Controller 
 
Terms and Definitions 
  The linguistic description provided by the expert can generally be broken into 
several parts. There will be “linguistic variables” that describe each of the time-varying 
controller inputs and outputs. Linguistic variables assume “linguistic values”. That is, 
they can be described by the following values: “Neg. High, Neg. Low, Zero, Pos. Low, 
Pos. High” etc. Note that we are using “Neg. Low” as an abbreviation for “Negative 
small in size” and so on for other values. Such abbreviations keep the linguistic 
descriptions short yet precise. The linguistic variables and values provide a language for 
the expert to express his or her ideas about the control decision making process in the 
context of the framework established by our choice of fuzzy controller inputs and 
outputs. 
 Next, we will use the above linguistic quantification to specify a set of rules (a 
rule-base) that captures the expert’s knowledge about how to control the plant. In 
particular for an inverted pendulum shown in Figure 6, we have the following rules: 

• If angle (θ) is Neg. High and angular velocity (w) is Neg. High Then force on 
platform (F) is Neg. High. 

• If angle (θ) is Zero and angular velocity (w) is Pos. Low Then force on platform 
(F) is Pos. Low. 

• If angle (θ) is Pos. High and angular velocity (w) is Neg. Low Then force on 
platform (F) is Pos. Low 

The convention that is followed here is, a particular linguistic variable is considered 
positive if it is acting towards the right and negative if it is acting towards the left. 

Each of the three rules listed above is a “linguistic rule” since it is formed solely 
from linguistic variables and values. Since linguistic values are not precise 
representations of the underlying quantities that they describe, linguistic rules are not 
precise either. They are simply abstract ideas about how to achieve good control that 
could mean somewhat different things to different people.  
The general form of the linguistic rules listed above is: 

If premise Then consequent 
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As you can see from the rules listed above, the premises (sometimes called 
“antecedents”) are associated with the fuzzy controller inputs and are on the left-hand-
side of the rules. The consequents (sometimes called “actions”) are associated with the 
controller outputs and are on the right-hand-side of the rules. The number of fuzzy 
controller inputs and outputs places an upper limit on the number of elements in the 
premises and consequents. Note that there does not need to be a premise (consequent) 
term for each input (output) in each rule, although often there is. 
  Using the above approach we can write down rules for the pendulum problem for 
all possible cases. With two inputs and five linguistic values for each of these, there are a 
maximum of 5×5=25 possible rules. A convenient way to list all possible rules for the 
case where there are not too many inputs to the fuzzy controller is to use a tabular 
representation as shown in Table 1. 
 
Membership Functions 

We quantify the meaning of the linguistic values using “membership functions”. 
Consider for example Figure 2. This is a plot of a function µ versus e(t) (consider it to be 
the angle in radians that the inverted pendulum makes with the vertical on the platform) 
that takes on special meaning. The function µ quantifies the certainty that e(t) can be 
classified linguistically as “Pos. Low”. 

e(t),(rad.)

µ

1

0.5

π/4 π/2

Pos. Low

 
Fig 2. Membership function for linguistic value “Pos. Low” 

 
To understand the way that a membership function (MF) works, it is best to 

perform a case analysis where we show how to interpret it for various values of e(t): 
• If e(t)= -π/2 then µ(-π/2)=0, indicating that we are certain that e(t)= -π/2 is not 

“Pos. Low”. 
• If e(t)= π/8 then µ(π/8)=0.5, indicating that we are halfway certain that e(t)=π/8 is 

“Pos. Low” (we are halfway certain since it could be “zero” with some degree of 
certainty -  this value is in a “gray area” in terms of linguistic interpretation). 

• If e(t)= π/4 then µ(π/4)=1, indicating that we are absolutely certain that e(t)=π/4 is 
what me mean by “Pos. Low”. 

• If e(t)= π then µ(π)=0, indicating that we are certain that e(t)= π is not “Pos. 
Low”(actually it is “Pos. High”). 
The membership function is not a probability density function, and there is no 

underlying probability space. By “certainty” we mean “degree of truth”. The membership 
function does not quantify random behavior; it simply makes more accurate (less fuzzy) 
the meaning of linguistic descriptions. 



It is important to recognize that the membership function in Figure 2 is only one 
possible definition of the meaning of “Pos. Low”; you could use bell shaped function, a 
trapezoid (a), a Gaussian(b), or many others. 

 

 
                 (a) Trapezoidal                                           (b) Gaussian 
 

The set of values that is described by µ as being “Pos. Low” is called a “fuzzy 
set”. In Figure 2 while the vertical axis represents certainty, the horizontal axis is called 
the “Universe of Discourse” for the input e(t) since it provides the range of values of e(t)  
that can be quantified with linguistics and fuzzy sets. In summary, depending on the 
application and the designer (expert), many different choices of membership functions 
are possible.             

Fuzzification is the process of obtaining a value of an input variable (e.g. e(t)) 
and finding the numeric values of the membership function(s) that are defined for that 
variable. For example if e(t) = π/4, the fuzzification process amounts to finding the values 
of the input membership functions for this. In this case: 
µ( e(t)) = 1 
This information is then used in the fuzzy inference process using the rule-base. 
 

 
Fig 3. FL rule-base to diagnose broken bars in motor drives using sideband components of vibration 

signature FFT [Filippetti 2000]. 
Number of broken bars =none, one, two. 

Incip. = Incipient fault 
 



For example consider Figure 3 which shows the essential FL rule-base and it 
incorporates some information on incipient failures. Based on the approximate values of 
the sideband components I1 and I2 we can determine the state of the system. Suppose I1 is 
“medium” and I2 is “small” then we can infer that that the system has incurred an 
incipient fault. This means that the FL system can contain prognostic information. 

Fuzzy Set Operations 
Consider two fuzzy sets A and B with the membership functions µA  and µB. 
• Union of the two fuzzy sets is defined as the maximum of the two individual 

membership functions. This is called the maximum criterion.  
µAuB = max (µA , µB ) 

 
• Intersection of the two fuzzy is defined as the minimum of the two individual 

membership functions. This is called the minimum criterion.  
µA∩B = min (µA , µB ) 

 
Intersection of two fuzzy can also be defined as the product of the two individual   
membership functions. This is called the product criterion.  

µA∩B = µA ×  µB 
 

• Complement of a fuzzy set is defined as the negation of the specified membership 
function. This is called the negation criterion.  

µẬ = 1 - µA 
 

The inference process is used for determining the extent to which each rule is 
relevant to the current situation and drawing conclusions using the current inputs and the 
information in the rule-base. The inference process includes the fuzzy set operations. 
Graphical representation of the product implication rule with triangular and gaussian 
membership functions is shown in Figures 4 and 5. 
 

 
          Fig 4   FL system with triangular MFs                     Fig 5.  FL system with Gaussian MFs 
 
 
 
 
 



Defuzzification 
A number of defuzzification methods exist where each method provides a means 

to choose a single output based on the inference strategy employed. The most commonly 
used defuzzification strategy used is the “Centroid Defuzzification” which is given by the 
equation: 
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where the control representative values are zi and the 1-D membership functions are 
(.)ijµ .  xj are the components of the n-vector x.  

 
In summary: 

• The Universe of Discourse is the range of all possible values for an input to a 
fuzzy system.  

• A Fuzzy Set is any set that allows its members to have different grades of            
membership (membership function) in the interval [0, 1].  

• The Support of a fuzzy set F is the crisp set of all points in the Universe of   
Discourse U such that the membership function of F is non-zero.  

• The Crossover point of a fuzzy set is the element in U at which its membership 
function is 0.5.  

• A Fuzzy singleton is a fuzzy set whose support is a single point in U with a 
membership function of one.                    

 
Example 

Fuzzy control system design is based on empirical methods, basically a 
methodical approach to trial-and-error. The general process is as follows:  
1. Identify the inputs and their ranges and name them. 
2. Identify the outputs and their ranges and name them. 
3. Create the degree of fuzzy membership function for each input and output. 
4. Construct the rule base that the system will operate under. 
5. Decide how the action will be executed by assigning strengths to the rules. 
6. Combine the rules and defuzzify the output. 
 

As a simple example on how fuzzy controls are constructed, consider the 
following classic situation: the inverted pendulum. Here, the problem is to balance a pole 
on a mobile platform that can move in only two directions, to the left or to the right. The 
angle (θ) between the platform and the pendulum and the angular velocity (w) of this 
angle are chosen as the inputs of the system. The Force (F) to be applied on the platform 
to balance the pendulum is chosen as the corresponding output. 



 
Fig 6. Inverted pendulum 

 
STEP 1: First of all, the different levels of inputs and output (large Force, small Force 
etc.) of the platform are defined by specifying the membership functions for the fuzzy 
sets. The graphs of the functions are shown below: 
 
The different angles between the platform and the pendulum: 

 
The angular velocities at specific angles: 

 
 
 
 
 
 
 



The different forces on the platform (output): 

 
 
STEP 2: The next step is to define the fuzzy rules. The fuzzy rules are merely a series of 
If-Then statements as mentioned above. These statements are usually derived by an 
expert to achieve optimum results. Some examples of these rules are: 
i) If angle is zero and angular velocity is zero then force is also zero.  
ii) If angle is zero and angular velocity is low then the force shall be low.  
 
The full set of rules is summarized in the table below.  
 

ANGLE 
 Neg. High Neg. Low Zero Pos. Low Pos. High 

Neg. High Neg. High Neg. High Neg. High Neg. Low Zero 
Neg. Low Neg. High Neg. High Neg. Low Zero Pos. Low 

Zero Neg. High Neg. Low Zero Pos. Low Pos. High 
Pos. Low Neg. Low Zero Pos. Low Pos. High Pos. High 
Pos. High Zero Pos. Low Pos. High Pos. High Pos. High 

Table 1 
 
Let us allocate values for the speed variables as follows: 
Neg. High=-2; Neg. Low=-1; Zero=0; Pos. Low=1; Pos. High=2                           (2) 
 

Notice the diagonal of zeros and viewing the body of the table as a matrix we see 
that it has certain symmetry to it. This symmetry that emerges when the rules are 
tabulated is no accident and is actually a representation of abstract knowledge about how 
to control the pendulum; it arises due to symmetry in the system dynamics. 

An application of these rules is shown using specific values for angle and angular 
velocities. The membership values used for this example are 0.75 and 0.25 for zero and 
positive-low angles, and 0.4 and 0.6 for zero and negative-low angular velocities. These 
points are on the graphs below. 
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  Consider the rule "if angle is zero and angular velocity is zero, the force is zero". 
The actual value belongs to the fuzzy set zero to a degree of 0.75 for "angle" and 0.4 for 
"angular velocity". Since this is an AND operation, the product criterion is used , and the 
fuzzy set zero of the variable "force" is cut at 0.75 × 0.4 = 0.3 and the patches are shaded 
up to that area. This is illustrated in the figure below. 

 
Similarly, the product criterion is used for the other three rules. The following 

figures show the result patches yielded by the rule "if angle is zero and angular velocity 
is negative low, the force is negative low" , "if angle is positive low and angular velocity 
is zero, then force is positive low", and "if angle is positive low and angular velocity is 
negative low, the force is zero". 



 

 
Note: The graphs are not drawn to scale. 
 
The four results overlap and are reduced to the following figure: 

 
STEP 3: The result of the fuzzy controller as of now is a fuzzy set (of force). In order to 
choose an appropriate representative value as the final output (crisp values), 
defuzzification must be done. There are numerous defuzzification methods, but the most 
common one used is the “Centroid Defuzzification” shown in eq(1). 
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From the above formula, 
 
force = “Zero”×(µ33) + “Neg. Low”×( µ23) + “Pos. Low” × (µ34) + “Zero” × ( µ24) 

(µ33   +  µ23  +  µ34 + µ24 ) 
 

where µ33   =  0.75 × 0.4 = 0.3 
           µ23   =  0.75 × 0.6 = 0.45 
           µ34   =  0.4 × 0.25 = 0.1 
           µ24   =  0.6 × 0.25 = 0.15        
 
 
 



Substituting the values from the table and eq(2) we get, 
 
force = (0 × 0.3) + (-1 × 0.45) + (1 × 0.1) × (0 × 0.15)  
                              (0.3 + 0.45 + 0.1+ 0.15) 
 
= - 0.35 N (assuming SI units) 
Thus the resultant force is applied such that the platform moves towards the left.  

 
 
Relation between Fuzzy logic and Neural Networks 

Many researchers focused on combining neural networks and fuzzy logic systems, 
such as neuro-fuzzy systems, or fuzzy neural networks. While fuzzy logic uses 
approximate human reasoning in knowledge-based systems, the neural networks aim at 
pattern recognition, optimization and decision making. A combination of these two 
technological innovations delivers the best results.  

It has been proved that rectangular wave activation function neural networks can 
represent nonlinear neural networks. Based on this result, we can prove that fuzzy logic 
systems and neural networks are equivalent, essentially under some restriction. First of 
all, we introduce interpolation representation of fuzzy logic systems. The antecedents of 
inference of a fuzzy logic system are the base functions of interpolation and the 
consequents of inference only relate to their peak values but not to the shape of the 
membership functions. 
The interpolation representation of the FL system can be given by the following 
expression: 
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Comparing this with eq(1) we can see that Rij is a function of the membership functions. 
 
Similarly it is well known that the relation between the inputs and outputs of the neural 
network is expressed as follows: 
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where θ is the threshold and w and x represent the weights and the inputs respectively. 
Pay attention to the simple fact that Σ plays a role in the synthesizing of n-dimensional 
Euclidean space and φ plays a role in activating signals. “φ” is called a signal activator or 
an activation function. 

Now we create a feed-forward neural network shown in Fig. 7, where hij and h are 
the neurons (regarded as functions of several variables), holding  
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Thus the output of the network is as follows: 
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Here Ai(x) and Bj(y) can be considered equivalent to the individual membership functions 
of the FL system. Thus, 
 ),(),( yxFyxf =    

Hence a FL system is approximately equivalent to the feed-forward neural 
network. 
We can notice that the following similarities exist between the two systems: 
1) Output characteristics of the hidden neurons of the NN and the inference strategy 
employed on the membership functions are similar.  
2) Multiply-add operations of neurons are equivalent to MAX-MIN or PRODUCT 
operations of the fuzzy sets. 

 
Fig. 7. Three layer feedforward neural network with two inputs and one output. 

 
 



Application Areas of FL 
Fuzzy systems have been used in a wide variety of applications in engineering, 

science, business, medicine, psychology, and other fields. For instance, in engineering 
some potential application areas include the following: 

• Aircraft/ spacecraft: Flight control, engine control, avionic systems, failure 
diagnosis, navigation and satellite control. 

• Automated highway systems: Automatic steering, braking and throttle control for 
vehicles. 

• Autonomous vehicles: Navigation of ground and underwater vehicles. 
• Manufacturing Systems: Scheduling and deposition process control. 
• Power industry:  Motor control, power control/ distribution and load estimation. 
• Robotics: Position control and path planning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


