
 1

© Copyright F.L. Lewis 2007 
All rights reserved 

 
 

EE 4314 - Control Systems 
 
Updated:  Monday, November 12, 2007 
 
 
 

Bode Plot Performance Specifications 
 
The Bode Plot was developed by Hendrik Wade Bode in 1938 while he worked at Bell Labs.  
Here we shall show how performance specifications in terms of Bode plots in the frequency 
domain are related to time domain performance. 

Bandwidth and Rise Time 
 The Bode plot of the transfer function   
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is shown.  The break frequency occurs at 10 rad/sec, the magnitude of the pole. 

 The 3dB cutoff frequency, or bandwidth, Bω  is the frequency at which the frequency 
magnitude response has decreased by 3dB from its low frequency value.  In this example 

10 /B rad sω α= = .   
The impulse response of this system is /( ) t th t e eα τ− −= = , where the time constant is  

1/ 1/ Bτ α ω= = .    
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The step response rise time is given by 2.2rt τ= .  The settling time is 5st τ= . 
The time constant is inversely related to the bandwidth.  Therefore, as bandwidth 

increases, the system response becomes faster. 
 

COMPLEX POLE PAIR 
 A transfer function with a complex pair of poles and no finite zeros can be written as 
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The numerator is chosen to scale the transfer function so that the DC gain (e.g. set s=0) is equal 
to one.  The denominator is the Characteristic polynomial which can be written in several natural 
or canonical forms, including 

2222 22)( nnn sssss ωζωωα ++=++=Δ . 
One may also write 
 2222 )(2)( βαωα ++=++=Δ ssss n  

where .222
nωαβ =+  

 These variables mean something in terms of time domain performance as we have seen.  
They also mean something in the frequency domain, particularly the damping ratio ζ  and the 
natural frequency nω .   

 The Bode plot for 2
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is shown.   
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 Recall that for complex poles, the step response is faster than 2.2τ  due to the oscillatory 
components.  However, the settling time is 5st τ=  and is closely related to the bandwidth; it 
decreases as bandwidth increases. 
 The resonant frequency is given for 0.707ζ ≤  by 

221 ζωω −= nr . 
The maximum value of the Bode plot at resonance is given by 

212
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ζζ
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−
=pM . 

These functions are shown in the figure.  From either of these, one may compute the damping 
ratio and hence the percent overshoot in the time domain.   

 
 

The quality factor 

α
ω

ζ 22
1 nQ ==  

measures the sharpness of the resonant peak in the Bode plot.  Note that this is effectively 
determined solely by the damping ratio.  The poles are complex if Q> 1/2. 
 In terms of the quality factor one may write the characteristic polynomial in the non-
dimensional form  

 
Figure 8.11 from Dorf and Bishop edition 10 
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Bode Design in terms of the Open-Loop Gain  
Consider the tracking controller given in the figure.  The plant is H(s) and the compensator K(s);  
the feedback gain is k.  The function of the tracker is to make the output y(t) follow the 
command or reference input r(t) by making the tracking error e(t)=r(t)-y(t) small.  The 
disturbance is d(t). 

 
The closed-loop transfer function is 

 
Figure from Dorf and Bishop, Modern Control Systems, edition 8. 

kK(s) H(s)
r(t) y(t)

d(t)
e(t)
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The denominator is  
)(1)()(1)( skGsHskKs +≡+=Δ  

where G(s)=K(s)H(s) is the open-loop gain. Note that we use the same symbol for the 
denominator of T(s) as for the state-variable characteristic polynomial AsIs −=Δ )( .  However, 
1+kG(s) is actually a polynomial fraction, whose numerator is the system characteristic 
polynomial. 
 
 Many design techniques rely on trying to determine closed-loop properties from open-
loop properties.  In root locus design, one uses the open-loop gain G(s) to estimate the locations 
of the closed-loop poles, which are the roots of the numerator of )(1)( skGs +=Δ .  The key 
point of RL design is that it is easier to plot the locations of the closed-loop poles versus the 
feedback gain parameter k than it is to find the actual closed-loop poles themselves.  This was 
extremely important in days before digital computers when finding roots of high-order 
polynomials was difficult, and it also gives great insight into the properties of the closed-loop 
system. 
 Similarly, Bode design uses the Bode plots of the open-loop transfer functions H(s) and 
K(s)H(s) to select the compensator K(s) to give desirable closed-loop properties including 
stability, good POV, and fast transient response.  
 

Steady-State Error 
Recall that the system is type N if there are N integrators (i.e. N poles at s=0) in the feedforward 
path K(s)H(s)=G(s).  For zero steady-state error in response to a unit step command, or a unit 
step disturbance, one requires the system to be of type 1.  
 The Bode plot of the integrator compensator K(s)= 1/s is given in the figure.  It has a 
constant slope of n=1, or -20 dB/decade, and an angle of -90o.  Therefore, a system of type one 
has a slope of n=-1 at low frequencies.  To get zero steady-state error in response to a unit step, 
one must add an integrator to obtain such a slope, unless the Bode plot of H(s) already has this 
slope at low frequencies.  
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Crossover Frequency 
The crossover frequency cω  is where the loop gain G(s)= K(s)H(s) has a gain of unity, i.e. 
 ( ) 1ckG jω = . 
The closed-loop transfer function is 
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When cω ω<<  one has ( ) 1kG jω >>  so that  

 ( ) 1T jω ≈  
and the closed-loop gain is unity. 
 

When cω ω>>  one has ( ) 1kG jω <<  so that  
 ( ) ( )T j kG jω ω≈  
and | ( ) |T jω falls off like | ( ) |kG jω . 
 
 Therefore, the (closed-loop) bandwidth Bω  is about equal to the (open loop gain) 
crossover frequency cω .  To get faster responses, one needs to increase the crossover frequency.  
 

Gain Margin, Phase Margin 
The gain margin and phase margin depend on both of the open-loop gain Bode plots, magnitude 
and phase.  By extracting information from both plots, GM and PM provide closed-loop stability 
and performance criteria.  
 
 The closed-loop denominator is )(1)()(1)( skGsHskKs +≡+=Δ .  The closed-loop poles 
are given by ( ) 1 ( ) ( ) 1 ( ) 0s kK s H s kG sΔ = + ≡ + =  or ( ) 1kG s = − .  Therefore, stability may be 
studied in terms of when ( )kG jω  has a magnitude of one and a phase of 180o.   
 

The gain margin is the gain increase required to make | ( ) | 1kG jω =  when its phase is  
-180o.   

 
The phase margin is the phase shift required to make ( ( )) 180ophase kG jω = −  when 
| ( ) | 1kG jω = . 

 
 If the magnitude of ( )kG jω  is α  when its phase is -180 deg, then the gain margin is 
1/α .  The logarithm of 1/α  is negative the logarithm of α .  Therefore, in terms of dB, if α  is 
d dB, then 1/α  is simply –d dB. 
 
 Note that | ( ) | 1kG jω =  means | ( ) | 0kG j dBω = . 
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 The Bode plot of 2( )
( 2)( 3)
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 is shown.   

 
 Looking at the crossover frequency ωc, where the magnitude is equal to one (i.e. 0 dB), 
the phase margin = -105.5 – (-180)= 74.5 deg. 
 
 Looking at the frequency where the phase is -180 deg, the gain margin is -23.5 dB. 

 
 
 The damping ratio increases with phase margin according to the figure.  Therefore, to 
increase damping ratio, we need to increase phase margin. 

 
Relation between PM and damping ratio for a second order system. 

Figure 9.21 from Dorf and Bishop ed. 10. 

Bode Diagram
Gm = 23.5 dB (at 2.45 rad/sec) ,  Pm = 74.5 deg (at 0.327 rad/sec)
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