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REACHABILITY AND OBSERVABILITY 
Consider a linear state-space system given by 
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with nRtx ∈)(  the internal state, mRtu ∈)(  the control input, and pRty ∈)(  the measured 
output.  The transfer function is given by 
 

DBAsICsH +−= −1)()( . 
 

The input-decoupling zeros are those values of s for which the ( )n n m× +  input-coupling 
matrix 
  [ ]BAsIsPI −=)(  
loses rank,  i.e. has rank less than n.  Note that this matrix can lose rank only where ( )sI A−  
loses rank, so the input-decoupling zeros must be a subset of the poles. 
 

System (A,B) has no input decoupling zeros if and only if  
 1[( ) ]rank sI A B n−− =  
over the complex numbers.  That is, there exists no nonzero n-vector w such that 
 1( ) 0Tw sI A B for all s−− =  
 
Note that this is the right-hand portion of the transfer function.  If there are input-decoupling 
zeros, control effectiveness of the system is lost and we cannot fully control the system with the 
given inputs.  We should design systems with no input-coupling zeros, i.e. with a fully effective 
set of inputs. 
 
 The output-decoupling zeros are those values of s for which the ( )n p n+ ×  output-
coupling matrix 
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loses rank,  i.e. has rank less than n.  Note that this matrix can lose rank only where ( )sI A−  
loses rank, so the output-decoupling zeros must be a subset of the poles. 
 

System (A,C) has no output decoupling zeros if and only if  
 1[ ( ) ]rank C sI A n−− =  
over the complex numbers.  That is, there exists no nonzero n-vector v such that 



 1( ) 0C sI A v for all s−− =  
 
Note that this is the left-hand portion of the transfer function.  If there are output-decoupling 
zeros, output measurement effectiveness of the system is lost and we cannot observe the full 
internal state behavior with the given outputs.  We should design systems with no output-
coupling zeros. 
 

Reachability 
 
 For either continuous-time systems or discrete-time systems, the system ),,( CBA  is 
called reachable if the control input  can be selected to drive any initial state to any desired final 
state at some final time.  This can be done if the input coupling in the system is sufficiently 
strong, which depends on the input-coupling matrix pair (A,B).  Reachability greatly facilitates 
control systems design.  If a system is not reachable, it can be made so by adding additional 
control inputs. 
 

We can examine the discrete-time expanded state equation to determine reachability 
conditions for DT systems.  It is seen that the DT system is reachable if and only if the 
reachability matrix 
 

[ ]BABAABBU n 12 −= . 
 
has full rank n.  Note that U is an nmn×  matrix so that it has more columns than rows if m>1.  
Such a matrix is called a flat matrix.  (A matrix with more rows than columns is called a sharp 
matrix.). 
 
 In fact, this rank condition on U is also necessary and sufficient for reachability of 
continuous-time systems. 
 
 Reachability is equivalent to the absence of input-decoupling zeros.  To understand this 
connection, note that one can write  
 

...)( 32211 +++=− −−−− BsAABsBsBAsI  
 
To avoid investigating all powers of A, one may use the Cayley Hamilton Theorem.  This 
theorem states that 
 0)( =Δ A , 
 
that is, a matrix satisfies its own characteristic equation.  If the characteristic equation is 
 n

nn asass +++=Δ − ...)( 1
1 , 

then replace all occurrences of s by A to obtain (note the last term is 0san ) 
 IaAaAA n

nn +++=Δ − ...)( 1
1 . 

This is a matrix polynomial.  The Cayley-Hamilton Theorem says that 



 IaAaA n
nn −−−= − ...1

1 , 
which states that nA  can be expressed as a linear combination of lower powers of A. 
 
 Therefore, in the infinite series expansion above, one may stop at nn BsA −−1 .  Write 
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which provides a direct relation between the input-coupling term and the reachability matrix U.  
Now, it can be shown that the system is reachable iff there are no input-decoupling zeros. 
 

The reachability matrix is an nmn×  matrix.  If there is only one control input (the single-
input (SI) case, where m=1), then U is square.  In this case, it is easy to test whether U has rank n 
by making sure the determinant U  is nonzero.  If m>1 one must find n linearly independent 
columns of U, which may be difficult particularly if the number of inputs m is large.  In this case, 
define the reachability gramian 

TUUG =  
which is a square nn×  matrix.  Then the system is reachable iff 0≠G . 
 
 Many design techniques (e.g. root locus) rely on trying to determine closed-loop 
properties from open-loop properties.  This is exactly the intent of the reachability test, which 
allows one to determine in terms of the open-loop matrices A and B what can be accomplished in 
the closed-loop system. 
 
 The following conditions for reachability are all equivalent and apply for CT and DT 
systems: 
 

1. (A,B) is reachable 
 
2.  [ ]BABAABBU n 12 −=  has full rank n, i.e. has n linearly independent rows.   

 
3.  The rows of 1( )sI A B−−  are linearly independent over the complex numbers.   

 
4.   The rows of Ate B  are linearly independent over [0, )t∈ ∞  

 
5.  [ ]BAsIsPI −=)(  has full row rank n over the complex numbers s. 

 
The equivalence of 2 and 3 depends on the relation  

...)( 32211 +++=− −−−− BsAABsBsBAsI  
 

To understand the relation between 2 and 4 consider the following [p. 167, C.T. Chen, 
Introduction to Linear System Theory, 1970].  A time-varying matrix F(t) which has continuous 



derivatives up through order (n-1) has linearly independent rows over [0, )t∈ ∞  if and only if the 
derivative matrix 
 (1) ( 1)( ) ( ) ( )nF t F t F t−⎡ ⎤⎣ ⎦  

has rank n for some value of t.  Here the i-th derivative is denoted ( ) ( )iF t .   
Set ( ) AtF t e=  and compute the derivative matrix  

 2 1At At At n Ate B Ae B A e B A e B−⎡ ⎤⎣ ⎦  
Now set t=0 to get the reachability matrix. 
 
 Consider condition 5, which is equivalent to the existence of a pole s0 (the input-
decoupling zero) and a nonzero n-vector w such that  
 [ ]0 0( ) 0T T

Iw P s w s I A B= − =  
i.e. 
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The first equation says that 
 0

T Tw A s w=  
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which is equivalent to  
 2 1 0T nw B AB A B A B−⎡ ⎤ =⎣ ⎦ . 
 

Observability 
 For either continuous-time systems or discrete-time systems, let us define the system 

),,( CBA  to be observable if the state can be reconstructed uniquely given measurements of the 
output  over a time interval ],0[ T .  This can be done if the output coupling in the system is 
sufficiently strong, which depends on the output-coupling matrix pair (A,C).  If a system is not 
observable, it can be made so by adding additional measurements.  It turns out that observability 
means we can design a stable observer to reconstruct the internal states given the available 
measurements.  This is important in communications theory, navigation, and elsewhere. 
 

Observability is equivalent to the absence of output-decoupling zeros.  To find a test for 
observability, note that 

...)( 32211 −−−− ++=− sCACAsCsAsIC  
According to the Cayley-Hamilton Theorem, nA  is dependent on lower powers of A.  Therefore, 
note that 
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We call the matrix 
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the observability matrix.  We surmise that that ),( CA  is observable if and only if matrix V  has 
full rank n .  This can be proved, e.g. for DT systems from the expanded state equation. 
 

The observability matrix V  has np  rows and n  columns, so it is called a sharp matrix if 
1>p , for then it has more rows than columns.  (Recall that U  is a flat matrix.)  If the number of 

outputs p  is one, then V  is square.  Otherwise, it might be quite difficult to determine if V has 
n  linearly independent rows.  Define the observability gramian  

VVG T
o =  

which is a square nn×  matrix.  This matrix has the same rank as V , but it is easy to determine if 
it has full rank by simply computing its determinant. 
 
 The following conditions for observability are all equivalent and apply for CT and DT 
systems: 
 

1. (A,C) is observable 
 

2.  
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V  has full rank n, i.e. has n linearly independent columns.   

3. The columns of 1( )C sI A −−  are linearly independent over the complex numbers.   
 
4.  The columns of AtCe  are linearly independent over [0, )t∈ ∞  
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Duality 
 Given a plant ),,( CBA , the plant ),,( TTT BCA  is known as the dual system.  In this 
system, the effects of the inputs and outputs are effectively interchanged.  We shall see that 
duality provides a relation between many concepts, including, e.g., the reachable canonical form 
and the observable canonical form block diagrams. 
 

We can find a connection between reachability and observability using duality.  To this 
end, dualize the reachability matrix by writing 
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Now, replace ),( BA  by the dual system ),( TT CA , which yields the observability matrix 
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Clearly, matrix U , with ),( BA  replaced by ),( TT CA , has full rank if and only matrix V , 

which is based on ),( CA  has full rank.  Indeed, it can be shown that this is the case.  That is, the 
system is reachable iff the dual system is observable, and vice versa. 

 
 


