

Neural Network Control of Robot

Manipulators and Nonlinear Systems

Neural Network Control of Robot

Manipulators
and Nonlinear Systems

F.L. LEWIS
Automation and Robotics Research Institute

The University of Texas at Arlington

S. JAGANNATHAN
Systems and Controls Research
Caterpillar, Inc., Mossville

A. YEŞILDIREK
Manager, New Product Development

Depsa, Panama City

Contents

List of Tables of Design Equations xi

List of Figures xviii

Series Introduction xix

Preface xxi

1 Background on Neural Networks 1
1.1 NEURAL NETWORK TOPOLOGIES AND RECALL 2

1.1.1 Neuron Mathematical Model 2
1.1.2 Multilayer Perceptron . 8
1.1.3 Linear-in-the-Parameter (LIP) Neural Nets 10
1.1.4 Dynamic Neural Networks . 13

1.2 PROPERTIES OF NEURAL NETWORKS 25
1.2.1 Classification, Association, and Pattern Recognition 26
1.2.2 Function Approximation . 30

1.3 NEURAL NETWORK WEIGHT SELECTION AND TRAINING . 33
1.3.1 Direct Computation of the Weights 34
1.3.2 Training the One-Layer Neural Network— Gradient Descent 36
1.3.3 Training the Multilayer Neural Network— Backpropagation

Tuning . 42
1.3.4 Improvements on Gradient Descent 51
1.3.5 Hebbian Tuning . 56
1.3.6 Continuous-Time Tuning . 58

1.4 REFERENCES . 61
1.5 PROBLEMS . 63

2 Background on Dynamic Systems 69
2.1 DYNAMICAL SYSTEMS . 69

2.1.1 Continuous-Time Systems . 70
2.1.2 Discrete-Time Systems . 73

2.2 SOME MATHEMATICAL BACKGROUND 77
2.2.1 Vector and Matrix Norms . 77
2.2.2 Continuity and Function Norms 79

2.3 PROPERTIES OF DYNAMICAL SYSTEMS 80

v

vi CONTENTS

2.3.1 Stability . 80
2.3.2 Passivity . 82
2.3.3 Observability and Controllability 85

2.4 FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 88
2.4.1 Input-Output Feedback Linearization Controllers 89
2.4.2 Computer Simulation of Feedback Control Systems 94
2.4.3 Feedback Linearization for Discrete-Time Systems 96

2.5 NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 100
2.5.1 Lyapunov Analysis for Autonomous Systems 100
2.5.2 Controller Design Using Lyapunov Techniques 105
2.5.3 Lyapunov Analysis for Non-Autonomous Systems 109
2.5.4 Extensions of Lyapunov Techniques and Bounded Stability . 111

2.6 REFERENCES . 117
2.7 PROBLEMS . 119

3 Robot Dynamics and Control 125
3.0.1 Commercial Robot Controllers 125

3.1 KINEMATICS AND JACOBIANS 126
3.1.1 Kinematics of Rigid Serial-Link Manipulators 127
3.1.2 Robot Jacobians . 130

3.2 ROBOT DYNAMICS AND PROPERTIES 131
3.2.1 Joint Space Dynamics and Properties 132
3.2.2 State Variable Representations 136
3.2.3 Cartesian Dynamics and Actuator Dynamics 137

3.3 COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIM-
ULATION . 138
3.3.1 Computed-Torque (CT) Control 138
3.3.2 Computer Simulation of Robot Controllers 140
3.3.3 Approximate Computed-Torque Control and Classical Joint

Control . 145
3.3.4 Digital Control . 147

3.4 FILTERED-ERROR APPROXIMATION-BASED CONTROL . . . 153
3.4.1 A General Controller Design Framework Based on Approxi-

mation . 156
3.4.2 Computed-Torque Control Variant 159
3.4.3 Adaptive Control . 159
3.4.4 Robust Control . 164
3.4.5 Learning Control . 167

3.5 CONCLUSIONS . 169
3.6 REFERENCES . 170
3.7 PROBLEMS . 171

4 Neural Network Robot Control 175
4.1 ROBOT ARM DYNAMICS AND TRACKING ERROR DYNAMICS 177
4.2 ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CON-

TROLLER . 181
4.2.1 Approximation by One-Layer Functional-Link NN 182

CONTENTS vii

4.2.2 NN Controller and Error System Dynamics 183

4.2.3 Unsupervised Backpropagation Weight Tuning 184

4.2.4 Augmented Unsupervised Backpropagation Tuning— Remov-
ing the PE Condition . 189

4.2.5 Functional-Link NN Controller Design and Simulation Example192

4.3 TWO-LAYER NEURAL NETWORK CONTROLLER 196

4.3.1 NN Approximation and the Nonlinearity in the Parameters
Problem . 196

4.3.2 Controller Structure and Error System Dynamics 198

4.3.3 Weight Updates for Guaranteed Tracking Performance 200

4.3.4 Two-Layer NN Controller Design and Simulation Example . 208

4.4 PARTITIONED NN AND SIGNAL PREPROCESSING 208

4.4.1 Partitioned NN . 210

4.4.2 Preprocessing of Neural Net Inputs 211

4.4.3 Selection of a Basis Set for the Functional-Link NN 211

4.5 PASSIVITY PROPERTIES OF NN CONTROLLERS 214

4.5.1 Passivity of the Tracking Error Dynamics 214

4.5.2 Passivity Properties of NN Controllers 215

4.6 CONCLUSIONS . 218

4.7 REFERENCES . 219

4.8 PROBLEMS . 221

5 Neural Network Robot Control: Applications and Extensions 223

5.1 FORCE CONTROL USING NEURAL NETWORKS 224

5.1.1 Force Constrained Motion and Error Dynamics 225

5.1.2 Neural Network Hybrid Position/Force Controller 227

5.1.3 Design Example for NN Hybrid Position/Force Controller . . 234

5.2 ROBOT MANIPULATORS WITH LINK FLEXIBILITY, MOTOR
DYNAMICS, AND JOINT FLEXIBILITY 235

5.2.1 Flexible-Link Robot Arms . 235

5.2.2 Robots with Actuators and Compliant Drive Train Coupling 240

5.2.3 Rigid-Link Electrically-Driven (RLED) Robot Arms 246

5.3 SINGULAR PERTURBATION DESIGN 247

5.3.1 Two-Time-Scale Controller Design 248

5.3.2 NN Controller for Flexible-Link Robot Using Singular Per-
turbations . 251

5.4 BACKSTEPPING DESIGN . 260

5.4.1 Backstepping Design . 260

5.4.2 NN Controller for Rigid-Link Electrically-Driven Robot Using
Backstepping . 264

5.5 CONCLUSIONS . 272

5.6 REFERENCES . 272

5.7 PROBLEMS . 274

viii CONTENTS

6 Neural Network Control of Nonlinear Systems 279
6.1 SYSTEM AND TRACKING ERROR DYNAMICS 280

6.1.1 Tracking Controller and Error Dynamics 281
6.1.2 Well-Defined Control Problem 283

6.2 CASE OF KNOWN FUNCTION g(x) 283
6.2.1 Proposed NN Controller . 284
6.2.2 NN Weight Tuning for Tracking Stability 285
6.2.3 Illustrative Simulation Example 287

6.3 CASE OF UNKNOWN FUNCTION g(x) 288
6.3.1 Proposed NN Controller . 289
6.3.2 NN Weight Tuning for Tracking Stability 291
6.3.3 Illustrative Simulation Examples 298

6.4 CONCLUSIONS . 303
6.5 REFERENCES . 305

7 NN Control with Discrete-Time Tuning 307
7.1 BACKGROUND AND ERROR DYNAMICS 308

7.1.1 Neural Network Approximation Property 308
7.1.2 Stability of Systems . 310
7.1.3 Tracking Error Dynamics for a Class of Nonlinear Systems . 310

7.2 ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN . . 312
7.2.1 Structure of the One-layer NN Controller and Error System

Dynamics . 313
7.2.2 One-layer Neural Network Weight Updates 314
7.2.3 Projection Algorithm . 318
7.2.4 Ideal Case: No Disturbances or NN Reconstruction Errors . . 323
7.2.5 One-layer Neural Network Weight Tuning Modification for

Relaxation of Persistency of Excitation Condition 323
7.3 MULTILAYER NEURAL NETWORK CONTROLLER DESIGN . . 329

7.3.1 Structure of the NN Controller and Error System Dynamics . 332
7.3.2 Multilayer Neural Network Weight Updates 333
7.3.3 Projection Algorithm . 340
7.3.4 Multilayer Neural Network Weight Tuning Modification for

Relaxation of Persistency of Excitation Condition 342
7.4 PASSIVITY PROPERTIES OF THE NN 353

7.4.1 Passivity Properties of the Tracking Error System 353
7.4.2 Passivity Properties of One-layer Neural Networks and the

Closed-Loop System . 354
7.4.3 Passivity Properties of Multilayer Neural Networks 356

7.5 CONCLUSIONS . 357
7.6 REFERENCES . 357
7.7 PROBLEMS . 359

8 Discrete-Time Feedback Linearization by Neural Networks 361
8.1 SYSTEM DYNAMICS AND THE TRACKING PROBLEM 362

8.1.1 Tracking Error Dynamics for a Class of Nonlinear Systems . 362
8.2 NN CONTROLLER DESIGN FOR FEEDBACK LINEARIZATION 364

CONTENTS ix

8.2.1 NN Approximation of Unknown Functions 365
8.2.2 Error System Dynamics . 366
8.2.3 Well-Defined Control Problem 368
8.2.4 Proposed Controller . 369

8.3 SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 369
8.3.1 Weight Updates Requiring Persistence of Excitation 370
8.3.2 Projection Algorithm . 377
8.3.3 Weight Updates not Requiring Persistence of Excitation . . . 378

8.4 MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZA-
TION . 385
8.4.1 Weight Updates Requiring Persistence of Excitation 386
8.4.2 Weight Updates not Requiring Persistence of Excitation . . . 392

8.5 PASSIVITY PROPERTIES OF THE NN 403
8.5.1 Passivity Properties of the Tracking Error System 403
8.5.2 Passivity Properties of One-layer Neural Network Controllers 404
8.5.3 Passivity Properties of Multilayer Neural Network Controllers 406

8.6 CONCLUSIONS . 408
8.7 REFERENCES . 408
8.8 PROBLEMS . 409

9 State Estimation Using Discrete-Time Neural Networks 413
9.1 IDENTIFICATION OF NONLINEAR DYNAMICAL SYSTEMS . . 415
9.2 IDENTIFIER DYNAMICS FOR MIMO SYSTEMS 415
9.3 MULTILAYER NEURAL NETWORK IDENTIFIER DESIGN . . . 418

9.3.1 Structure of the NN Controller and Error System Dynamics . 418
9.3.2 Three-Layer Neural Network Weight Updates 420

9.4 PASSIVITY PROPERTIES OF THE NN 425
9.5 SIMULATION RESULTS . 427
9.6 CONCLUSIONS . 428
9.7 REFERENCES . 428
9.8 PROBLEMS . 430

x CONTENTS

CONTENTS xi

xii CONTENTS

List of Tables

1.3.1 Basic Matrix Calculus and Trace Identities 39

1.3.2 Backpropagation Algorithm Using Sigmoid Activation Functions:
Two-Layer Net . 48

1.3.3 Continuous-Time Backpropagation Algorithm Using Sigmoid Ac-
tivation Functions . 60

3.2.1 Properties of Robot Arm Dynamics 133

3.3.1 Robot Manipulator Control Algorithms 139

3.4.1 Filtered-Error Approximation-Based Control Algorithms 155

4.1.1 Properties of Robot Arm Dynamics 178

4.2.1 FLNN Controller for Ideal Case, or for Nonideal Case with PE . 186

4.2.2 FLNN Controller with Augmented Tuning to Avoid PE 190

4.3.1 Two-Layer NN Controller for Ideal Case 201

4.3.2 Two-Layer NN Controller with Augmented Backprop Tuning . . 203

4.3.3 Two-Layer NN Controller with Augmented Hebbian Tuning . . . 206

5.0.1 Properties of Robot Arm Dynamics 224

5.1.1 NN Force/Position Controller. 230

5.3.1 NN Controller for Flexible-Link Robot Arm 257

5.4.1 NN Backstepping Controller for RLED Robot Arm 268

6.2.1 Neural Net Controller with Known g(x) 286

6.3.1 Neural Net Controller with Unknown f(x) and g(x) 292

7.2.1 Discrete-Time Controller Using One-Layer Neural Net: PE Re-
quired . 315

7.2.2 Discrete-Time Controller Using One-Layer Neural Net: PE not
Required . 324

7.3.1 Discrete-Time Controller Using Three-Layer Neural Net: PE Re-
quired . 334

7.3.2 Discrete-Time Controller Using Three-Layer Neural Net: PE not
Required . 346

8.3.1 Discrete-Time Controller Using One-Layer Neural Net: PE Re-
quired . 370

xiii

xiv LIST OF TABLES

8.3.2 Discrete-Time Controller Using One-layer Neural Net: PE not
Required . 379

8.4.1 Discrete-Time Controller Using Multilayer Neural Net: PE Re-
quired . 386

8.4.2 Discrete-Time Controller Using Multilayer Neural Net: PE not
Required . 393

9.3.1 Multilayer Neural Net Identifier 425

List of Figures

1.1.1 Neuron anatomy. From B. Kosko (1992). 2

1.1.2 Mathematical model of a neuron. 3

1.1.3 Some common choices for the activation function. 4

1.1.4 One-layer neural network. 5

1.1.5 Output surface of a one-layer NN. (a) Using sigmoid activation
function. (b) Using hard limit activation function. (c) Using
radial basis function. 7

1.1.6 Two-layer neural network. 8

1.1.7 EXCLUSIVE-OR implemented using two-layer neural network. . 9

1.1.8 Output surface of a two-layer NN. (a) Using sigmoid activation
function. (b) Using hard limit activation function. 11

1.1.9 Two-dimensional separable gaussian functions for an RBF NN. . 13

1.1.10 Receptive field functions for a 2-D CMAC NN with second-order
splines. 14

1.1.11 Hopfield dynamical neural net. 15

1.1.12 Continuous-time Hopfield net hidden-layer neuronal processing
element (NPE) dynamics. 15

1.1.13 Discrete-time Hopfield net hidden-layer NPE dynamics. 16

1.1.14 Continuous-time Hopfield net in block diagram form. 16

1.1.15 Hopfield net functions. (a) Symmetric sigmoid activation func-
tion. (b) Inverse of symmetric sigmoid activation function. . . . 19

1.1.16 Hopfield net phase-plane plots; x2(t) versus x1(t). 20

1.1.17 Lyapunov energy surface for an illustrative Hopfield net. 20

1.1.18 Generalized continuous-time dynamical neural network. 21

1.1.19 Phase-plane plot of discrete-time NN showing attractor. 23

1.1.20 Phase-plane plot of discrete-time NN with modified V weights. . 23

1.1.21 Phase-plane plot of discrete-time NN with modified V weights
showing limit-cycle attractor. 24

1.1.22 Phase-plane plot of discrete-time NN with modified A matrix. . 24

1.1.23 Phase-plane plot of discrete-time NN with modified Amatrix and
V matrix. 25

1.2.1 Decision regions of a simple one-layer NN. 26

1.2.2 Types of decision regions that can be formed using single- and
multi-layer NN. From R.P. Lippmann (1987). 27

xv

xvi LIST OF FIGURES

1.2.3 Output error plots versus weights for a neuron. (a) Error surface
using sigmoid activation function. (b) Error contour plot using
sigmoid activation function. (c) Error surface using hard limit
activation function. 29

1.3.1 Pattern vectors to be classfied into 4 groups: +, ◦,×, ∗. Also
shown are the initial decision boundaries. 41

1.3.2 NN decision boundaries. (a) After three epochs of training. (b)
After six epochs of training. 43

1.3.3 Least-squares NN output error versus epoch 44
1.3.4 The adjoint (backpropagation) neural network. 49
1.3.5 Function y = f(x) to be approximated by two-layer NN and its

samples for training. 50
1.3.6 Samples of f(x) and actual NN output. (a) Using initial random

weights. (b) After training for 50 epochs. 52
1.3.6 Samples of f(x) and actual NN output (cont’d). (c) After train-

ing for 200 epochs. (d) After training for 873 epochs. 53
1.3.7 Least-squares NN output error as a function of training epoch. . 54
1.3.8 Typical 1-D NN error surface e = Y − σ(V TX). 55
1.5.1 A dynamical neural network with internal neuron dynamics. . . 64
1.5.2 A dynamical neural network with outer feedback loops. 64

2.1.1 Continuous-time single-input Brunovsky form. 71
2.1.2 Van der Pol Oscillator time history plots. (a) x1(t) and x2(t)

versus t. (b) Phase-plane plot x2 versus x1 showing limit cycle. . 74
2.1.3 Discrete-time single-input Brunovsky form. 75
2.3.1 Illustration of uniform ultimate boundedness (UUB). 82
2.3.2 System with measurement nonlinearity. 84
2.3.3 Two passive systems in feedback interconnection. 85
2.4.1 Feedback linearization controller showing PD outer loop and non-

linear inner loop. 91
2.4.2 Simulation of feedback linearization controller, T= 10 sec. (a)

Actual output y(t) and desired output yd(t). (b) Tracking error
e(t). (c) Internal dynamics state x2(t). 97

2.4.3 Simulation of feedback linearization controller, T= 0.1 sec. (a)
Actual output y(t) and desired output yd(t). (b) Tracking error
e(t). (c) Internal dynamics state x2(t). 98

2.5.1 Sample trajectories of system with local asymptotic stability. (a)
x1(t) and x2(t) versus t. (b) Phase-plane plot of x2 versus x1. . . 103

2.5.2 Sample trajectories of SISL system. (a) x1(t) and x2(t) versus t.
(b) Phase-plane plot of x2 versus x1. 104

2.5.3 A function satisfying the condition xc(x) > 0. 105
2.5.4 Signum function. 106
2.5.5 Depiction of a time-varying function L(x, t) that is positive defi-

nite (L0(x) < L(x, t)) and decrescent (L(x, t) ≤ L1(x)). 110
2.5.6 Sample trajectories of Mathieu system. (a) x1(t) and x2(t) versus

t. (b) Phase-plane plot of x2 versus x1. 112
2.5.7 Sample closed-loop trajectories of UUB system. 117

LIST OF FIGURES xvii

3.1.1 Basic robot arm geometries. (a) Articulated arm, revolute co-
ordinates (RRR). (b) Spherical coordinates (RRP). (c) SCARA
arm (RRP). 128

3.1.1 Basic robot arm geometries (cont’d.). (d) Cylindrical coordinates
(RPP). (e) Cartesian arm, rectangular coordinates (PPP). 129

3.1.2 Denavit-Hartenberg coordinate frames in a serial-link manipulator.129

3.2.1 Two-link planar robot arm. 134

3.3.1 PD computed-torque controller. 140

3.3.2 PD computed-torque controller, Part I. 142

3.3.3 Joint tracking errors using PD computed-torque controller under
ideal conditions. 144

3.3.4 Joint tracking errors using PD computed-torque controller with
constant unknown disturbance. 145

3.3.5 PD classical joint controller. 146

3.3.6 Joint tracking errors using PD-gravity controller. 148

3.3.7 Joint tracking errors using classical independent joint control. . . 148

3.3.8 Digital controller, Part I: Routine robot.m Part I. 150

3.3.9 Joint tracking errors using digital computed-torque controller,
T= 20 msec. 153

3.3.10 Joint 2 control torque using digital computed-torque controller,
T= 20 msec. 154

3.3.11 Joint tracking errors using digital computed-torque controller,
T= 100 msec. 154

3.3.12 Joint 2 control torque using digital computed-torque controller,
T= 100 msec. 156

3.4.1 Filtered error approximation-based controller. 158

3.4.2 Adaptive controller. 162

3.4.3 Response using adaptive controller. (a) Actual and desired joint
angles. (b) Mass estimates. 163

3.4.4 Response using adaptive controller with incorrect regression ma-
trix, showing the effects of unmodelled dynamics. (a) Actual and
desired joint angles. (b) Mass estimates. 164

3.4.5 Robust controller. 168

3.4.6 Typical behavior of robust controller. 169

3.7.1 Two-link polar robot arm. 172

3.7.2 Three-link cylindrical robot arm. 172

4.0.1 Two-layer neural net. 176

4.1.1 Filtered error approximation-based controller. 179

4.2.1 One-layer functional-link neural net. 181

4.2.2 Neural net control structure. 183

4.2.3 Two-link planar elbow arm. 192

4.2.4 Response of NN controller with backprop weight tuning: actual
and desired joint angles. 193

4.2.5 Response of NN controller with backprop weight tuning: repre-
sentative weight estimates. 194

xviii LIST OF FIGURES

4.2.6 Response of NN controller with improved weight tuning: actual
and desired joint angles. 194

4.2.7 Response of NN controller with improved weight tuning: repre-
sentative weight estimates. 195

4.2.8 Response of controller without NN. actual and desired joint angles.195

4.3.1 Multilayer NN controller structure. 199

4.3.2 Response of NN controller with improved weight tuning: actual
and desired joint angles. 209

4.3.3 Response of NN controller with improved weight tuning: repre-
sentative weight estimates. 209

4.4.1 Partitioned neural net. 211

4.4.2 Neural subnet for estimating M(q)ζ1(t). 213

4.4.3 Neural subnet for estimating Vm(q, q̇)ζ2(t). 213

4.4.4 Neural subnet for estimating G(q). 213

4.4.5 Neural subnet for estimating F (q̇). 214

4.5.1 Two-layer neural net closed-loop error system. 216

5.1.1 Two-layer neural net. 228

5.1.2 Neural net hybrid position/force controller. 229

5.1.3 Closed-loop position error system. 233

5.1.4 Two-link planar elbow arm with circle constraint. 234

5.1.5 NN force/position controller simulation results. (a) Desired and
actual motion trajectories q1d(t) and q1(t). (b) Force trajectory
λ(t). 236

5.2.1 Acceleration/deceleration torque profile τ(t). 240

5.2.2 Open-loop response of flexible arm: tip position qr(t) (solid) and
velocity (dashed). 241

5.2.3 Open-loop response of flexible arm: flexible modes qf1(t), qf2(t). 241

5.2.4 Two canonical control problems with high-frequency modes. (a)
Flexible-link robot arm. (b) Flexible-joint robot arm. 243

5.2.5 DC motor with shaft compliance. (a) Electrical subsystem. (b)
Mechanical subsystem. 244

5.2.6 Step response of DC motor with no shaft flexibility. Motor speed
in rad/s. 246

5.2.7 Step response of DC motor with very flexible shaft. 247

5.3.1 Neural net controller for flexible-link robot arm. 254

5.3.2 Response of flexible arm with NN and boundary layer correction.
Actual and desired tip positions and velocities, ε = 0.26. 258

5.3.3 Response of flexible arm with NN and boundary layer correction.
Flexible modes, ε = 0.26. 258

5.3.4 Response of flexible arm with NN and boundary layer correction.
Actual and desired tip positions and velocities, ε = 0.1. 259

5.3.5 Response of flexible arm with NN and boundary layer correction.
Flexible modes, ε = 0.1. 260

5.4.1 Backstepping controller. 261

5.4.2 Backstepping neural network controller. 267

LIST OF FIGURES xix

5.4.3 Response of RLED controller with only PD control. (a) Actual
and desired joint angle q1(t). (b) Actual and desired joint angle
q2(t). (c) Tracking errors e1(t), e2(t). (d) Control torques KT i(t). 270

5.4.4 Response of RLED backstepping NN controller. (a) Actual and
desired joint angle q1(t). (b) Actual and desired joint angle q2(t).
(c) Tracking errors e1(t), e2(t). (d) Control torques KT i(t). . . . 271

6.2.1 Neural network controller with known g(x). 285

6.2.2 Open-loop state trajectory of the Van der Pol’s system. 288

6.2.3 Actual and desired state x1. 288

6.2.4 Actual and desired state x2. 289

6.3.1 NN controller with unknown f(x) and g(x). 291

6.3.2 Illustration of the upper bound on ‖Θ̃g‖. 296

6.3.3 Illustration of the invariant set. 298

6.3.4 Actual and desired states. 299

6.3.5 Control input. 300

6.3.6 Actual and desired states. 300

6.3.7 Control input. 301

6.3.8 Chemical stirred-tank reactor (CSTR) process. 301

6.3.9 CSTR open-loop response to a disturbance. 303

6.3.10 Response with NN controller. Reactant temperature, T 304

6.3.11 Response with NN controller. The state x1(t). 304

7.1.1 A multilayer neural network. 309

7.2.1 One-layer discrete-time neural network controller structure. . . . 314

7.2.2 Response of neural network controller with delta-rule weight tun-
ing and small α. (a) Actual and desired joint angles. (b) Neural
network outputs . 319

7.2.3 Response of neural network controller with delta-rule weight tun-
ing and projection algorithm. (a) Actual and desired joint angles.
(b) Neural network outputs. 321

7.2.4 Response of neural network controller with delta-rule weight tun-
ing and large α. (a) Actual and desired joint angles. (b) Neural
network outputs. 322

7.2.5 Response of neural network controller with improved weight tun-
ing and projection algorithm. (a) Actual and desired joint angles.
(b) Neural network outputs. 328

7.2.6 Response of the PD controller. 329

7.2.7 Response of neural network controller with improved weight tun-
ing and projection algorithm. (a) Desired and actual state 1. (b)
Desired and actual state 2. 330

7.2.8 Response of neural network controller with improved weight tun-
ing in the presence of bounded disturbances. (a) Desired and
actual state 1. (b) Desired and actual state 2. 331

7.3.1 Multilayer neural network controller structure. 333

xx LIST OF FIGURES

7.3.2 Response of multilayer neural network controller with delta-rule
weight tuning and small α3. (a) Desired and actual trajectory.
(b) Representative weight estimates. 339

7.3.3 Response of multilayer neural network controller with delta-rule
weight tuning and projection algorithm with large α3. (a) Desired
and actual trajectory. (b) Representative weight estimates. . . . 343

7.3.4 Response of multilayer neural network controller with delta-rule
weight tuning and large α3. (a) Desired and actual trajectory.
(b) Representative weight estimates. 344

7.3.5 Response of multilayer neural network controller with delta-rule
weight tuning and projection algorithm with small α3. (a) De-
sired and actual trajectory. (b) Representative weight estimates. 345

7.3.6 Response of multilayer neural network controller with improved
weight tuning and projection algorithm with small α3. (a) De-
sired and actual trajectory. (b) Representative weight estimates. 348

7.3.7 Response of the PD controller. Desired and actual trajectory. . . 349
7.3.8 Response of multilayer neural network controller with improved

weight tuning and projection algorithm. (a) Desired and actual
state 1. (b) Desired and actual state 2. 351

7.3.9 Response of multilayer neural network controller with projection
algorithm and large α3 in the presence of bounded disturbances.
(a) Desired and actual state 1. (b) Desired and actual state 2. . 352

7.4.1 Neural network closed-loop system using an n-layer neural network.354

8.2.1 Discrete-time neural network controller structure for feedback lin-
earization. 366

8.4.1 Response of NN controller with delta-rule based weight tuning.
(a) Actual and desired joint angles. (b) Neural network outputs 392

8.4.2 Response of the NN controller with improved weight tuning and
projection algorithm. (a) Actual and desired joint angles. (b)
Neural network outputs. 402

8.4.3 Response of the PD controller. 402
8.4.4 Response of the NN controller with improved weight tuning and

projection algorithm. (a) Desired and actual state 1. (b) Desired
and actual state 2. 403

8.4.5 Response of NN controller with improved weight tuning in the
presence of bounded disturbances. (a) Desired and actual state
1. (b) Desired and actual state 2. 403

8.5.1 The NN closed-loop system using a one-layer neural nework. . . 404

9.1.1 Multilayer neural network identifier models. 416
9.3.1 Multilayer neural network identifier structure. 420
9.4.1 Neural network closed-loop identifier system. 426
9.5.1 Response of neural network identifier with projection algorithm

in the presence of bounded disturbances. (a) Desired and actual
state 1. (b) Desired and actual state 2. 429

Series Introduction

Control systems has a long and distinguished tradition stretching back to the
nineteenth-century dynamics and stability theory. Its establishment as a major en-
gineering discipline in the 1950s arose, essentially, from Second World War-driven
work on frequency response methods by, amongst others, Nyquist, Bode andWiener.
The intervening 40 years has seen quite unparalleled developments in the under-
lying theory with applications ranging from the ubiquitous PID controller, widely
encountered in the process industries, through to high-performance fidelity con-
trollers typical of aerospace applications. This development has been increasingly
underpinned by rapid development in the, essentially enabling, technology of com-
puting software and hardware.

This view of mathematically model-based systems and control as a mature dis-
cipline masks relatively new and rapid developments in the general area of robust
control. Here an intense research effort is being directed to the development of
high-performance controllers which (at least) are robust to specified classes of plant
uncertainty. One measure of this effort is the fact that, after a relatively short period
of work, near world test of classes of robust controllers have been undertaken in the
aerospace industry. Again, this work is supported by computing hardware and soft-
ware developments, such as the toolboxes available within numerous commercially
marketed controller design/simulation packages.

Recently, there has been increasing interest in the use of so-called ”intelligent”
control techniques such as fuzzy logic and neural networks. Basically, these rely
on learning (in a prescribed manner) the input-output behavior of the plant to be
controlled. Already, it is clear that there is little to be gained by applying these
techniques to cases where mature mathematical model-based approaches yield high-
performance control. Instead, their role (in general terms) almost certainly lies
in areas where the processes encountered are ill-defined, complex, nonlinear, time-
varying and stochastic. A detailed evaluation of their (relative) potential awaits the
appearance of a rigorous supporting base (underlying theory and implementation
architectures, for example) the essential elements of which are beginning to appear
in learned journals and conferences.

Elements of control and systems theory/engineering are increasingly finding use
outside traditional numerical processing environments. One such general area is in-
telligent command and control systems which are central, for example, to innovative
manufacturing and the management of advanced transportation systems. Another
is discrete event systems which mix numeric and logic decision making.

It was in response to these exciting new developments that the present Systems

xxi

xxii Series Introduction

and Control book series was conceived. It publishes high-quality research texts and
reference works in the diverse areas which systems and control now includes. In
addition to basic theory, experimental and/or application studies are welcome, as
are expository texts where theory, verification and applications come together to
provide a unifying coverage of a particular topic or topics.

The book series itself arose out of the seminal text: the 1992 centenary first
English translation of Lyapunov’s memoir The General Problem of the Stability
of Motion by A. T. Fuller, and was followed by the 1994 publication of Advances
in Intelligent Control by C. J. Harris. Since then a number of titles have been
published and many more are planned.

A full list of books in this series is given below:

Advances in Intelligent Control, edited by C.J. Harris

Intelligent Control in Biomedicine, edited by D.A. Linkens

Advances in Flight Control, edited by M.B. Tischler

Multiple Model Approaches to Modelling and Control, edited by R. Murray-Smith
and T.A. Johansen

A Unified Algebraic Approach to Control Design, R.E. Skelton, T. Iwasaki and K.M.
Grigoriadis

Neural Network Control of Robot Manipulators and Nonlinear Systems, F.L. Lewis,
S. Jagannathan and A. Yeşildirek

Forthcoming:

Sliding Mode Control: Theory and Applications, C. Edwards and S.K. Spurgeon

Generalized Predictive Control with Applications to Medicine, H. Mahfouf and D.A.
Linkens

Sliding Mode Control in Electro-Mechanical Systems, V.I. Utkin, J. Guldner and J.
Shi

From Process Data to PID Controller Design, L. Wang and W.R. Cluett

E. ROGERS
J. O’REILLY

Preface

The function of a feedback controller is to fundamentally change the behavior of a
system. Feedback control systems sample the outputs of a system, compare them
with a set of desired outputs, and then use the resulting error signals to compute the
control inputs to the system in such a fashion that the errors become small. Man-
made feedback control systems are responsible for advances in today’s aerospace
age and are used to control industrial, automotive, and aerospace systems. Natu-
rally occurring feedback controllers are ubiquitous in biological systems. The cell,
among the most basic of all life-forms, uses feedback to maintain its homeostasis by
regulating the potential difference across the cell membrane. Volterra showed that
feedback was responsible for regulating interacting populations of fish in a pond.
Darwin showed that feedback over long timeframes was responsible for natural se-
lection. Adam Smith effectively used feedback principles in his study of large-scale
economical systems.

The complexity of today’s man-made systems has placed severe strains on ex-
isting feedback design techniques. Many controls design approaches require known
mathematical models of the system, or make assumptions that are violated by actual
industrial and aerospace systems. Many feedback controllers designed using today’s
technology do not learn or adapt to new situations. Natural biological organisms
have developed feedback controllers and information processing systems that are ex-
tremely efficient, highly redundant, and robust to unexpected disturbances. Chief
characteristics of such systems are their ability to learn and adapt to varying envi-
ronmental conditions and uncertainties and variations in the controlled system. It
would be very desirable to use some features of naturally occurring systems in the
design of man-made feedback controllers.

Among the most complex, efficient, and adaptive of all biological systems are
immense networks of interconnected nerve cells. Such a network is the human ner-
vous system, including the motor control system, basal ganglia, cerebellum, and
motor cortex. Artificial neural networks (NN) based on biological neuronal systems
have been studied for years, and their properties of learning and adaptation, classi-
fication, function approximation, feature extraction, and more have made them of
extreme use in signal processing and system identification applications. These are
open-loop applications, and the theory of NN has been very well developed in this
area.

The applications of NN in closed-loop feedback control systems have only recently
been rigorously studied. When placed in a feedback system, even a static NN
becomes a dynamical system and takes on new and unexpected behaviors. As a

xxiii

xxiv Preface

result, properties such as the internal stability, passivity, and robustness of the NN
must be studied before conclusions about the closed-loop performance can be made.
Early papers on neurocontrol failed to study these effects, and only proposed some
control topologies, employed some standard weight tuning techniques, and presented
some computer simulations indicating good performance.

In this book, the closed-loop applications and properties of NN are studied and
developed in rigorous detail using mathematical stability proof techniques that both
show how to design neurocontrollers and at the same time provide guaranteed sta-
bility and performance. A family of multiloop neurocontrollers for various applica-
tions are methodically developed based on feedback control engineering principles.
The NN controllers are adaptive learning systems, but they do not need usual as-
sumptions made in adaptive control theory such as linearity in the parameters and
availability of a known regression matrix. It is shown how to design NN controllers
for robot systems, a general class of nonlinear systems, complex industrial systems
with vibrations and flexibility effects, force control, motor dynamics control, and
more. Both continuous-time and discrete-time weight tuning techniques are pre-
sented. The book is designed for a second course in control theory, or for engineers
in academia and industry who design feedback controllers for complex systems such
as those occurring in actual commercial, industrial, and military applications. The
various sorts of neurocontrollers are placed in tables which makes for easy reference
on design techniques.

Other books on neurocontrol are by now in print. Generally, these are edited
collections of papers and not textbooks. This is among the first textbooks on
neurocontrol. The appearance of textbooks can be regarded as indicating when an
area of scientific research has reached a certain level of maturity; the first textbooks
on classical control theory, for instance, were published after World War II. Thus,
one might say that the field of neurocontrol has at last taken on a ‘paradigm’ in
the sense of Thomas Kuhn in The Structure of Scientific Revolution.

The book can be seen as having three natural sections. Section I provides a
background, with Chapter 1 outlining properties and characteristics of neural net-
works that are important from a feedback control point of view. Included are NN
structures, properties, and training. Chapter 2 gives a background on dynamical
systems along with some mathematical tools, and a foundation in feedback lin-
earization design and nonlinear stability design. In chapter 3 are discussed robot
systems and their control, particularly computed-torque-like control. A general ap-
proach for robot control given there based on ‘filtered error’ can be used to unify
several different control techniques, including adaptive control, robust control, and
the neural net techniques given in this book.

Section II presents a family of neural network feedback controllers for some dif-
ferent sorts of systems described in terms of continuous-time dynamical equations.
Chapter 4 lays the foundation of NN control used in the book by deriving neural
network controllers for basic rigid robotic systems. Both one-layer and two-layer
NN controllers are given. The properties of these controllers are described in terms
of stability, robustness, and passivity. Extensions are made in Chapter 5 to more
complex practical systems. Studied there are neurocontrollers for force control,
link flexibility, joint flexibility, and high-frequency motor dynamics. The two basic
approaches to control design employed there are singular perturbations and back-

Preface xxv

stepping. Neurocontrollers are designed for a class of nonlinear systems in Chapter
6.

In Section III neurocontrollers are designed for systems described in terms of
discrete-time dynamical models. Controllers designed in discrete time have the
important advantage that they can be directly implemented in digital form on
modern-day microcontrollers and computers. Unfortunately, discrete-time design
is far more complex than continuous-time design. One sees this in the complexity
of the stability proofs, where completing the square several times with respect to
different variables is needed. Chapter 7 provides the basic discrete-time neurocon-
troller topology and weight tuning algorithms. Chapter 8 confronts the additional
complexity introduced by uncertainty in the control influence coefficient, and dis-
crete feedback linearization techniques are presented. Finally, Chapter 9 shows how
to use neural networks to identify some important classes of nonlinear systems.

This work was supported by the National Science Foundation under grant ECS-
9521673.

Frank L. Lewis
Arlington, Texas

This book is dedicated to Christopher

Chapter 1

Background on Neural
Networks

In this chapter we provide a brief background on neural networks (NN), cover-
ing mainly the topics that will be important in a discussion of NN applications in
closed-loop control of dynamical systems. Included are NN topologies and recall,
properties, and training techniques. Applications are given in classification, pat-
tern recognition, and function approximation, with examples provided using the
MATLAB NN Toolbox (Matlab 1994, Matlab NN Toolbox 1995).

Surveys of NN are given, for instance, by Lippmann (1987), Simpson (1992), and
Hush and Horne (1993); many books are also available, as exemplified by Haykin
(1994), Kosko (1992), Kung (1993), Levine (1991), Peretto (1992) and other books
too numerous to mention. It is not necessary to have an exhaustive knowledge of
NN digital signal processing applications for feedback control purposes. Only a few
network topologies, tuning techniques, and properties are important, especially the
NN function approximation property. These are the topics of this chapter.

The uses of NN in closed-loop control are dramatically distinct from their uses
in open-loop applications, which are mainly in digital signal processing (DSP). The
latter include classification, pattern recognition, and approximation of nondynamic
functions (e.g. with no integrators or time delays). In DSP applications, NN usage
is backed up by a body of knowledge developed over the years that shows how to
choose network topologies and select the weights to yield guaranteed performance.
The issues associated with weight training algorithms are well understood. By
contrast, in closed-loop control of dynamical systems, most applications have been
ad hoc, with open-loop techniques (e.g. backpropagation weight tuning) employed
in a naive yet hopeful manner to solve problems associated with dynamic neural net
evolution within a feedback loop, where the NN must provide stabilizing controls for
the system as well as maintain all its weights bounded. Most published papers have
consisted of some loose discussion followed by some simulation examples. By now,
several researchers have begun to provide rigorous mathematical analyses of NN in
closed-loop control applications (see Chapter 4). The background for these efforts
was provided by Narendra and co-workers in several seminal works (see references).
It has generally been discovered that standard open-loop weight tuning algorithms

1

2 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.1.1: Neuron anatomy. From B. Kosko (1992).

such as backpropagation or Hebbian tuning must be modified to provide guaranteed
stability and tracking in feedback control systems.

1.1 NEURAL NETWORK TOPOLOGIES AND RECALL

Neural networks are closely modeled on biological processes for information pro-
cessing, including specifically the nervous system and its basic unit, the neuron.
Signals are propagated in the form of potential differences between the inside and
outside of cells. The main components of a neuronal cell are shown in Fig. 1.1.1.
Dendrites bring signals from other neurons into the cell body or soma, possibly
multiplying each incoming signal by a transfer weighting coefficient. In the soma,
cell capacitance integrates the signals which collect in the axon hillock. Once the
composite signal exceeds a cell threshold, a signal, the action potential, is trans-
mitted through the axon. Cell nonlinearities make the composite action potential
a nonlinear function of the combination of arriving signals. The axon connects
through synapses with the dendrites of subsequent neurons. The synapses operate
through the discharge of neurotransmitter chemicals across intercellular gaps, and
can be either excitatory (tending to fire the next neuron) or inhibitory (tending to
prevent firing of the next neuron).

1.1.1 Neuron Mathematical Model

A mathematical model of the neuron is depicted in Fig. 1.1.2, which shows the
dendrite weights vj , the firing threshold v0 (also called the ‘bias’), the summation
of weighted incoming signals, and the nonlinear function σ(·). The cell inputs are
the n time signals x1(t), x2(t), . . . xn(t) and the output is the scalar y(t), which can

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 3

Figure 1.1.2: Mathematical model of a neuron.

be expressed as

y(t) = σ

⎛
⎝ n∑

j=1

vjxj(t) + v0

⎞
⎠ . (1.1.1)

Positive weights vj correspond to excitatory synapses and negative weights to in-
hibitory synapses. This was called the perceptron by Rosenblatt in 1959 (Haykin
1994).

The cell function σ(·) is known as the activation function, and is selected differ-
ently in different applications; some common choices are shown in Fig. 1.1.3. The
intent of the activation function is to model the behavior of the cell where there
is no ouput below a certain value of the argument of σ(·) and the output takes a
specified magnitude above that value of the argument. A general class of monoton-
ically nondecreasing functions taking on bounded values at −∞ and +∞ is known
as the sigmoid functions. It is noted that, as the threshold or bias v0 changes,
the activation functions shift left or right. For many training algorithms (including
backpropagation), the derivative of σ(·) is needed so that the activation function
selected must be differentiable.

The expression for the neuron output y(t) can be streamlined by defining the
column vector of input signals x̄(t) ∈ �n and the column vector of NN weights
v̄(t) ∈ �n as

x̄(t) = [x1 x2 . . . xn]
T , v̄(t) = [v1 v2 . . . vn]

T . (1.1.2)

Then, one may write in matrix notation

y = σ(v̄T x̄+ v0). (1.1.3)

A final refinement is achieved by defining the augmented input column vector x(t) ∈
�n+1 and NN weight column vector v(t) ∈ �n+1 as

x(t) = [1 x̄T]T = [1 x1 x2 . . . xn]
T , v(t) = [v0 v̄T]T = [v0 v1 v2 . . . vn]

T . (1.1.4)

Then, one may write
y = σ(vTx). (1.1.5)

4 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.1.3: Some common choices for the activation function.

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 5

Figure 1.1.4: One-layer neural network.

Though the input vector x̄(t) ∈ �n and the vector of weights v̄ ∈ �n have been
augmented by 1 and v0 respectively to include the threshold, we may at times
loosely say that x(t) and v are elements of �n.

These expresions for the neuron output y(t) are referred to as the cell recall
mechanism. They describe how the output is reconstructed from the input signals
and the values of the cell parameters.

In Fig. 1.1.4 is shown a neural network (NN) consisting Of L cells, all fed by the
same input signals xj(t) and producing one output y�(t) per neuron. We call this a
one-layer NN. The recall equation for this network is given by

y� = σ

⎛
⎝ n∑

j=1

v�jxj + v�0

⎞
⎠ ; � = 1, 2, . . . , L. (1.1.6)

By defining the matrix of weights and the vector of thresholds as

V̄ T ≡

⎡
⎢⎢⎢⎣
v11 v12 . . . v1n
v21 v22 . . . v2n
...

...
...

vL1 vL2 . . . vLn

⎤
⎥⎥⎥⎦ , bv ≡

⎡
⎢⎢⎢⎣
v10
v20
...
vL0

⎤
⎥⎥⎥⎦ , (1.1.7)

one may write the output vector y = [y1 y2 . . . yL]
T as

y = σ̄(V̄ T x̄+ bv). (1.1.8)

The vector activation function is defined for a vector w ≡ [w1 w2 . . . wL]
T as

σ̄(w) ≡ [σ(w1) σ(w2) . . . σ(wL)]
T . (1.1.9)

6 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

A final refinement may be achieved by defining the augmented matrix of weights
as

V T =

⎡
⎢⎢⎢⎣
v10 v11 v12 . . . v1n
v20 v21 v22 . . . v2n
...

...
...

...
vL0 vL1 vL2 . . . vLn

⎤
⎥⎥⎥⎦ , (1.1.10)

which contains the thresholds in the first column. Then, the NN outputs may be
expressed in terms of the augmented input vector x(t) as

y = σ̄(V Tx). (1.1.11)

In other works (e.g. the Matlab NN Toolbox) the matrix of weights may be defined
as the transpose of our version; our definition conforms more closely to usage in the
control system literature.

Example 1.1.1 (Output Surface for one-layer Neural Network) :
A perceptron with two inputs and one output is given by

y = σ(−4.79x1 + 5.90x2 − 0.93) ≡ σ(vx+ b),

where v ≡ V̄ T . Plots of the NN output surface y as a function of the inputs x1, x2 over
the grid [−2, 2]× [−2, 2] are given in Fig. 1.1.5. Different outputs are shown corresponding
to the use of different activation functions.

Though this plot of the output surface versus x is informative, it is not typically
used in NN research. In fuzzy logic design it is known as the reasoning surface and is
a standard tool. To make this plot the MATLAB NN Toolbox (1995) was used. The
following sequence of commands was used:

% set up NN weights:
v= [-4.79 5.9];
b= [-0.93];

% set up plotting grid for sampling x:
[x1,x2]= meshgrid(-2 : 0.1 : 2);

% compute NN input vectors p and simulate NN using sigmoid:
p1= x1(:);
p2= x2(:);
p= [p1’; p2’];
a= simuff(p,v,b,’sigmoid’);

% format results for using ’mesh’ or ’surfl’ plot routines:
a1= eye(41);
a1(:)= a’;
mesh(x1,x2,a1);

It is important to be aware of several factors in this MATLAB code: One should
read the MATLAB User’s Guide to become familiar with the use of the colon in matrix
formatting. The prime on vectors or matrices (e.g. p1’) means matrix transpose. The
semicolon at the end of a command suppresses printing of the result. The symbol %
means that the rest of the line is a comment. It is important to note that MATLAB
defines the NN weight matrices as the transposes of our weight matrices; therefore, in all
examples, the MATLAB convention is followed (we use lowercase letters here to help make
the distinction). There are routines that compute the outputs of various NN given the
inputs; in this instance SIMUFF() is used. The functions of 3-D plotting routines MESH
and SURFL should be studied. �

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 7

Figure 1.1.5: Output surface of a one-layer NN. (a) Using sigmoid activation func-
tion. (b) Using hard limit activation function. (c) Using radial basis function.

8 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.1.6: Two-layer neural network.

1.1.2 Multilayer Perceptron

A two-layer NN is depicted in Fig. 1.1.6, where there are two layers of neurons, with
one layer having L neurons feeding into a second layer having m neurons. The first
layer is known as the hidden layer, with L the number of hidden-layer neurons; the
second layer is known as the output layer. NN with multiple layers are called multi-
layer perceptrons; their computing power is significantly enhanced over the one-layer
NN. With one-layer NN it is possible to implement digital operations such as AND,
OR, and COMPLEMENT (see Problems section). However, developments in NN
were arrested many years ago when it was shown that the one-layer NN is incapable
of performing the EXCLUSIVE-OR operation, which is basic to digital logic design.
When it was realized that the two-layer NN can implement the EXCLUSIVE-OR
(X-OR), NN research again accelerated. One solution to the X-OR operation is
shown in Fig. 1.1.7, where sigmoid activation functions were used (Hush and Horne
1993).

The output of the two-layer NN is given by the recall equation

yi = σ

⎛
⎝ L∑

�=1

wi�σ

⎛
⎝ n∑

j=1

v�jxj + v�0

⎞
⎠+ wi0

⎞
⎠ ; i = 1, 2, . . . ,m. (1.1.12)

Defining the hidden-layer outputs z� allows one to write

z� = σ

⎛
⎝ n∑

j=1

v�jxj + v�0

⎞
⎠ ; � = 1, 2, . . . , L (1.1.13)

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 9

Figure 1.1.7: EXCLUSIVE-OR implemented using two-layer neural network.

yi = σ

(
L∑

�=1

wi�z� + wi0

)
; i = 1, 2, . . . ,m. (1.1.14)

Defining first-layer weight matrices V̄ and V as in the previous subsection, and
second-layer weight matrices as

W̄T ≡

⎡
⎢⎢⎢⎣

w11 w12 . . . w1L

w21 w22 . . . w2L

...
...

...
wm1 wm2 . . . wmL

⎤
⎥⎥⎥⎦ , bw ≡

⎡
⎢⎢⎢⎣

w10

w20

...
wm0

⎤
⎥⎥⎥⎦ ,

WT =

⎡
⎢⎢⎢⎣

w10 w11 w12 . . . w1L

w20 w21 w22 . . . w2L

...
...

...
...

wm0 wm1 wm2 . . . wmL

⎤
⎥⎥⎥⎦ , (1.1.15)

one may write the NN output as

y = σ̄
(
W̄T σ̄(V̄ T x̄+ bv) + bw

)
(1.1.16)

or, in streamlined form as
y = σ̄

(
WTσ(V Tx)

)
. (1.1.17)

In these equations, the notation σ̄ means the vector defined in accordance with
(1.1.9). In (1.1.17) it is necessary to use the augmented vector

σ(w) ≡ [1 σ̄(w)T]T = [1 σ(w1) σ(w2) . . . σ(wL)]
T ; (1.1.18)

where a 1 is placed as the first entry, to allow the incorporation of the thresholds
wi0 as the first column of WT . In terms of the hidden-layer output vector z ∈ �L

one may write

z̄ = σ̄(V Tx) (1.1.19)

y = σ(WT z), (1.1.20)

10 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

where z ≡ [1 z̄T]T .

In the remainder of this book we shall not show the overbar on vectors— the
reader will be able to determine by the context whether the leading ‘1’ is required.
We shall generally be concerned in later chapters with two-layer NN with linear
activation functions on the output layer, so that

y =WTσ(V Tx). (1.1.21)

Example 1.1.2 (Output Surface for Two-Layer Neural Network) :

A two-layer NN with two inputs and one output is given by

y = W̄Tσ(V̄ Tx+ bv) + bw ≡ wσ(vx+ bv) + bw

with weight matrices and thresholds given by

v = V̄ T =

[
−2.69 −2.80
−3.39 −4.56

]
, bv =

[
−2.21
4.76

]

w = W̄T = [−4.91 4.95], bw = [−2.28].

Plots of the NN output surface y as a function of the inputs x1, x2 over the grid
[−2, 2]× [−2, 2] are given in Fig. 1.1.8. Different outputs are shown corresponding to the
use of different activation functions. To make this plot the MATLAB NN Toolbox (1995)
was used with the sequence of commands given in Example 1.1.1.

Of course, this is the EXCLUSIVE-OR network from Fig. 1.1.7. The X-OR is normally
used only with binary input vectors x, however, plotting the NN output surface over a
region of values for x reveals graphically the decision boundaries of the network and aids
in visualization. �

1.1.3 Linear-in-the-Parameter (LIP) Neural Nets

If the first-layer weights and thresholds V in (1.1.21) are predetermined by some a
priori method, then only the second-layer weights and thresholds W are considered
to define the NN, so that the NN has only one layer of weights. One may then
define the fixed function φ(x) ≡ σ(V Tx) so that such a one-layer NN has the recall
equation

y =WTφ(x), (1.1.22)

where x ∈ �n (recall that technically x is augmented by a ‘1’), y ∈ �m, φ(·) :
�n → �L, and L is the number of hidden-layer neurons. This NN is linear in
the NN parameters W , so that it is far easier to deal with in subsequent chapters.
Specifically, it is easier to train the NN by tuning the weights. This one-layer having
only output-layer weights W should be contrasted with the one-layer NN discussed
in (1.1.11), which had only input-layer weights V .

More generality is gained if σ(·) is not diagonal, e.g. as defined in (1.1.9), but
φ(·) is allowed to be a general function from �n to �L. This is called a functional-
link neural net (FLNN) (Sadegh 1993). Some special FLNN are now discussed.
We often use σ(·) in place of φ(·), with the understanding that, for LIP nets, this
activation function vector is not diagonal, but is a general function from �n to �L.

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 11

Figure 1.1.8: Output surface of a two-layer NN. (a) Using sigmoid activation func-
tion. (b) Using hard limit activation function.

12 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

1.1.3.1 Gaussian or Radial Basis Function (RBF) Networks

The selection of a suitable set of activation functions is considerably simplified
in various sorts of structured nonlinear networks, including radial basis function,
CMAC, and fuzzy logic nets. It will be shown here that the key to the design
of such structured nonlinear nets lies in a more general set of NN thresholds than
allowed in the standard equation (1.1.12), and in their appropriate selection.

A NN activation function often used is the gaussian or radial basis function
(RBF) (Sanner and Slotine 1991) given when x is a scalar as

σ(x) = e−(x−μ)2/2p, (1.1.23)

where μ is the mean and p the variance. RBF NN can be written as (1.1.21), but
have an advantage over the usual sigmoid NN in that the n-dimensional gaussian
function is well understood from probability theory, Kalman filtering, and elsewhere,
so that n-dimensional RBF are easy to conceptualize.

The j-th activation function can be written as

σj(x) = e−
1
2 (x−μj)

TP−1
j

(x−μj) (1.1.24)

with x, μj ∈ �n. Define the vector of activation functions as σ(x) ≡ [σ1(x) σ2(x) ...
σL(x)]

T . If the covariance matrix is diagonal so that Pj = diag{pjk}, then (1.1.24)
becomes separable and may be decomposed into components as

σj(x) = e−
1
2

∑n

k=1
−(xk−μjk)

2/pjk =
n∏

k=1

e−
1
2 (xk−μjk)

2/pjk , (1.1.25)

where xk, μjk are the k-th components of x, μj . Thus, the n-dimensional activation
functions are the product of n scalar functions. Note that this equation is of the
form of the activation functions in (1.1.12), but with more general thresholds, as a
threshold is required for each different component of x at each hidden layer neuron
j; that is, the threshold at each hidden-layer neuron in Fig. 1.1.6 is a vector. The
RBF variances pjk and offsets μjk are usually selected in designing the RBF NN
and left fixed; only the output-layer weights WT are generally tuned. Therefore,
the RBF NN is a special sort of FLNN (1.1.22) (where φ(x) = σ(x)).

Fig. 1.1.9 shows separable gaussians for the case x ∈ �2. In this figure, all the
variances pjk are identical, and the mean values μjk are chosen in a special way that
spaces the activation functions at the node points of a 2-D grid. To form an RBF NN
that approximates functions over the region {−1 < x1 ≤ 1,−1 < x2 ≤ 1} one has
here selected L = 5×5 = 25 hidden-layer neurons, corresponding to 5 cells along x1
and 5 along x2. Nine of these neurons have 2-D gaussian activation functions, while
those along the boundary require the illustrated ‘one-sided’ activation functions.

An alternative to selecting the gaussian means and variances is to use random
choice. In 2-D, for instance (c.f. Fig. 1.1.9), this produces a set of L gaussians
scattered at random over the (x1, x2) plane with different variances.

The importance of RBF NN is that they show how to select the activation
functions and the number of hidden-layer neurons for specific NN applications (e.g.
function approximation– see below).

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 13

Figure 1.1.9: Two-dimensional separable gaussian functions for an RBF NN.

1.1.3.2 Cerebellar Model Articulation Controller (CMAC) Nets

A CMAC NN (Albus 1975) has separable activation functions generally composed of
splines. The activation functions of a 2-D CMAC composed of second-order splines
(e.g. triangle functions) are shown in Fig. 1.1.10, where L = 5 × 5 = 25. The
activation functions of a CMAC NN are called receptive field functions in analogy
with the optical receptor fields of the eye. An advantage of CMAC NN is that the
receptive field functions based on splines have finite support so that they may be
efficiently evaluated. An additional computational advantage is provided by the fact
that higher-order splines may be computed recursively from lower-order splines.

1.1.4 Dynamic Neural Networks

The NN we have discussed so far are nondynamic in that they contain no memory—
that is, no integrators or time-delay elements. There are many sorts of dynamic
NN, or recurrent NN, where some signals in the NN are either integrated or delayed
and fed back into the net. The seminal work of Narendra and co-workers (see
References) should be explored for more details.

1.1.4.1 Hopfield Net

Perhaps the most familiar dynamic NN is the Hopfield net, shown in Fig. 1.1.11, a
special form of two-layer NN where the output yi is fed back into the hidden-layer
neurons (Haykin 1994). In the Hopfield net, the first-layer weight matrix V is the
identity matrix I, the second-layer weight matrixW is square, and the output-layer

14 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.1.10: Receptive field functions for a 2-D CMAC NN with second-order
splines.

activation function is linear. Moreover, the hidden-layer neurons have increased
processing power in the form of a memory. We may call such neurons with internal
signal processing neuronal processing elements (NPE) (c.f. Simpson 1992).

In the continuous-time case the internal dynamics of each hidden-layer NPE
looks like Fig. 1.1.12, which contains an integrator 1/s and a time-constant τi in
addition to the usual nonlinear activation function σ(·). The internal state of the
NPE is described by the signal xi(t). The continuous-time Hopfield net is described
by the ordinary differential equation

τiẋi = −xi +
n∑

j=1

wijσj(xj) + ui (1.1.26)

with output equation

yi =
n∑

j=1

wijσj(xj). (1.1.27)

This is a dynamical system of special form that contains the weights wij as ad-
justable parameters and positive time constants τi. The activation function has a
subscript to allow, for instance, for scaling terms gj as in σj(xj) ≡ σ(gjxj), which
can significantly improve the performance of the Hopfield net. In the traditional
Hopfield net the threshold offsets ui are constant bias terms. The reason that we
have renamed the offsets as ui is that (1.1.26) has the form of a state equation in
control system theory, where the internal state is labeled x(t). The biases play the
role of the control input term, which is labeled u(t). In traditional Hopfield NN,
the term ‘input pattern’ refers to the initial state components xi(0).

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 15

Figure 1.1.11: Hopfield dynamical neural net.

Figure 1.1.12: Continuous-time Hopfield net hidden-layer neuronal processing ele-
ment (NPE) dynamics.

16 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.1.13: Discrete-time Hopfield net hidden-layer NPE dynamics.

Figure 1.1.14: Continuous-time Hopfield net in block diagram form.

In the discrete-time case, the internal dynamics of each hidden-layer NPE con-
tains a time delay instead of an integrator, as shown in Fig. 1.1.13. The NN is now
described by the difference equation

xi(k + 1) = pixi(k) +

n∑
j=1

wijσj (xj(k)) + ui(k), (1.1.28)

with pi < 1. This is a discrete-time dynamical system with time index k.
Defining the NN weight matrix WT , vectors x ≡ [x1 x2 . . . xn]

T and u ≡
[u1 u2 . . . un]

T , and the matrix Γ = diag
{

1
τ1
, 1
τ2
, . . . , 1

τn

}
, one may write the

continuous-time Hopfield net dynamics as

ẋ = −Γx+ ΓWTσ(x) + Γu. (1.1.29)

(Note that technically some of these variables should have overbars. We shall gen-
erally drop the overbars henceforth.) A system theoretic block diagram of this
dynamics is given in Fig. 1.1.14. Similar machinations can be performed in the
discrete-time case (see Problems section).

1.1.4.2 Hopfield Net Energy Function and Stability

The Hopfield net can be used as a classifier/pattern recognizer (see Section 1.2.1).
In the original form used by Hopfield, the diagonal entries wii were set equal to
zero and it was shown that, as long as the weight matrix [wij] is symmetric, the NN
converges to stable local equilibrium points depending on the values of the initial
state x(0). These stable local equilibrium points represent the information stored

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 17

in the net, that is, the exemplar patterns to be recognized, and are determined by
the values wij . Techniques for selecting the weights for a specific set of exemplar
patterns are given in Section 1.3.1.

To show that the state of the Hopfield net is stable, converging to bounded
values, one may use the notion of the Lyapunov function of a dynamic system
from Chapter 2. Thus, consider the continuous-time Hopfield net and define the
intermediate vector ξ ∈ �n with components

ξi ≡ σi(xi). (1.1.30)

Associate to the NN an energy function or Lyapunov function

L(ξ) = −1

2

n∑
i=1

n∑
j=1

wijξiξj +

n∑
i=1

∫ ξi

0

σ−1
i (z)dz −

n∑
i=1

uiξi. (1.1.31)

It can be shown that L(ξ) is bounded below. Thus, if one can prove that its
derivative is negative, then this energy function is decreasing, so that the energy,
and hence also the magnitude of ξ, decreases. This will demonstrate stability of the
state.

Therefore, differentiate L(ξ) and use Leibniz’ formula with the integral term to
obtain

L̇ = −
n∑

i=1

⎛
⎝ n∑

j=1

wijξj − σ−1
i (ξi) + ui

⎞
⎠ ξ̇i

= −
n∑

i=1

⎛
⎝ n∑

j=1

wijξj − xi + ui

⎞
⎠ ξ̇i

= −
n∑

i=1

(τiẋi)ξ̇i

L̇ = −
n∑

i=1

τiξ̇
2
i

∂

∂ξi
σ−1
i (ξi) (1.1.32)

where (1.1.26) was used at the third equality. In this expression, one notes that, for
all continuous activation functions shown in Fig. 1.1.3 (with the exception of RBF,
which are not often used with Hopfield nets) both σi(·) and σ−1

i (·) are monotonically
increasing (see e.g. Fig. 1.1.15). Therefore, L̇ is negative and the Hopfield state is
stable.

Example 1.1.3 (Dynamics and Lyapunov Surface of Hopfield Network) :
Select x = [x1 x2]

T ∈ �2 and choose parameters so that the Hopfield net is

ẋ = −1

2
x+

1

2
WTσ(x) +

1

2
u

with weight matrix

W = WT =

[
0 1
1 0

]
.

18 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Select the symmetric sigmoid activation function in Fig. 1.1.3 so that

ξi = σi(xi) ≡ σ(gixi) =
1− e−gixi

1 + e−gixi
.

Then,

xi = σ−1
i (ξi) = − 1

gi
ln

(
1− ξi
1 + ξi

)
.

Using sigmoid decay constants of g1 = g2 = 100, these functions are plotted in Fig. 1.1.15.

a. State Trajectory Phase-Plane Plots
State trajectory phase-plane plots for various initial condition vectors x(0) and u = 0

are shown in Fig. 1.1.16, which plots x2(t) vs. x1(t). All initial conditions converge to
the vicinity of either point (−1,−1) or point (1, 1). As seen in Section 1.3.1, these are the
exemplar patterns stored in the weight matrix W . Techniques for selecting the weights for
desired performance are given in Section 1.3.1.

The state trajectories are plotted with MATLAB using the function ‘ode23(·)’, which
requires the following M file to describe the system dynamics:

% hopfield.m: Matlab M file for Hopfield net dynamics
function xdot= hopfield(t,x)
g=100;
tau= 2;
u= [0 ; 0];
w= [0 1
1 0];
xi= (1-exp(-g*x) ./ (1+exp(-g*x);
xdot= (-x + w*v + u)/tau;

In MATLAB, an operator preceded by a period denotes the element-by-element matrix
operation; thus ‘./’ denotes element-by-element vector division.

b. Lyapunov Energy Surface
To investigate the time history behavior, examine the Lyapunov energy function (1.1.31)

for this system. Using the inverse of the symmetric sigmoid activation function one com-
putes

L(ξ) = −1

2

n∑
i=1

n∑
j=1

wijξiξj −
n∑

i=1

uiξi +
1

gi

n∑
i=1

[(1 + ξi) ln(1 + ξi) + (1− ξi) ln(1− ξi)] .

This surface is plotted versus x1, x2 in Fig. 1.1.17 where it is clearly seen that the minima
over the region [−1, 1] × [−1, 1] occur near the points (−1,−1) and (1, 1). This explains
the behavior seen in the time histories; the state trajectories are such that x(t) moves
downhill on the Lyapunov surface at each time instant. The exact equilibrium points may
be computed by solving the equation ẋ = 0. �

1.1.4.3 Generalized Recurrent Neural Network

A generalized dynamical NN is shown in Fig. 1.1.18 (c.f. work of Narendra, see
References). In this figure, H(s) = C(sI − A)−1B represents the transfer function
of a linear dynamical system or plant given by

ẋ = Ax+Bμ
ζ = Cx

(1.1.33)

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 19

Figure 1.1.15: Hopfield net functions. (a) Symmetric sigmoid activation function.
(b) Inverse of symmetric sigmoid activation function.

20 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.1.16: Hopfield net phase-plane plots; x2(t) versus x1(t).

Figure 1.1.17: Lyapunov energy surface for an illustrative Hopfield net.

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 21

Figure 1.1.18: Generalized continuous-time dynamical neural network.

with internal state x(t) ∈ �n, control input μ(t), and output ζ(t). The NN can
be a two-layer net described by (1.1.12), (1.1.16), (1.1.17). This dynamic NN is
described by the equation

ẋ = Ax+B
[
σ
(
WTσ(V T (Cx+ u1))

)]
+Bu2. (1.1.34)

From examination of (1.1.29) it is plain that the Hopfield net is a special case of
this equation, which is also true of many other dynamical NN in the literature.
A similar version holds for the discrete-time case. If the system matrices A,B,C
are diagonal, then the dynamics can be interpreted as residing within the neurons,
and one can speak of neuronal processing elements with increased computing power
and internal memory. Otherwise, there are additional dynamical interconnections
around the NN as a whole (see the problems).

Example 1.1.4 (Chaotic Behavior of Neural Networks) :

This example was provided by Professor Chaouki Abdallah (1995) of the University
of New Mexico based on some discussions in Becker and Dörfler (1988). Even in simple
neural networks it is possible to observe some very interesting behavior, including limit
cycles and chaos. Consider for instance the discrete Hopfield NN with two inputs, two
states, and two outputs given by

xk+1 = Axk +WTσ(V Txk) + uk,

which is a discrete-time system of the form (1.1.34).

a. Starfish Attractor— Changing the NN Weights

Select the system matrices as

A =

[
−0.1 1
−1 0.1

]
, w = WT =

[
π 1
1 −1

]
, v = V T =

[
1.23456 2.23456
1.23456 2.23456

]

and the input as uk = [1 1]T .

It is straightforward to simulate the time performance of the DT Hopfield system using
the folliwing MATLAB code.

22 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

% MATLAB function file for simulation of discrete Hopfield NN
function [x,y] = starfish(N)
x1(1)=-rand;
x2(1)=rand;
a11= -0.1; a12= 1;
a21= -1; a22= 0.1;
w11= pi; w12= 1;
w21= 1; w22= -1;
u1= 1;
u2= -1;
v11= 1.23456; v12= 2.23456;
v21= 1.23456; v22= 2.23456;
for k=1:N
x1(k+1)= a11*x1(k) + a12*x2(k) + w11*tanh(v11*x1(k)) + w12*tanh(v12*x2(k))

+ u1;
x2(k+1)= a21*x1(k) + a22*x2(k) + w21*tanh(v21*x1(k)) + w22*tanh(v22*x2(k))

+ u2;
end
end

where the argument N is the number of time iterations to be performed. The system is
initialized at random initial state x0. The tanh activation function is used.

The result of the simulation is plotted using the MATLAB function plot(x1,x2,’.’); it
is shown for N= 2000 points in Fig. 1.1.19. After an initial transient, the time history
is attracted to a shape reminiscent of a starfish. Lyapunov exponent analysis allows the
determination of the dimension of the attractor. If the attractor has non-integer dimension,
it is said to be a strange attractor and the NN exhibits chaos.

Changing the NN weight matrices results in different behavior. Setting

v = V T =

[
2 3
2 3

]

yields the plot shown in Fig. 1.1.20. It is very easy to destroy the chaotic-type behavior.
For instance, setting

v = V T =

[
1 2
1 2

]

yields the plot shown in Fig. 1.1.21, where the attractor is a stable limit cycle.

b. Anemone Attractor— Changing the Plant A Matrix

Changes in the plant matrices (A,B,C) also influence the characteristics of the attrac-
tor. Setting

A =

[
1 1
−1 0.1

]

yields the phase-plane plot shown in Fig. 1.1.22. Also changing the NN first-layer weight
matrix to

v = V T =

[
2 3
2 3

]

yields the behavior shown in Fig. 1.1.23. �

1.1. NEURAL NETWORK TOPOLOGIES AND RECALL 23

Figure 1.1.19: Phase-plane plot of discrete-time NN showing attractor.

Figure 1.1.20: Phase-plane plot of discrete-time NN with modified V weights.

24 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.1.21: Phase-plane plot of discrete-time NN with modified V weights show-
ing limit-cycle attractor.

Figure 1.1.22: Phase-plane plot of discrete-time NN with modified A matrix.

1.2. PROPERTIES OF NEURAL NETWORKS 25

Figure 1.1.23: Phase-plane plot of discrete-time NN with modified A matrix and V
matrix.

1.2 PROPERTIES OF NEURAL NETWORKS

Neural networks are complex nonlinear interconnected systems, and as such have
a broad range of uses and some rather remarkable properties. Many of these de-
rive from the origins of NN from biological information processing cells. In this
section we discuss two properties: classification and pattern recognition, and func-
tion approximation. These are both open-loop applications, in that the NN is not
required to control a dynamical system in a feedback loop. However, we shall see
in subsequent chapters that for closed-loop feedback controls purposes the function
approximation property in particular is a key required capability.

There are two issues which should be cleanly divided. On the one hand, NN are
complex enough that they have important properties and capabilities. However,
to function as desired, suitable weights of the NN must be determined. Thus, on
the other hand, there are some effective algorithms to compute or tune the NN
weights by training the NN in such a manner that, when training is complete, it
exhibits the desired properties. Thus, in the next section we discuss techniques
of weight selection and tuning so that the NN performs as a classifier, a function
approximator, and so on.

It is finally emphasized that, though it is possible to construct NN with multiple
hidden layers, the computational burden increases with the number of hidden layers.
A NN with two hidden layers (three-layer net) can form the most complex decision
regions for classification. However, in many practical situations it is usually found
that the two-layer NN (e.g. with one hidden layer) is sufficient. Specifically, since
two-layer NN are the simplest to have the function approximation capability, they
are sufficient for all the controls applications discussed in this book.

26 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.2.1: Decision regions of a simple one-layer NN.

1.2.1 Classification, Association, and Pattern Recognition

In digital signal processing (DSP) NN have been extensively used as pattern rec-
ognizers, classifiers, and contrast enhancers (Lippmann 1987). In all these applica-
tions the fundamental issue is distinguishing between different inputs presented to
the NN; usually the input is a constant time-invariant vector, often binary (consist-
ing of 1’s and 0’s) or bipolar (having entries of, e.g., ±1). The NN in such uses is
known as a content-addressable associative memory, which associates various input
patterns with the closest of a set of exemplar patterns (e.g. identifying noisy letters
of the alphabet).

1.2.1.1 Classification

A one-layer NN with two inputs x1, x2 and one output is given by

y = σ(v0 + v1x1 + v2x2), (1.2.1)

where in this application σ(·) is the symmetric hard limiter in Fig. 1.1.3. The output
can take on values of ±1. When y is zero, there holds the relation

0 = v0 + v1x1 + v2x2
x2 = − v1

v2
x1 − v0

v2
.

(1.2.2)

As illustrated in Fig. 1.2.1, this is a line partitioning �2 into two decision regions,
with y taking a value of +1 in one region and −1 in the other. Therefore, if the
input vectors x = [x1 x2]

T take on values as shown by the A’s and B’s, they can
be partitioned into the two classes A and B by examing the values of y resulting
when the values of x are presented to the NN.

Given the two regions into which the values of x should be classified, it is ob-
viously necessary to know how to select the weights and threshold to draw a line
between the two. Weight selection and NN training are discussed in the next section.

1.2. PROPERTIES OF NEURAL NETWORKS 27

Figure 1.2.2: Types of decision regions that can be formed using single- and multi-
layer NN. From R.P. Lippmann (1987).

In the general case of n inputs xj and L outputs y�, the one-layer (Fig. 1.1.4)
NN partitions �n using L hyperplanes (subspaces of dimension n−1). Clearly, if the
values of x do not fall into regions that are separable using hyperplanes, they cannot
be classified using a one-layer NN. Fig. 1.2.2 shows some classification problems that
are undecidable for the one-layer NN— a specific example is the EXCLUSIVE-OR.

The two-layer NN with n inputs, L hidden-layer neurons, and m outputs (Fig.
1.1.6) can implement more complex decision boundaries than the one-layer NN.
Specifically, the first layer forms L hyperplanes (each of dimension n− 1), and the
second layer combines them into m decision regions by taking various intersections
of the regions defined by the hyperplanes, depending on the output-layer weights.
Thus, the two-layer NN can form open or closed convex decision regions, as shown
in Fig. 1.2.2. The X-OR problem can be solved using a two-layer NN. The three-
layer NN can form arbitrary decision regions, not necessarily convex, and suffices
for the most complex classification problems. This discussion has assumed hard
limiters; if smooth activation functions are used the decision boundaries are smooth
as well. With smooth activation functions, moreover, the backpropagation training
algorithm given in the next section can be used to determine the weights needed to
solve any specific classification problem.

The NN structure should be complex enough for the decision problem at hand;
too complex a net makes for additional computation time that is not necessary. The
number of nodes in the hidden layer should typically be sufficient to provide three
or more edges for each decision region generated by the output-layer nodes.

28 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

An illustration of NN classification is given in Example 1.3.2.

1.2.1.2 Association and Pattern Recognition

In the association problem there are prescribed input vectors Xp ∈ �n along with
output target vectors Y p ∈ �m, each of which is to be associated with its correspond-
ing Xp. In practical situations there might be multiple input vectors prescribed by
the user, each with an associated desired output vector. Thus, there might be pre-
scribed P desired exemplar input/output pairs (X1, Y 1), (X2, Y 2), . . . , (XP , Y P)
for the NN.

Pattern recognition is often a special case of association. In illustration, Xp, p =
1, . . . , 26 could be the letters of the alphabet drawn on a 7 × 5 grid of 1’s and 0’s
(e.g. 0 means light, 1 means dark), and Y 1 could be A, Y 2 would be B, and so on.
For presentation to the NN as vectors, Xp might be encoded as the columns of the
7× 5 grid stacked on top of one another to produce a 35-vector of ones and zeros,
while Y p might be the p-th column of the 26× 26 identity matrix, so that A would
be encoded as [1 0 0 . . .]T , and so on. Then, the NN should associate pattern Xp

with target output Y p to classify the letters.
To solve pattern recognition and association problems for a given set Of in-

put/output pairs (Xp, Y p), it is necessary to select the correct weights and thresh-
olds for the NN, as illustrated by the next example.

Example 1.2.1 (Optimal NN Weights and Biases for Pattern Association) :
It is desired to design a one-layer NN with one input x and one output y that associates

input X1 = −3 with the target output Y 1 = 0.4 and input X2 = 2 with target output
Y 2 = 0.8. Thus, the desired i/o pairs to be associated are (−3, 0.4), (2, 0.8). The NN has
only one weight and one bias and the recall equation is

y = σ(vx+ b).

Denote the actual NN outputs when the input examplar patterns are presented as

y1 = σ(vX1 + b), y2 = σ(vX2 + b).

When the NN is performing as prescribed, one should have y1 = Y 1, y2 = Y 2. To measure
the performance of the NN, define the least-squares output error as

E =
1

2

[
(Y 1 − y1)2 + (Y 2 − y2)2

]
.

When E is small, the NN is performing well.
Using the MATLAB NN Toolbox, it is straightforward to plot the least-squares output

error E as a function of the weight w and bias b. The result is shown in Fig. 1.2.3 for the
sigmoid and the hard limit activation functions.

To design the NN, it is necessary to select w and b to minimize the error E. It is
seen that for the hard limit, E is minimized for a range of weight/bias values. On the
other hand, for the sigmoid the error is minimized for (w, b) in the vicinity of (0.3, 0.6).
Moreover, the sigmoid allows a smaller minimum value of E than does the hard limit. Since
the error surface plot using the sigmoid is smooth, conventional gradient-based techniques
can be used to determine the optimal weight and bias. This topic is discussed in Section
1.3.2 for the one-layer NN and Section 1.3.3 for the multilayer NN.

To make, for instance, Fig. 1.2.3a, the following MATLAB commands were used:

1.2. PROPERTIES OF NEURAL NETWORKS 29

Figure 1.2.3: Output error plots versus weights for a neuron. (a) Error surface
using sigmoid activation function. (b) Error contour plot using sigmoid activation
function. (c) Error surface using hard limit activation function.

30 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

% set up input patterns, output targets, and weight/bias ranges:
p= [-3 2];
t= [0.4 0.8];
wv= -4 : 0.1 : 4;
bv= -4 : 0.1 : 4;

% compute output error surface:
es= errsurf(p,t,wv,bv,’logsig’);

% plot and label error surface:
mesh(wv,bv,es)
view(60,30)
set(gca,’xlabel’,text(0,0,’weight’))
set(gca,’ylabel’,text(0,0,’bias’))
title(’Error surface plot using sigmoid’)

Note that the input patterns are stored in a vector p and the target outputs are stored in
a vector t with corresponding entries. �

1.2.2 Function Approximation

Of fundamental importance in NN closed-loop control applications is the universal
function approximation property of NN having at least two layers. (One-layer NN
do not generally have a universal approximation capability.) The approximation
capabilities of NN have been studied by many researchers including Cybenko (1989);
Hornik, Stinchcombe, and White (1989); and Sandberg and co-workers (e.g. Park
and Sandberg 1991).

The basic universal approximation result says that any smooth function f(x)
can be approximated arbitrarily closely on a compact set using a two-layer NN with
appropriate weights. This result has been shown using sigmoid activations, RBF
activations, and others. Specifically, let f(x) : �n → �m be a smooth function.
Then, given a compact set S ∈ �n and a positive number εN , there exists a two-
layer NN (1.1.21) such that

f(x) =WTσ(V Tx) + ε (1.2.3)

with ‖ε‖ < εN for all x ∈ S, for some (sufficiently large) number L of hidden-
layer neurons. The value ε (generally a function of x) is called the NN function
approximation error, and it decreases as the hidden-layer size L increases. We say
that, on the compact set S, f(x) is ‘within εN of the NN functional range’. Some
recent results show how large L should be for a specified approximation accuracy
εN and compact set S; as S becomes larger, the required L generally increases
correspondingly. Approximation results have also been shown for smooth functions
with a finite number of discontinuities.

Note that, in this result, the activation functions are not needed on the NN
output layer (i.e. the output-layer activation functions are linear). It also happens
that the thresholds on the output layer wi0 are not needed, though the hidden-layer
thresholds v�0 are required.

Note further that the result says ‘there exists a NN that approximates f(x)’,
it does not show how to determine the required weights. The issue of finding the
weights such that a NN does indeed approximate a given function f(x) closely
enough is not an easy one. In the next section we shall show how to accomplish

1.2. PROPERTIES OF NEURAL NETWORKS 31

this using backpropagation tuning. If the function approximation is to be carried
out in the context of a dynamic closed-loop feedback control scheme, the issue is
thornier and is solved in subsequent chapters.

An illustration of NN function approximation is given in Example 1.3.3.

1.2.2.1 Approximation by Functional-Link Neural Networks

In Section 1.1.3 was discussed a special class of one-layer NN known as Functional-
Link NN (FLNN) written as

y(x) =WTφ(x), (1.2.4)

with W the NN output weights (including thresholds) and φ(·) a general function
from �n to �L. In subsequent chapters, these NN have a great advantage in that
they are easier to train than general two-layer NN since they are linear in the
tunable parameters (LIP). Unfortunately, for LIP NN, the functional approximation
property does not generally hold. However, a FLNN can still approximate functions
as long as the activation functions φ(·) are selected as a basis, which must satisfy
the following two requirements on a compact simply-connected set S of �n (Sadegh
1993):

1. A constant function on S can be expressed as (1.2.4) for a finite number L of
hidden-layer neurons.

2. The functional range of (1.2.4) is dense in the space of continuous functions
from S to �m for countable L.

If φ(·) provides a basis, then a smooth function f(x) from �n to �m can be
approximated on a compact set S of �n, by

f(x) =WTφ(x) + ε (1.2.5)

for some ideal weights and thresholds W and some number of hidden-layer neurons
L. In fact, for any choice of a positive number εN , one can find a feedforward NN
such that ‖ε‖ < εN for all x in S.

Barron (1993) has shown that for all LIP approximators there is a fundamental
lower bound, so that ε is bounded below by terms on the order of 1/L2/n. Thus, as
the number of NN inputs n increases, increasing L to improve the approximation
accuracy becomes less effective. This lower bound problem does not occur in the
multilayer nonlinear-in-the-parameters nets.

Random Vector Functional Link (RVFL) Nets. It is often difficult to select
the activation functions in LIP NN so that they provide a basis. This problem
may be addressed by selecting the matrix V in (1.1.21) randomly. It is shown in
(Igelnik and Pao 1995) that, for these random vector functional link (RVFL) nets,
the resulting function φ(x) = σ(V Tx) is a basis, so that the RVFL NN has the
universal approximation property.

In this approach, σ(·) can be the standard sigmoid functions. This approach
amounts to randomly selecting the activation function scaling parameters v�j and
shift parameters v�0 in σ(

∑
j v�jxj + v�0). This produces a family of L activation

functions with different scaling and shifts (Kim 1996).

32 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

On the Required Number of Hidden-Layer Neurons. The problem of deter-
mining the number of hidden-layer neurons for general fully-connected NN (1.1.21)
for good enough approximation has not been solved. However, for NN such as RBF
or CMAC there is sufficient structure to allow a solution to this problem. The key
hinges on selecting the activation functions close enough together in situations like
Fig. 1.1.9 and Fig. 1.1.10. One solution is as follows.

Let x ∈ �n and define uniform partitions in each component xj . Let δj be the

partition interval for xj and δ ≡
√∑n

j=1 δ
2
j . In illustration, in Fig. 1.1.10 where

n = 2, one has δ1 = δ2 = 0.5. The next result shows the maximum partition size δ
allowed for approximation with a desired accuracy ε (Commuri 1996).

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 33

Theorem 1.2.1 (Partition Interval for CMAC Approximation) :

Let a function f(x) : �n → �m be continuous with Lipschitz constant λ so that

‖f(x)− f(z)‖ ≤ λ‖x− z‖

for all x, z in some compact set S of �n. Construct a CMAC with triangular receptive
field functions φ(·) in the recall equation (1.2.4). Then there exist weights W such that

‖f(x)− y(x)‖ ≤ ε

for all x ∈ S if the CMAC is designed so that

δ ≤ ε

mλ
. (1.2.6)

�

In fact, CMAC designed with this partition interval can approximate on S any
continuous function smooth enough to satisfy the Lipschtiz condition for the given
λ. Now, given limits on the dimensions of S one can translate this upper bound
on δ to a lower bound on the number L of hidden-layer neurons. Note that as the
functions f(x) become less smooth, so that λ increases, the grid nodes become more
finely spaced so that the required number L of hidden-layer neurons increases.

In Sanner and Slotine (1991) is given a similar result for designing RBF which
selects the fineness of the grid partition based on a frequency-domain smoothness
measure for f(x) instead of a Lipschitz constant smoothness measure.

1.3 NEURAL NETWORK WEIGHT SELECTION AND TRAINING

We have studied the topology of NN, and shown that they possess some important
properties including classification and function approximation capabilities. For a
NN to function as desired, however, it is necessary to determine suitable weights
and thresholds. For years this was a problem, especially for multilayer nets, where
it was not know how to apportion resulting errors to different layers and force the
appropriate weights to change to reduce the errors— this was known as the error
‘credit assignment problem’. Today, these problems have for the most part been
solved and there are very good algorithms for NN weight selection and/or tuning.
References for this section include Haykin (1994), Kung (1993), Peretto (1992), and
Hush and Horne (1993).

Direct Computation Versus Training. There are two basic approaches to
determining NN weights: direct analytic computation and NN training by recursive
update techniques. In the Hopfield net, for instance, the weights can be directly
computed in terms of the desired outputs of the NN. In many other applications
of static NN, the weights are tuned by a recursive NN training procedure. In all of
this chapter we are talking about NN in open-loop applications. That is, not until
later chapters do we get into the issues of tuning the NN weights while the NN
is simultaneously performing in the capacity of a feedback controller to stabilize a
dynamical plant.

34 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Classification of Learning Schemes. Updating the weights by training the NN
is known as the learning feature of NN. Learning algorithms may be carried out in
continuous-time (via differential equations for the weights), or in discrete form (via
difference equations for the weights). There are many learning algorithms, and
they fall into three categories. In supervised learning, all the information needed
for training is available a priori, for instance, the inputs x and the desired outputs
y they should produce. This global information does not change, and is used to
compute errors that can be used for updating the weights. It is said that there
is a ‘teacher’ that knows the desired outcomes and tunes the weights accordingly.
On the other hand, in unsupervised learning (also called self-organizing behavior)
the desired NN output is not known, so there is no teacher with global informa-
tion. Instead, local data is examined and organized according to emergent collective
properties. Finally, in reinforcement learning, the weights associated with a partic-
ular neuron are not changed proportionally to the output error of that neuron, but
instead are changed in proportion to some global reinforcement signal.

Learning and Operational Phases. There is a distinction between the learning
phase, when the NN weights are selected (often through training), and the opera-
tional phase, when the weights are generally held constant and inputs are presented
to the NN as it performs its design function. During training the weights are often
selected using prescribed exemplar inputs and outputs for the NN. In the opera-
tional phase, it is often the case that the inputs do not belong to the exemplar
training set. However, in classification, for instance, the NN is able to provide the
output corresponding to the exemplar to which any given input is closest in some
specified norm (e.g. a noisy ‘A’ should be classified as an ‘A’). This ability to process
inputs not necessarily in the exemplar set and provide meaningful outputs is known
as the generalization property of NN, and is closely connected to the property of
associative memories that close inputs should provide close outputs.

Off-Line versus On-Line Learning. Finally, learning may be off-line, where
the preliminary learning phase occurs prior to applying the NN in its operational
capacity (during which the weights are held constant), or on-line, where the NN
functions in its intended operational capacity while simultaneously learning the
weights. Examples of off-line learning include open-loop applications such as classi-
fication and pattern recognition. On-line learning is a very difficult problem, and is
exemplified by closed-loop feedback control applications. There, the NN must keep
a dynamical plant stable while simultaneously learning and ensuring that its own
internal state (the weights) remains bounded. Various techniques from adaptive
control theory are needed to successfully confront this problem.

1.3.1 Direct Computation of the Weights

In the Hopfield net, the weights can be initialized by direct computation of outer
products between the desired outputs. The continuous-time Hopfield net has dy-
namics

τiẋi = −xi +
n∑

j=1

wijσj(xj) + ui (1.3.1)

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 35

or
ẋ = −Γx+ ΓWTσ(x) + Γu, (1.3.2)

with x ∈ �n.
Suppose it is desired to design a Hopfield net that can discriminate between P

prescribed bipolar pattern vectors X1, X2, . . . , XP , e.g., each having n entries of
either +1 or −1. Thus, the Hopfield net should perform as an associative memory
that discriminates among bipolar vectors, matching each input vector x(0) presented
as an initial condition with one of the P exemplar patterns Xp. It was shown
by Hopfield that weights solving this problem may be selected using the Hebbian
philosophy of learning as the outer products of the exemplar vectors

W =
1

n

P∑
p=1

Xp(Xp)T − 1

n
PI, (1.3.3)

where I is the identity matrix. The purpose of the term PI is to zero out the
diagonal. Note that this weight matrix W is symmetric. This formula effectively
encodes the exemplar patterns in the weights of the NN. Though there is no weight
tuning, technically this formula is an example of supervised learning, as the desired
outputs are used to compute the weights.

It can be shown that, with these weights, there are P equilibrium points in �n,
one at each of the exemplar vectors Xp (see Problems Section and, for instance,
Hush and Horne 1993, Haykin 1994). Once the weights have been computed (the
training phase), the net can be used in its operational phase, where an unknown
vector x(0) is presented as an initial condition, and the net state is computed as a
function of time using (1.3.2). The net will converge to the equilibrium point Xp

to which the input vector x(0) is closest. (If the symmetric hard limit activation
functions are used, the ‘closest’ vector is defined in terms of the Hamming distance.)
It is intriguing to note that the information is stored in the net using (1.3.3) (during
the ‘training’ phase), and recalled from the net using (1.3.2) (during the ‘operational’
phase). Thus, the NN functions as a biologically inspired memory device.

It can be shown that, with n the size of the Hopfield net, one can obtain perfect
recall if the number of stored exemplar patterns satisfies P ≤ n/(4 lnn). For ex-
ample, if there are 256 neurons in the net, then the maximum number of exemplar
patterns allowed is P = 12. However, if a small fraction of the bits in the recalled
pattern are allowed to be be in error, then the capacity increases to P ≤ 0.138n. If
P = 0.138n then approximately 1.6% of the bits in the recalled pattern are in error.
Other weight selection techniques allow improved storage capacity in the Hopfield
net, in fact, with proper computation of W the net capacity can approach P = n.

Example 1.3.1 (Hopfield Net Weight Selection) :
In Example 1.1.3 was considered the Hopfield net

ẋ = −1

2
x+

1

2
WTσ(x) +

1

2
u

with x ∈ �2 and symmetric sigmoid activations having decay constants g1 = g2 = 100.
Suppose the prescribed exemplar patterns are

X1 =

[
1
1

]
, X2 =

[
−1
−1

]
.

36 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Then, according to the ‘training’ equation (1.3.3), one has the weight matrix

W = WT =

[
0 1
1 0

]
.

Using these weights, state trajectory phase-plane plots for various initial condition
vectors x(0) were shown in Fig. 1.1.16. Indeed, in all cases, the state trajectories converged
either to the point (−1,−1) or to (1, 1). �

1.3.2 Training the One-Layer Neural Network— Gradient Descent

In this subsection will be considered the problem of tuning the weights in the one-
layer NN shown in Fig. 1.1.4 and described by the recall equation

y� = σ

⎛
⎝ n∑

j=1

v�jxj + v�0

⎞
⎠ ; � = 1, 2, . . . , L, (1.3.4)

or in matrix form

y = σ(V Tx), (1.3.5)

with x = [1 x1 x2 . . . xn]
T ∈ �n+1, y ∈ �L, and V the matrix of weights and

thresholds. A tuning algorithm for this ‘single-layer perceptron’ was first derived
by Rosenblatt in 1959; he used the symmetric hard limiter activation function.
Widrow and Hoff studied the case of linear σ(·) in 1960 (Haykin 1994).

There are many sorts of training algorithms for NN; the basic type we shall
discuss is error correction training. We shall introduce a matrix-calculus-based ap-
proach that is very convenient for formulating NN training algorithms. Since NN
training is usually performed using digital computers, a convenient form of weight
update equation is expressed in terms of discrete iterations, where the weights are
updated by discrete iteration steps. Such digital update algorithms are extremely
convenient for computer implementation and are considered in this subsection.
Continuous-time weight updating is discussed in Section 1.3.6.

1.3.2.1 Gradient Descent Tuning

In this discussion the iteration index is denoted as k. One should not think of k as
a time index as the iteration index is not necessarily the same as the time index.
Let v�j(k) be the NN weights at iteration k so that

y�(k) = σ

⎛
⎝ n∑

j=1

v�j(k)Xj + v�0(k)

⎞
⎠ ; � = 1, 2, . . . , L. (1.3.6)

In this equation, Xj are the components of a prescribed constant input vector X
that stays the same during training of the NN. A general class of weight update
algorithms is given by the recursive update equation

v�j(k + 1) = v�j(k)− η
∂E(k)

∂v�j(k)
(1.3.7)

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 37

where E(k) is a cost function that is selected depending on the application. In
this algorithm, the weights v�j are updated at each iteration number k in such a
manner that the prescribed cost function descreases. This is accomplished by going

‘downhill’ against the gradient ∂E(k)
∂v�j(k)

. The positive step size parameter η is taken

as less than 1 and is called the learning rate.
To see that the gradient descent algorithm decreases the cost function, note that

Δv�j(k) ≡ v�j(k + 1)− v�j(k) and, to first order

ΔE(k) ≡ E(k + 1)− E(k)

� ∑
�,j

∂E(k)
∂v�j(k)

Δv�j(k)

= −η∑�,j

(
∂E(k)
∂v�j(k)

)2
.

(1.3.8)

Techniques such as ‘conjugate gradient’ take into account second-order and higher
terms in this Taylor series expansion.

A specific gradient descent algorithm is derived by taking the cost function as
the least-squares NN output-error. Thus, let a prescribed pattern vector X be input
to the NN and the desired target output associated with X be Y (c.f. Example
1.2.1). Then, at iteration number k the �-th component of the output error is

e�(k) = Y� − y�(k), (1.3.9)

where Y� is the desired output and y�(k) is the actual output with input X. Define
the least-squares output-error cost as

E(k) =
1

2

L∑
�=1

e2�(k) =
1

2

L∑
�=1

(Y� − y�(k))
2
. (1.3.10)

Note that the componentsXj of the inputX and the desired NN output components
Y� are not functions of the iteration number k (see the subsequent discussion on
series versus batch updating).

To derive the gradient descent algorithm with least-squares output-error cost,
the gradients with respect to the weights and thresholds are computed using the
product rule and the chain rule as

∂E(k)

∂v�j(k)
= −e�(k)σ′

⎛
⎝ n∑

j=1

v�j(k)Xj + v�0(k)

⎞
⎠Xj (1.3.11)

∂E(k)

∂v�0(k)
= −e�(k)σ′

⎛
⎝ n∑

j=1

v�j(k)Xj + v�0(k)

⎞
⎠ , (1.3.12)

where equations (1.3.10) and (1.3.6) were used. The notation σ′(·) denotes the
derivative of the activation function evaluated at the argument. Therefore, the
gradient descent algorithm for the least-squares output-error case yields the weight
updates

v�j(k + 1) = v�j(k) + ηe�(k)σ
′

⎛
⎝ n∑

j=1

v�j(k)Xj + v�0(k)

⎞
⎠Xj (1.3.13)

38 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

and the threshold updates

v�0(k + 1) = v�0(k) + ηe�(k)σ
′

⎛
⎝ n∑

j=1

v�j(k)Xj + v�0(k)

⎞
⎠ . (1.3.14)

Historically, the derivative of the activation functions was not used to update
the weights prior to the 1970s (see next section). Widrow and Hoff took linear
activation functions so that the tuning algorithm becomes the linear mean-square
(LMS) algorithm

v�j(k + 1) = v�j(k) + ηe�(k)Xj (1.3.15)

v�0(k + 1) = v�0(k) + ηe�(k). (1.3.16)

This is the algorithm generally used for training the one-layer perceptron even
if nonlinear activation functions are used. It is called the ‘perceptron training
algorithm’ or the ‘delta rule’. Rosenblatt showed that, using the symmetric hard
limit activation functions, if the classes of input vectors are separable using linear
decision boundaries, then this algorithm converges to the correct weights (Haykin
1994).

Matrix Calculus Formulation. A matrix calculus approach can be used to
derive the delta rule by a streamlined method that is well suited for simplifying
notation. Thus, given the input-output pair (X,Y) that the NN should associate,
define the NN output error vector as

e(k) = Y − y(k) = Y − σ(V T (k)X) ∈ �L (1.3.17)

and the least-squares output-error cost as

E(k) =
1

2
eT (k)e(k) =

1

2
tr{e(k)eT (k)}. (1.3.18)

The trace of a square matrix tr{·} is defined as the sum of the diagonal elements.
One uses the expression involving the trace tr{eeT } due to the fact that derivatives
of the trace with respect to matrices are very convenient to evaluate. On the other
hand, evaluating gradients of eT e with respect to weight matrices involves the use
of third-order tensors, which must be managed using the Kronecker product (Lewis,
Abdallah, and Dawson 1993) or other machinations. A few matrix calculus identities
are very useful; they are given in Table 1.3.1.

In terms of matrices the gradient descent algorithm is

V (k + 1) = V (k)− η
∂E(k)

∂V (k)
. (1.3.19)

Write

E(k) =
1

2
tr
{(
Y − σ(V T (k)X)

) (
Y − σ(V T (k)X)

)T}
, (1.3.20)

where e(k) is the NN output error associated with input vector X using the weights
V (k) determined at iteration k. Assuming linear activation functions σ(·) one has

E(k) =
1

2
tr
{(
Y − V T (k)X

) (
Y − V T (k)X

)T}
. (1.3.21)

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 39

Table 1.3.1: Basic Matrix Calculus and Trace Identities

Let r, s be a scalars; A,B,C be matrices; and x, y, z be vectors, all dimensioned so
that the following formulae are compatible. Then:

tr{AB} = tr{BA},
when the matrices have compatible dimensions (1.3.25)

∂tr{BAC}
∂A

= BTCT (1.3.26)

∂tr{ABAT }
∂A

= 2AB (1.3.27)

∂s

∂AT
=

[
∂s

∂A

]T
(1.3.28)

∂AB

∂s
=

∂A

∂s
B +A

∂B

∂s
, product rule (1.3.29)

∂y

∂x
=

∂y

∂z
· ∂z
∂x

chain rule (1.3.30)

∂s

∂t
= tr

{
∂s

∂A
· ∂A

T

∂t

}
, chain rule (1.3.31)

Now, using the identities in Table 1.3.1 (especially (1.3.26)) one easily determines
(see Problems Section) that

∂E(k)

∂V (k)
= −XeT (k) (1.3.22)

so that the gradient descent tuning algorithm is written as

V (k + 1) = V (k) + ηXeT (k), (1.3.23)

which updates both the weights and the thresholds. Recall that the first column of
V T consists of the thresholds and the first entry of X is 1. Therefore, the threshold
vector bv in (1.1.7) is updated according to

bv(k + 1) = bv(k) + ηe(k). (1.3.24)

It is interesting to note that the weights are updated according to the outer product
of the prescribed pattern vector X and the NN output error e.

1.3.2.2 Series versus Batch Updating

We have just discussed NN weight training when one input-vector/desired-output-
vector pair (X,Y) is given for a NN. In practical situations there might be mul-
tiple input vectors prescribed by the user, each with an associated desired out-
put vector. Thus, suppose there are prescribed P desired input/output pairs
(X1, Y 1), (X2, Y 2), . . . , (XP , Y P) for the NN.

40 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

In such situations the NN must be trained to associate each input vector with
its prescribed output vector. There are many strategies for training the net in this
scenario; at the two extremes are series updating and batch upadating, also called
parallel or block updating. For this discussion we shall use matrix updates, defining
for p = 1, 2, . . . , P the quantities:

yp(k) = σ(V T (k)Xp) (1.3.32)

ep(k) = Y p − yp(k) = Y p − σ(V T (k)Xp) (1.3.33)

Ep(k) =
1

2
(ep(k))T ep(k) =

1

2
tr{ep(k)(ep(k))T }. (1.3.34)

In series updating the vectors (Xp, Y p) are sequentially presented to the NN.
At each presentation, one step of the training algorithm is performed so that

V (k + 1) = V (k) + ηXp(ep(k))T , p = 1, 2, . . . , P, (1.3.35)

which updates both the weights and thresholds (see (1.1.10)). An epoch is defined
as one complete run through all the P associated pairs. When one epoch has been
completed, the pair (X1, Y 1) is presented again and another run through all the P
pairs is performed. Hopefully, after many epochs, the output error will be small
enough.

In batch updating, all P pairs are presented to the NN (one at a time) and
a cumulative error is computed after all have been presented. At the end of this
procedure, the NN weights are updated once. The result (see Problems section) is

V (k + 1) = V (k) + η
P∑

p=1

Xp(ep(k))T . (1.3.36)

In batch updating, the iteration index k corresponds to the number of times the
set of P patterns is presented and the cumulative error computed. That is, k
corresponds to the epoch number.

There is a very convenient way to perform batch NN weight updating using
matrix manipulations. Thus, define the matrices

X ≡ [X1 X2 . . . XP], Y ≡ [Y 1 Y 2 . . . Y P], (1.3.37)

which contain all P of the prescribed input/ouput vectors, and the batch error
matrix

e(k) ≡ [e1(k) e2(k) . . . eP (k)]. (1.3.38)

It is now very easy to see that the NN recall can be computed using the equation

y(k) = σ(V T (k)X) (1.3.39)

where the batch output matrix is y(k) ≡ [y1(k) y2(k) . . . yP (k)]. Therefore, the
batch weight update can be written as

V (k + 1) = V (k) + ηXeT (k). (1.3.40)

This method involves the concept of presenting all P of the prescribed inputs Xp

to the NN simultaneously.

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 41

Figure 1.3.1: Pattern vectors to be classfied into 4 groups: +, ◦,×, ∗. Also shown
are the initial decision boundaries.

It has been mentioned that the update iteration index k is not necessarily the
same as the time index. In fact, one now realizes that the relation between k and the
time is dependent on how one choses to process multiple prescribed input-output
pairs.

Example 1.3.2 (NN Training— a Simple Classification Example) :
It is desired to design a one-layer NN with two inputs and two outputs that classifies

the following 10 points in �2 into the four groups shown:
Group 1:
(0.1, 1.2), (0.7, 1.8), (0.8, 1.6)
Group 2:
(0.8, 0.6), (1.0, 0.8)
Group 3
(0.3, 0.5), (0.0, 0.2), (−0.3, 0.8)
Group 4
(−0.5,−1.5), (−1.5,−1.3)

These points are shown in Fig. 1.3.1, where the groups are denoted respectively by
+, ◦,×, ∗. The hard limit activation function will be used as it is suitable for classifi-
cation problems.

To cast this in terms tractable for NN design, encode the four groups respectively by
10, 00, 11, 01. Then, define the input pattern matrix as

p = [X1 X2 . . . X10]

=

[
0.1 0.7 0.8 0.8 1.0 0.3 0.0 −0.3 −0.5 −1.5
1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 −1.5 −1.3

]
and the target vector as

t = [Y 1 Y 2 . . . Y 10]

42 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

=

[
1 1 1 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 1 1

]
.

Then, the three points associated with target vector [1 0]T will be assigned to the same
group, and so on.

The design will be carried out using the MATLAB NN Toolbox. The one-layer NN
weights v and biases b are initialized using

[v,b]= initp(p,t),

which assigns random values between -1 and 1 to each element. The result is

v =

[
−0.5621 0.3577
−0.9059 0.3586

]
, b =

[
0.8694
−0.2330

]
.

Each output y� of the NN yields one decision line in the �2 plane, as shown in Example
1.1.1. The two lines given by the random initial weights are drawn using the commands

plotpv(p,t) % draws the points corresponding to the 10 input vectors
plotpc(v,b) % superimposes the decision lines corresponding to weight v

and bias b

The initial decision lines are shown in Fig. 1.3.1.
Now, the NN was trained using the batch updating algorithm (1.3.40). The MATLAB

commands are

tp= [1 3]
[v,b]= trainp(v,b,p,t,tp) % batch weight/bias update algorithm

where tp is a training parameter vector whose first entry indicates how often the output
error should be displayed, and whose second entry indicates the number of epochs training
should continue. Recall that an epoch is one complete presentation of all 10 patterns to
the NN (in this case all 10 are presented simultaneously using the batch update techniques
discussed in connection with (1.3.40).

After 3 epochs, the weights and bias are

v =

[
−0.5621 6.4577
−1.2059 −1.6414

]
, b =

[
0.8694
1.7670

]
.

The corresponding decision lines are shown in Fig. 1.3.2a.
Now the vector tp was reset to [1 20] and the NN training was continued. After 3

further epochs (e.g. 6 epochs in all) the error was small enough and training ceased. The
final weights and biases are

v =

[
−3.8621 4.5577
−1.2059 −1.6414

]
, b =

[
−0.1306
1.7670

]

and the final decision boundaries are shown in Fig. 1.3.2b. The plot of least-squares output
error (1.3.34) vs. epoch is shown in Fig. 1.3.3. �

1.3.3 Training the Multilayer Neural Network— Backpropagation Tun-
ing

A one-layer NN can neither approximate general functions nor perform the EXCLUSIVE-
OR operation, which is basic to digital logic implementations. When it was demon-
strated that the two-layer NN has both these capabilities, and that a three-layer
NN is sufficient for the most general pattern classification applications, there was

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 43

Figure 1.3.2: NN decision boundaries. (a) After three epochs of training. (b) After
six epochs of training.

44 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.3.3: Least-squares NN output error versus epoch

a sudden intense interest in multilayer NN. Unfortunately, for years it was not
understood how to train a multilayer net.

The problem was to assign each weight part of the credit for NN output errors
in order to determine how to tune that weight. This so-called ‘credit assignment’
problem was finally solved by several researchers (Werbos (1974, 1989); Rumel-
hart, Hinton, and Williams (1986)), who derived the Backpropagation Training
Algorithm. The solution is surprisingly straightforward in retrospect, hinging on a
simple application of calculus using the chain rule.

In Section 1.3.2 it was shown how to train a one-layer NN. There, the delta rule
was derived ignoring the nonlinearity of the activation function. In this section we
show how to derive the full NN weight update rule for a multilayer NN including
all activation function nonlinearities. For this application, the activation functions
selected must be differentiable. Though the backpropagation algorithm enjoys great
success, one must remember that it is still a gradient-based technique, so that the
usual caveats associated with step sizes, local minima and so on must be kept in
mind when using it (see Section 1.3.4).

1.3.3.1 Background

We shall derive the backpropagation algorithm for the two-layer NN in Fig. 1.1.6
described by

yi = σ

⎛
⎝ L∑

�=1

wi�σ

⎛
⎝ n∑

j=1

v�jxj + v�0

⎞
⎠+ wi0

⎞
⎠ ; i = 1, 2, . . . ,m. (1.3.41)

The derivation is greatly simplified by defining some intermediate quantities.

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 45

In Fig. 1.1.6 we call the layer of weights v�j the first layer and the layer of weights
wi� the second layer. The input to layer one is xj . Define the input to layer two as

z� = σ

⎛
⎝ n∑

j=1

v�jxj + v�0

⎞
⎠ ; � = 1, 2, . . . , L. (1.3.42)

The thresholds can more easily be dealt with by defining x0 ≡ 1, z0 ≡ 1. Then one
can say

yi = σ

(
L∑

�=0

wi�z�

)
(1.3.43)

z� = σ

⎛
⎝ n∑

j=0

v�jxj

⎞
⎠ . (1.3.44)

It is convenient at this point to begin thinking in terms of moving backward through
the NN, hence the ordering of this and subsequent lists of equations. Define the
outputs of layers two and one respectively as

u2i =
L∑

�=0

wi�z� (1.3.45)

u1� =

n∑
j=0

v�jxj . (1.3.46)

Then we can write

yi = σ(u2i) (1.3.47)

z� = σ(u1�). (1.3.48)

In deriving the backpropagation algorithm we shall have occasion to differentiate
the activation functions. Note therefore that

∂yi
∂wi�

= σ′(u2i)z� (1.3.49)

∂yi
∂z�

= σ′(u2i)wi� (1.3.50)

∂z�
∂v�j

= σ′(u1�)xj (1.3.51)

∂z�
∂xj

= σ′(u1�)v�j , (1.3.52)

where σ′(·) is the derivative of the activation function.
Part of the power of the backpropagation algorithm soon to be derived is the fact

that the evaluation of the activation function derivative is very easy for common
σ(·). Specifically, selecting the sigmoid activation function

σ(s) =
1

1 + e−s
(1.3.53)

46 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

one obtains (see Problems section)

σ′(s) = σ(s) (1− σ(s)) (1.3.54)

which is very easy to compute using simple multipliers.

1.3.3.2 Derivation of the Backpropagation Algorithm

Backpropagation weight tuning is a gradient descent algorithm, so the weights in
layers two and one respectively are updated according to

wi� = wi� − η
∂E

∂wi�
(1.3.55)

v�j = v�j − η
∂E

∂v�j
, (1.3.56)

with E a prescribed cost function. In this discussion we shall conserve simplicity of
notation by dispensing with the iteration index k (c.f. Section 1.3.2), interpreting
these equalities as replacements. The learning rates η in the two layers can of course
be selected as different.

Let there be prescribed an input vector X and an associated desired output
vector Y for the network. Define the least-squares NN output error as

E =
1

2
eT e =

1

2

m∑
i=1

e2i (1.3.57)

ei = Yi − yi, (1.3.58)

where yi is evaluated using (1.3.41) with the components of the input pattern Xj

as the NN inputs xj .
The required gradients of the cost E with respect to the weights are now very

easily determined using the chain rule. Specifically, for the second-layer weights

∂E

∂wi�
=
∂E

∂u2i

∂u2i
∂wi�

=

[
∂E

∂ei

∂ei
∂yi

∂yi
∂u2i

]
∂u2i
∂wi�

(1.3.59)

and using the above equalities one obtains

∂E

∂u2i
= −σ′(u2i)ei (1.3.60)

∂E

∂wi�
= −z�

[
σ′(u2i)ei

]
. (1.3.61)

Similarly, for the first-layer weights

∂E

∂v�j
=
∂E

∂u1�

∂u1�
∂v�j

=

[
m∑
i=1

∂E

∂u2i

∂u2i
∂z�

∂z�
∂u1�

]
∂u1�
∂v�j

(1.3.62)

and using the above equalities one obtains

∂E

∂u1�
= −σ′(u1�)

m∑
i=1

wi�

[
σ′(u2i)ei

]
(1.3.63)

∂E

∂v�j
= −Xj

[
σ′(u1�)

m∑
i=1

wi�

[
σ′(u2i)ei

]]
. (1.3.64)

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 47

These equations can be considerably simplified by introducing the notion of a
backward recursion through the network. Thus, define the backpropagated error for
layers 2 and 1 respectively as

δ2i ≡ − ∂E

∂u2i
= σ′(u2i)ei (1.3.65)

δ1� ≡ − ∂E

∂u1�
= σ′(u1�)

m∑
i=1

wi�δ
2
i . (1.3.66)

Assuming the sigmoid activation functions are used, the backpropagated errors can
be computed as

δ2i = yi(1− yi)ei (1.3.67)

δ1� = z�(1− z�)
m∑
i=1

wi�δ
2
i . (1.3.68)

Combining these equations one obtains the backpropagation algorithm given in
Table 1.3.2. There, the algorithm is given in terms of a forward recursion through
the NN to compute the output, then a backward recursion to determine the back-
propagated errors, and finally a step to determine the weight updates. Such two-pass
algorithms are standard in digital signal processing and optimal estimation theory.
In fact, one should particularly examine optimal smoothing algorithms contained,
for instance, in Lewis (1986). The backpropagation algorithm may be employed
using series or batch processing of multiple input/output patterns (previous sub-
section), and may be modified to use adaptive step size η or momentum training
(next subsection).

Note that the threshold updates are given by

wi0 = wi0 + ηδ2i (1.3.76)

v�0 = v�0 + ηδ1� . (1.3.77)

In many applications the NN has no activation functions in the output layer (e.g.
the activation function is linear in (1.3.70)). Then one must use simply δ2i = ei in
the equations for backpropagation.

In terms of signal vectors and weight matrices one may write the backpropaga-
tion algorithm as follows (see Problems section). The forward recursion becomes

z = σ(V TX) (1.3.78)

y = σ(WT z), (1.3.79)

the backward recursion is

e = Y − y (1.3.80)

δ2 = diag{y} (I − diag{y}) e (1.3.81)

δ1 = diag{z} (I − diag{z})Wδ2, (1.3.82)

where, with y an m-vector, diag{y} is an m×m diagonal matrix having the entries
y1, y2, . . . , ym on the diagonal. The weight and threshold updates are

W = W + ηz(δ2)T (1.3.83)

V = V + ηX(δ1)T . (1.3.84)

48 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Table 1.3.2: Backpropagation Algorithm Using Sigmoid Activation Functions: Two-
Layer Net

The following iterative procedure should be repeated until the NN output error
has become sufficiently small. Series or batch processing of multiple input/output
patterns (X,Y) may be used. Adaptive learning rate η and momentum terms may
be added.

Forward Recursion to Compute NN Output:
Present input pattern X to the NN and compute the NN output using:

z� = σ

⎛
⎝ n∑

j=0

v�jXj

⎞
⎠ ; � = 1, 2, . . . , L (1.3.69)

yi = σ

(
L∑

�=0

wi�z�

)
; i = 1, 2, . . . ,m (1.3.70)

with X0 = 1 and z0 = 1, where Y is the desired output pattern.

Backward Recursion for Backpropagated Errors:

ei = Yi − yi ; i = 1, 2, . . . ,m (1.3.71)

δ2i = yi(1− yi)ei ; i = 1, 2, . . . ,m (1.3.72)

δ1� = z�(1− z�)
m∑
i=1

wi�δ
2
i ; � = 1, 2, . . . , L (1.3.73)

Computation of the NN Weight and Threshold Updates:

wi� = wi� + ηz�δ
2
i ; i = 1, 2, . . . ,m; � = 0, 1, . . . , L (1.3.74)

v�j = v�j + ηXjδ
1
� ; � = 1, 2, . . . , L; j = 0, 1, . . . , n (1.3.75)

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 49

Figure 1.3.4: The adjoint (backpropagation) neural network.

At this point one notices quite an interesting occurrence. The forward recursion
of the backpropagation algorithm is based, of course, on the NN weight matrices,
however, the backward recursion is based on the transposes of the weight matrices.
Moreover, it is accomplished by working backward through the transposed NN. In
system theory the dual, backward system is known as the adjoint system. This
system enjoys some very special properties in relation to the original system, many
associated with determining solutions to optimality and control problems (Lewis
and Syrmos 1995). Such notions have not yet been fully explored in the context of
NN.

An intriguing concept is that of the adjoint NN for training. This ‘backpropaga-
tion network’ was discussed by Narendra and Parthasarathy (1990) and is depicted
in Fig. 1.3.4. The adjoint training net is based on the transposes of the NN weight
matrices and contains multipliers. In this respect, it is very similar to various op-
timal control and adaptive filtering and control schemes wherein the computation
and/or tuning of the feedback control gains is carried out in outer loops containing
multipliers. The multiplier is fundamental to higher-level and intelligent control.
In the 1940’s Norbert Wiener introduced his new field of Cybernetics. It was he
who said that developments on two fronts were required prior to further advances in
system theory: increased computing power and the theory of the multiplier (Wiener
1948).

By now several improvements have been made on the backpropagation algo-
rithm given here. A major increase in speed is offered by the Levenberg-Marquardt

50 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.3.5: Function y = f(x) to be approximated by two-layer NN and its
samples for training.

algorithm, which combines gradient descent and the Gauss-Newton algorithm. The
next section discusses some other techniques for improving backpropagation.

Example 1.3.3 (NN Function Approximation) :
It is known that a two-layer NN with sigmoid activation functions can approximate

arbitrarily accurately any smooth function (see Section 1.2.2.). In this example it is desired
to design a two-layer NN to approximate the function shown in Fig. 1.3.5, so that the NN
has one input x and one output y. The hidden-layer activation functions will be the
hyperbolic tangent and the output-layer activation functions will be linear.

The NN weights will be determined using backpropagation training with batch up-
dates. First, exemplar input pattern and target output vectors must be selected. Select
therefore the input vectors X to correspond to the abscissa x of the function graph and
the target outputs corresponding to the ordinate or function values y = f(x). A sampling
interval of 0.1 is selected, so that X = p is a row vector of 21 values equally spaced at
0.1 on the interval [−1, 1]. Then, the corresponding function values Y = t are determined,
shown by ◦ on the graph in Fig. 1.3.5. The MATLAB commands to set up the input and
target output vectors are

p= -1 : 0.1 : 1 ;
t= [-0.960 -0.577 -0.073 0.377 0.641 0.660 0.461 0.134 -0.201 -0.434
-0.500 -0.393 -0.165 0.099 0.307 0.396 0.345 0.182 -0.031 -0.219 -0.320] ;

Five hidden-layer neurons were selected (see comments at the end of this example).
The NN weights were initialized using

[v,bv,w,bw]= initff(p,5,’tansig’,1,’purelin’);

with v, bv the first-layer weight matrix and bias vector, and w, bw the second-layer weight
matrix and bias vector. Now, the output of the NN using these random weights was
determined and plotted using

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 51

y0= simuff(p,v,bv,’tansig’,w,bw,’purelin’);
plot(p,y0,’-’,p,t,’o’)
set(gca,’xlabel’,text(0,0,’x (input vector p)’))
set(gca,’ylabel’,text(0,0,’Samples of f(x) and actual NN output’))
title(’Samples of function and initial NN output’)

The result is shown in Fig. 1.3.6a.

The NN was now trained using the backpropagation algorithm (1.3.80)-(1.3.84) with
batch updating (see (1.3.40)). The MATLAB command is

tp= [10 50 .005 .01];
[v,bv,w,bw]= trainbp(v,bv,’tansig’,w,bw,’purelin’,p,t,tp);

The entries of the training parameter vector tp direct that the least-squares output error
be computed every 10 epochs, that training be carried out for a maximum of 50 epochs,
that training be stopped when the least-squares output error goes below 0.005, and that
the learning rate η is 0.01. After training, the NN output was plotted and is displayed in
Fig. 1.3.6b.

This procedure was repeated, plotting the NN output after 200 epochs and after 873
epochs, when the least-squares output error fell below 0.005. The results are shown in
Fig. 1.3.6. The final weights after training was complete were

v =

⎡
⎢⎢⎢⎣

3.6204
3.8180
3.5548
3.0169
3.6398

⎤
⎥⎥⎥⎦ , bv =

⎡
⎢⎢⎢⎣

−2.7110
1.2214
−0.7778
2.1751
2.9979

⎤
⎥⎥⎥⎦ ,

w =
[−0.6334 −1.2985 0.8719 0.5937 0.9906

]
, bw = [−1.0295].

To obtain the plots shown in Fig. 1.3.6, including the final plot shown in Fig. 1.3.6d, a
refined input vector p was used corresponding to samples at a uniform spacing of 0.01
on the interval [−1, 1]. The NN output was simply obtained by using MATLAB function
simuff() with the new p vector. This shows clearly that, after training, the NN will
interpolate between values used in the original p that was used for training, determining
correct outputs for samples not in the training data. This important property is known as
the generalization property, and is closely connected to the associative memory property
that close inputs should produce close NN outputs.

The least-squares output error is plotted as a function of training epoch in Fig. 1.3.7.

This example was initially performed using three hidden-layer neurons. It was found
that even after several thousand epochs of training, the NN was unable to approximate
the function. Therefore, the number of hidden-layer neurons was increased to five and
the procedure was repeated. Using MATLAB, it took about 15 minutes to run this entire
example and make all plots. �

1.3.4 Improvements on Gradient Descent

Several improvements can be made to correct deficiencies in gradient descent NN
training algorithms. These can be applied at each layer of a multilayer NN when
using backpropagation tuning. The two basic issues are that gradient-based mini-
mization algorithms provide only a local minimum, and that the verification (1.3.8)
that gradient descent decreases the cost function is based on an approximation.

52 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.3.6: Samples of f(x) and actual NN output. (a) Using initial random
weights. (b) After training for 50 epochs.

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 53

Figure 1.3.6: Samples of f(x) and actual NN output (cont’d). (c) After training for
200 epochs. (d) After training for 873 epochs.

54 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.3.7: Least-squares NN output error as a function of training epoch.

Improvements in performance are given by selecting better initial conditions, us-
ing learning with ‘momentum’, and using an adaptive learning rate η. References
for this section include Goodwin and Sin (1984), Haykin (1994), Kung (1993), and
Peretto (1992). All these refinements are available in the MATLAB NN Toolbox
(1995).

Better Initial Conditions. The NN weights and thresholds are typically ini-
tialized to small random (positive and negative) values. A typical error surface
graph in 1-D is given in Fig. 1.3.8, which shows a local minimum and a global min-
imum. If the weight is initialized as shown in Case 1, there is a possibility that the
gradient descent algorithm might find the local minimum, rolling downhill to the
shallow bowl. Several authors have determined better techniques to initialize the
weights than by random selection, particularly for the multilayer NN. Among these
are Nguyen and Widrow, whose techniques are used, for instance, in MATLAB.
Such improved initialization techniques can also significantly speed up convergence
of the weights to their final values.

Learning with Momentum. An improved version of gradient descent is given
by the Momentum Gradient Algorithm

V (k + 1) = βV (k) + η(1− β)XeT (k), (1.3.85)

with positive momentum parameter β < 1 and positive learning rate η < 1; β is
generally selected near 1 (e.g. 0.95). This corresponds in discrete-time dynamical
system terms to moving the system pole from z = 1 to the interior of the unit circle,
and adds stability in a manner similar to friction effects in mechanical systems.

Momentum adds a memory effect so that the NN in effect responds not only to
the local gradient, but also to recent trends in the error surface. As shown by the

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 55

Figure 1.3.8: Typical 1-D NN error surface e = Y − σ(V TX).

next example, without momentum the NN can get stuck in a local minimum; adding
momentum can help the NN ‘ride through’ local minima. For instance, referring
to Fig. 1.3.8, using momentum as in Case 2 will cause the NN to slide through the
local minimum, coming to rest at the global minimum. In the MATLAB Neural
Network Toolbox are some examples showing that learning with momentum can
significantly speed up and improve the performance of backpropagation.

Adaptive Learning Rate. If the learning rate η is too large, then the NN can
overshoot the minimum cost value, jumping back and forth over the minimum and
failing to converge, as shown in Fig. 1.3.8 Case 3. Moreover, it can be shown that
the learning rate in a NN layer must decrease as the number of neurons in that
layer increases. Aside from correcting these problems, adapting the learning rate
can significantly speed up the convergence of the weights. Such notions are standard
in adaptive control theory (Goodwin and Sin 1984).

The gradient descent algorithm with adaptive learning rate is given by

V (k + 1) = V (k) + η(k)xeT (k). (1.3.86)

Two techniques for selecting the adaptive learning rate η(k) are now given.
The maximum learning rate in any layer of weights of a NN is limited by the

number of input neurons to that layer (Jagannathan and Lewis 1995). A learning
rate that takes this into account is given by

η(k) = ν
1

‖z‖2 , (1.3.87)

where 0 < ν < 1 and z is the input vector to the layer. As the number of input
neurons to the layer increases, the norm gets larger (note that z ∈ �L+1, with L
the number of neurons in the input to the layer). This is nothing but the standard
‘projection method’ in adaptive control (Goodwin and Sin 1984).

56 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Another technique to adapt η is given as follows. If the learning rate is too
large, the NN can overshoot the minimum and never converge (see Fig. 1.3.8 Case
3). Various standard techniques from optimization theory can be used to correct
this problem; they generally rely on reducing the learning rate as a minimum is
approached. The following technique increases the learning rate if the cost E(k)
(see (1.3.18)) is decreasing. If the cost increases during any iteration, however, the
old weights are retained and the learning step size is repeatedly reduced until the
cost decreases on that iteration.

1 V (k + 1) = V (k) + η(k)xeT (k)
IfE(k + 1) < E(k) ; retain V (k + 1) and increase learning step size

η(k + 1) = (1 + α)η(k)
Go to 2

IfE(k + 1) > E(k) ; reject V (k + 1) and decrease learning step size
η(k) = (1− α)η(k)
Go to 1

2 k = k + 1
Go to next iteration

(1.3.88)
The positive parameter α is generally selected as about 0.05. Various modifications
of this technique are possible.

‘Safe’ Learning Rate. A ‘safe learning rate’ can be derived as follows. Let z be
the input vector to the layer of weights being tuned, and the number of neurons in
the input be L so that z ∈ �L+1. If the activation function is bounded by 1 (see
Fig. 1.1.3), then ‖z‖2 < L + 1, and the adaptive learning rate (1.3.87) is always
bounded below by

η(k) = ν
1

L+ 1
. (1.3.89)

That is, taking ν = 1 in (1.3.89) provides a safe maximum allowed learning rate in
a NN layer with L input neurons; a safe learning rate η for that layer is less than
1/(L+ 1).

1.3.5 Hebbian Tuning

In the 1940’s D. O. Hebb proposed a tuning algorithm based on classical condi-
tioning experiments in psychology and by the associative memory paradigm which
these observations suggest (Peretto 1992). In this subsection we shall dispense with
the iteration index k, interpreting the weight update equations as replacements.
Consider the one-layer NN in Fig. 1.1.4 with recall equation

y� = σ

⎛
⎝ n∑

j=1

v�jxj + v�0

⎞
⎠ ; � = 1, 2, . . . , L. (1.3.90)

Suppose first that the NN is to discriminate among P patterns X1, X2, . . . , XP ,
each in �n and having components Xp

i ; i = 1, 2, . . . , n. In this appplication, the net

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 57

is square so that L = n. A pattern Xp is stable if its stabilization parameters are
all positive: ∑

j �=�

v�jX
p
�X

p
j > 0 ; � = 1, 2, . . . , n. (1.3.91)

The stabilization parameters are a measure of how well imprinted the pattern Xp

is with respect to the �-th neuron in a given NN. Define therefore the cost as

E = −
P∑

p=1

n∑
j,�=1

v�jX
p
�X

p
j (1.3.92)

which, if minimized, gives large stabilization parameters.
Using this cost in the gradient algorithm (1.3.7) yields the Hebbian tuning rule

v�j = v�j + η

P∑
p=1

Xp
�X

p
j . (1.3.93)

In matrix terms this may be written as

V = V + η
P∑

p=1

XP (XP)T , (1.3.94)

whence it is seen that the update for the weight matrix is given in terms of the
outer product of the desired pattern vectors. This is a recursive technique in the
same spirit as Hopfield’s direct computation formula (1.3.3).

Various extensions have been made to this Hebbian or outer product training
technique in the case of nonsquare NN and multilayer NN. For instance, if L �= n
in a one-layer net, and the NN is to associate P patterns Xp, each in �n, with P
target outputs Y p, each in �L, a modified Hebbian tuning rule is given by

V = V + η
P∑

p=1

Xp(Y p)T , (1.3.95)

or by

V = V + η
P∑

p=1

Xp(ep)T , (1.3.96)

where the output error for pattern p is given by ep = Y p − yp, with yp the actual
NN output given when the NN input is Xp.

The two-layer NN of Fig. 1.1.6 has the recall equation

z = σ(V Tx) (1.3.97)

y = σ(WT z), (1.3.98)

with z ∈ �L the hidden-layer output vector. Suppose the NN is to associate the
input pattern X to the output vector Y . Define the output error as e = Y −y, with

58 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

y the output when x = X. Then, a tuning rule based on the Hebbian philosophy is
given by

W = W + ηzeT (1.3.99)

V = V + ηXzT . (1.3.100)

Unfortunately, this multilayer Hebbian training algorithm has not been shown to
converge, and has often been documented as leading to problems.

1.3.6 Continuous-Time Tuning

We have seen how to update the NN weights by training using discrete iterations
in an iteration index k. This is very convenient for NN training using a digital
computer, where iterations are a natural operation. This book is concerned with
NN feedback control of dynamical systems, often called the plant, of the form

ẋ = f(x, u) (1.3.101)

in continuous time, or
x(K + 1) = f(x(K), u(K)) (1.3.102)

in discrete time, where f(·) is a generally nonlinear function. Therefore, it is impor-
tant to understand how the NN weights can be adapted in both discrete-iteration
and continuous-time formulations. In fact, the combination of the adaptive NN and
the plant being controlled forms a composite dynamical system whose properties
can only be understood by analyzing the NN and the plant as a single entity in a
feedback control configuration.

The discrete iteration weight update index k is not necessarily the same as the
discrete time index K, as we have seen in the subsection on batch versus series
processing of multiple patterns (end of Section 1.3.2). In continuous-time tuning,
on the other hand, the weight tuning is expressed as a differential equation in terms
of the time variable t. All the NN training algorithms derived for the case of discrete
iterations can also be expressed in continuous-time terms. Obviously, the equations
given in Sections 1.1.1 and 1.1.2 for the static NN are the same however training is
accomplished. It is important to note specifically that the properties in Section 1.2
hold no matter how training is performed. In Section 1.1.4 we covered dynamical
NN for both the discrete-time and continuous-time cases. In this section we shall
show continuous-time formulations of various training algorithms.

1.3.6.1 Gradient Descent Tuning in Continuous Time

Most of the discussion in Section 1.3.2 still holds in continuous-time. Now, the
gradient descent algorithm for the one-layer NN becomes

V̇ = −η ∂E
∂V

(1.3.103)

with E(t) the prescribed cost. Given the input-output pair (X,Y) to be associated
by the NN, define the output error

e(t) = Y − y(t) = Y − σ(V T (t)X) ∈ �L (1.3.104)

1.3. NEURAL NETWORK WEIGHT SELECTION AND TRAINING 59

and select the least-squares output-error cost

E(t) =
1

2
eT (t)e(t) =

1

2
tr{e(t)eT (t)}. (1.3.105)

Both these quantities are now evaluated continuously as functions of time.
Evaluating the partial derivative and ignoring the derivative of σ(·) (or, equiva-

lently, assuming linear activation functions) yields the continuous-time perceptron
training rule

V̇ = ηXeT . (1.3.106)

In the case of multiple input/output patterns to be associated, batch updating
techniques should be used in continuous time.

Various modifications to this training algorithm are possible, exactly as in Sec-
tion 1.3.4. Momentum can be added in the form

V̇ = −βV + ηXeT , (1.3.107)

which, in system theory terms, moves the pole from s = 0 into the left-half plane
and adds stability. Now, β should be selected as a small positive number. Various
schemes are available for adapting the learning rate η (see Åström and Wittenmark
1989).

1.3.6.2 Backpropagation Tuning in Continuous Time

The discussion in Section 1.3.3 still holds in continuous time. It follows that a
matrix formulation of the backpropagation algorithm is as given in Table 1.3.3. If
the output layer of the NN has no activation functions (e.g. the activation functions
in (1.3.109) are linear), then one should use simply δ2 = e.

It is interesting to note that in continuous-time one loses the notion of a forward
iteration through the NN followed by a backward iteration through the backpropa-
gation network. However, a backprop network may still be drawn, though the NN
and the backprop network now interact continuously through time and all signals
are evaluated in a continuous fashion.

1.3.6.3 Continuous-Time Hebbian Tuning

The discussion in Section 1.3.5 still holds here. A continuous version of the Hebbian
tuning rule given by

V̇ = η
P∑

p=1

XP (XP)T (1.3.115)

trains a one-layer square (e.g. L = n) NN to discriminate among P patterns
X1, X2, . . . , XP , each in �n.

Various extensions of this outer-product rule are possible. If L �= n in a one-layer
net, and the NN is to associate P patterns Xp, each in �n, with P target outputs
Y p, each in �L, a modified Hebbian tuning rule is given by

V̇ = η

P∑
p=1

Xp(Y p)T , (1.3.116)

60 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Table 1.3.3: Continuous-Time Backpropagation Algorithm Using Sigmoid Activa-
tion Functions

Compute NN Output:

z = σ(V TX) (1.3.108)

y = σ(WT z), (1.3.109)

Compute Filtered Errors:

e = Y − y (1.3.110)

δ2 = diag{y} (I − diag{y}) e (1.3.111)

δ1 = diag{z} (I − diag{z})Wδ2, (1.3.112)

where, with y an m-vector, diag{y} is an m×m diagonal matrix having the entries
y1, y2, . . . , ym on the diagonal.

Weight Updates:

Ẇ = ηz(δ2)T (1.3.113)

V̇ = ηX(δ1)T . (1.3.114)

or by

V̇ = η

P∑
p=1

Xp(ep)T , (1.3.117)

where the output error for pattern p is given by ep(t) = Y p − yp(t), with yp(t) =
σ(V T (t)Xp) the actual NN output given when the NN input is Xp.

The two-layer NN of Fig. 1.1.6 has the recall equations

z = σ(V Tx) (1.3.118)

y = σ(WT z), (1.3.119)

with z ∈ �L the hidden-layer output vector. Suppose the NN is to associate the
input pattern X to the output vector Y . Define the output error as e = Y − y,
with y the output when x = X. Then, a continuous-time tuning rule based on the
Hebbian philosophy is given by

Ẇ = ηzeT (1.3.120)

1.4. REFERENCES 61

V̇ = ηXzT . (1.3.121)

This multilayer Hebbian training algorithm has not been shown to converge.

1.4 REFERENCES

Abdallah, C.T., “Engineering Applications of Chaos,” lecture and personal com-
munication, Nov. 1995.

Albus, J.S., “A new approach to manipulator control: the Cerebellar Model Artic-
ulation Controller (CMAC),” Trans. ASME J. Dynam. Sys., Meas., Control, vol.
97, no. 3, pp. 220-227, Sept. 1975.

Åström, K.J., and B. Wittenmark, Adaptive Control, Addison-Wesley, Reading,
MA, 1989.

Barron, A.R., “Universal approximation bounds for superpositions of a sigmoidal
function,” IEEE Trans. Info. Theory, vol. 39, no. 3, pp. 930-945, May 1993.

Becker, K.-H., and M. Dörfler, Dynamical Systems and Fractals, Cambridge Uni-
versity Press, Cambridge, 1988.

Commuri, S., A Framework for Intelligent Control of Nonlinear Systems, Ph.D.
Dissertation, Dept. Elect. Eng., Univ. Texas at Arlington, Arlington, Texas 76019,
May 1996.

Cybenko, G., “Approximation by superpositions of a sigmoidal function,” Mathe-
matics of Control. Signals and Systems, vol. 2, no. 4, pp. 303-314, 1989.

Goodwin, C.G., and K.S. Sin, Adaptive Filtering, Prediction, and Control,
Prentice-Hall, New Jersey, 1984.

Haykin, S., Neural Networks, IEEE Press and Macmillan, New York, 1994.

Hornik, K., M. Stinchombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, pp. 359-366, 1989.

Hush, D.R., and B.G. Horne, “Progress in supervised neural networks,” IEEE
Signal Processing Magazine, pp. 8-39, Jan. 1993.

Igelnik, B., and Y.-H. Pao, “Stochastic choice of basis functions in adaptive func-
tion approximation and the functional-link net,” IEEE Trans. Neural Networks,
vol. 6, no. 6, pp. 1320-1329, Nov. 1995.

Jagannathan, S., and F.L. Lewis, “Multilayer discrete-time neural network con-
troller for a class of nonlinear systems”, Proc. IEEE Int. Symp. Intelligent Control,
Monterey, CA, Aug. 1995.

Kim, Y.H., Intelligent Closed-Loop Control Using Dynamic Recurrent Neural Net-
work and Real-Time Adaptive Critic, Ph.D. Dissertation Proposal, Dept. Electrical
Engineering, The University of Texas at Arlington, Arlington, Texas 76019, Sept.
1996.

62 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Kosko, B., Neural Networks and Fuzzy Systems, Prentice Hall, New Jersey, 1992.

Kung, S.Y., Digital Neural Networks, Prentice-Hall, New Jersey, 1993.

Levine, D.S., Introduction to Neural and Cognitive Modeling, Lawrence Erlbaum
Pub., Hillsdale, New Jersey, 1991.

Lewis, F.L., Optimal Estimation, Wiley, New York, 1986.

Lewis, F.L., and V.L. Syrmos, Optimal Control, second edition, Wiley, New York,
1995.

Lewis, F.L., C.T. Abdallah, and D.M. Dawson, Control of Robot Manipulators,
Macmillan, New York, 1993.

Lippmann, R.P., “An introduction to computing with neural nets,” IEEE ASSP
Magazine, pp. 4-22, April 1987.

MATLAB version 4.2, July 1994, The Mathworks, Inc., 24 Prime Park Way, Nat-
ick, MA 01760, USA.

MATLAB Neural Network Toolbox, version 2.0, 1995, The Mathworks, Inc., 24
Prime Park Way, Natick, MA 01760, USA.

Narendra, K.S., “Adaptive control using neural networks,” in Neural Networks for
Control, pp. 115-142. ed. W.T. Miller, R.S. Sutton, P.J. Werbos, Cambridge: MIT
Press, 1991.

Narendra, K.S., “Adaptive Control of dynamical systems using neural networks,”
in Handbook of Intelligent Control, pp. 141-183, ed. D.A. White and D.A. Sofge,
New York: Van Nostrand Reinhold, 1992.

Narendra, K.S., and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27,
Mar. 1990.

Narendra, K.S., and K. Parthasarathy, “Gradient methods for the optimization
of dynamical systems containing neural networks,” IEEE Trans. Neural Networks,
vol. 2, no. 2, pp. 252-262, Mar. 1991.

Park, J., and I.W. Sandberg, “Universal approximation using radial-basis-function
networks,” Neural Comp., vol. 3, pp. 246-257, 1991.

Peretto, P., An Introduction to the Modeling of Neural Networks, Cambridge Uni-
versity Press, 1992.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning internal representa-
tions by error propagation,” in Parallel Distributed Processing, ed. D.E. Rumelhart
and J.L. McClelland, Cambridge, MA: MIT Press, 1986.

Sadegh, N., “A perceptron network for functional identification and control of
nonlinear systems,” IEEE Trans. Neural Networks, vol. 4, no. 6, pp. 982-988, Nov.
1993.

1.5. PROBLEMS 63

Sanner, R.M., and J.-J.E. Slotine, “Stable adaptive control and recursive identifi-
cation using radial gaussian networks,” Proc. IEEE Conf. Decision and Control,
Brighton, 1991.

Simpson, P.K., “Foundations of neural networks,” in Artificial Neural Networks,
Paradigms, Applications, and Hardware Implementation, pp. 3-24, ed. E. Sanchez-
Sinencio, IEEE Press, 1992.

Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the
Behavior Sciences, Ph.D. Thesis, Committee on Appl. Math. Harvard Univ., 1974.

Werbos, P.J., “Back propagation: past and future,” Proc. 1988 Int. Conf. Neural
Nets, vol. 1, pp. I343-I353, 1989.

Wiener, N., Cybernetics: Or Control and Communication in the Animal and the
Machine, MIT Press, Cambridge, 1948.

1.5 PROBLEMS

Section 1.1

Problem 1.1-1 : Logical Operations Using NN. A neuron with linear acti-
vation function is described by y = v1x1 + v2x2 + v0. Select the weights to design
one-layer NN that implement: (a.) the AND operation, (b.) the OR operation, and
(c.) the COMPLEMENT.

Problem 1.1-2 : Discrete-Time Hopfield Net. Write the discrete-time version
of (1.1.29) and draw the corresponding block diagram to Fig. 1.1.14

Problem 1.1-3 : Hopfield Net Lyapunov Function. Derive the expression
(1.1.32) for the energy function derivative.

Problem 1.3-4 : Hopfield Net MATLAB Simulation. Perform a MATLAB
simulation of the Hopfield net in Example 1.1.3. Make phase-plane plots for rep-
resentative initial conditions x(0) of the vector ξ(t). Compare to the phase-plane
plots of x(t) given in the example.

Problem 1.3-5 : Hopfield Net Lyapunov Function. Verify the expression for
the Lyapunov energy function given in Example 1.1.3.

Problem 1.1-6 : Discrete-Time Dynamical Neural Net. Write the discrete-
time form of the general dynamics (1.1.34). Draw the corresponding figure.

Problem 1.1-7 : Neural Net with Internal Neuron Dynamics. A dynamical
NN is given in Fig. 1.5.1. Write down the dynamical equations and show that this
is a special case of the general dynamical NN in Fig. 1.1.18.

Problem 1.1-8 : Neural Net with Outer Feedback Loops. A dynamical NN
is given in Fig. 1.5.2. Write down the dynamical equations and show that this is a
special case of the general dynamical NN in Fig. 1.1.18.

64 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Figure 1.5.1: A dynamical neural network with internal neuron dynamics.

Figure 1.5.2: A dynamical neural network with outer feedback loops.

1.5. PROBLEMS 65

Problem 1.1-9 : Cohen-Grossberg Dynamical Net. The equations of the
Cohen-Grossberg net are given by

ẋi = fi(xi)

⎡
⎣gi(xi)− n∑

j=1

wijσ(xj)

⎤
⎦ , (1.5.1)

with fi(·), gi(·) nonlinear functions specified by the designer. Draw a figure of the
NN. Is this a special case of the general dynamics (1.1.34)?

Problem 1.1-10 : Chaotic Behavior in Discrete-Time Neural Networks.
In Example 1.1.4 some chaotic-type behavior was displayed for a simple discrete-
time NN. Perform some experimentation with this system, making phase plane
plots for various modifications of the plant and NN weight matrices. Try different
activation functions. Try plots using N= 2000, N= 4000, etc. Is this in fact chaotic
behavior? Extended study of this topic could easily lead to a Ph.D. thesis.

Section 1.3

Problem 1.3-1 : Hopfield Net Equilibria. Consider (1.3.2) with σ(·) the
symmetric hard limiter. Show that, using the weights (1.3.3), the equilibrium points
of the Hopfield net are given by the exemplar pattern vectors Xp. Note that at
steady-state ẋ = 0.

Problem 1.3-2 : Hopfield Net Equilibria. Repeat the previous problem using
an energy or Lyapunov function approach. Take the Hopfield net with symmet-
ric sigmoid activation functions in Examples 1.1.3 and 1.3.1. Show that with the
selected weight matrix, the minima of L = −xTWx in the region [−1, 1] × [−1, 1]
occur at x = [−1 − 1]T , x = [1 1]T .

Problem 1.3-3 : EXCLUSIVE-OR. A two-layer NN that implements the X-
OR operation is given in Fig. 1.1.7. Use the MATLAB NN Toolbox to train a
NN to implement this operation and compare your answer to the figure. Begin
with random weights and train using backpropagation. The input vectors x are
[0 0]T , [0 1]T , [1 0]T , [1 1]T , and the associated desired outputs y are given by the
definition of X-OR.

Problem 1.3-4 : Second-Order NN Tuning Methods. The arguments con-
nected with (1.3.8) were designed to demonstrate the convergence of gradient-based
NN tuning algorithms. However, the second equality in that derivation is only an
approximate one. Write a Taylor series expansion for E(k + 1) about E(k) that
includes second-order terms. Propose a modified tuning algorithm that takes into
account the Hessian matrix of E(k) with respect to v�j(k). When you have com-
pleted this problem, examine the Newton’s method and conjugate-gradient tuning
algorithms as given, for instance, in Haykin (1994), Kung (1993) and Goodwin and
Sin (1984).

Problem 1.3-5 : Matrix-Calculus-Based Derivation of Gradient Descent.
Perform in detail all steps in the derivation of (1.3.23) using matrix techniques.

Problem 1.3-6 : Batch NN Weight Updating. Let P desired input/output
pairs (X1, Y 1), (X2, Y 2), . . . , (XP , Y P) be prescribed for the NN. In batch updat-
ing, all P pairs are presented to the NN and a cumulative error is computed. At

66 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

the end of this procedure, the NN weights are updated once using (1.3.36). Derive
this update law by defining the cumulative error for one epoch as

E(k) =

P∑
p=1

Ep(k) (1.5.2)

with Ep(k) given in (1.3.34). Use matrix calculus for the derivation.

Problem 1.3-7 : NN Output Surface as a Function of Training Epoch. In
Example 1.1.1 it was shown how to plot the output surface, (i.e. the output plotted
as a function of the inputs) for a neural network with two inputs x1, x2 and one
output y. Example 1.3.2 provided a classification example. For that example, plot
the output surfaces for y1 and y2 for several stages in the training. For instance,
plot the output surfaces after 0, 3, and 6 epochs.

Problem 1.3-8 : Programming the Perceptron Algorithm. Though the
MATLAB Neural Network Toolbox (1995) has functions that perform the algo-
rithms required for training the one-layer NN, it is instructive to write one’s own
program. This is very simple using matrix formulations. Thus, write a MATLAB M
file to implement the perceptron training algorithm (1.3.23). Using your program,
duplicate Example 1.3.2.

Problem 1.3-9 : Activation Function Derivatives. The activation function
derivatives are required to implement backpropagation training. (a) Derive the
sigmoid derivative (1.3.54). (b) Derive the tanh derivative. (c) Derive the RBF
derivative.

Problem 1.3-10 : Backpropagation Using Tanh and RBF Activation
Functions. Derive the backpropagation algorithm using: (a) Tanh activation func-
tions. (b) RBF activation functions.

Problem 1.3-11 : Matrix Formulation of the Backpropagation Algorithm.
Verify the matrix formulation of backpropagation in Equations (1.3.80)ff.

Problem 1.3-12 : Backpropagation Derivation Using Matrix Calculus.
Use a matrix calculus approach to derive the backpropagation algorithm as was
done for gradient descent (c.f. (1.3.23).

Problem 1.3-13 : Programming the Backpropagation Algorithm. Though
the MATLAB Neural Network Toolbox (1995) has functions that perform the algo-
rithms required for training the multilayer NN, it is instructive to write one’s own
program. This is straightforward using matrix formulations. Thus, write a MAT-
LAB M file to implement the backpropagation training algorithm given in Table
1.3.2. Using your program, duplicate Example 1.3.3.

Problem 1.3-14 : Modified Backpropagation Algorithm. A modified back-
propagation algorithm is obtained by changing the order of the operations in Table
1.3.2. Thus, suppose the backpropagated error and updated weights are computed
in the interleaved fashion

δ2i = yi(1− yi)ei ; i = 1, 2, . . . ,m (1.5.3)

wi� = wi� + ηz�δ
2
i ; i = 1, 2, . . . ,m; � = 0, 1, . . . , L (1.5.4)

1.5. PROBLEMS 67

δ1� = z�(1− z�)

m∑
i=1

wi�δ
2
i . ; � = 1, 2, . . . , L (1.5.5)

v�j = v�j + ηXjδ
1
� ; � = 1, 2, . . . , L; j = 0, 1, . . . , n (1.5.6)

where the new layer-2 weights wi� are used to compute the layer-1 backpropagated
error δ1� . Justify this algorithm (or argue against it) using partial derivative/chain
rule arguments. Would you expect this algorithm to perform better or worse than
standard backpropagation?

Problem 1.3-15 : Programming the Modified Backpropagation Algo-
rithm. Write a MATLAB M file to implement the modified backpropagation train-
ing algorithm given in the previous problem . Using your program, perform Example
1.3.3. Does the modified algorithm converge faster than standard backpropagation?

Problem 1.3-16 : Backpropagation for N-layer Neural Network. Stream-
line the notation in Table 1.3.2, for instance by defining an N -layer NN with weights
wq

ij , or weight matrices W q, in layer q. Derive the backpropagation algorithm for
the N -layer NN, which should be simply a recursion (c.f. Do loop) in the index p.

Problem 1.3-17 : Backpropagation and Optimal Smoothing. The for-
ward/backward nature of the backpropagation algorithm as given in Table 1.3.2 is
very similar to optimal smoothing algorithms. Examine a book on Optimal Esti-
mation (e.g. Lewis 1986) and pursue this further. In particular, can you derive
a streamlined formulation of the backpropagation algorithm that is similar to the
Rauch-Tung-Striebel smoother?

Problem 1.3-18 : Continuous-Time Backpropagation Algorithm. Derive
the continuous-time backpropagation algorithm given in Table 1.3.3.

68 CHAPTER 1. BACKGROUND ON NEURAL NETWORKS

Chapter 2

Background on Dynamic
Systems

In this chapter we provide a brief background on dynamical systems, mainly cov-
ering the topics that will be important in a discussion of neural network (NN) ap-
plications in closed-loop control of dynamical systems. It is common for computer
science engineers working in NN system and control applications to have little un-
derstanding of feedback control and dynamical systems. Many of the phenomena
they observe are due not to properties of NN but to properties of feedback con-
trol systems. NN applications in dynamical systems is a complex area with several
facets, an incomplete understanding of any one of which leads to incorrect conclu-
sions being drawn, with inaccurate attributions of causes– many are convinced that
the often exceptional regulatory and behavioral phenomena observed in NN control
systems are completely due to the NN, while in fact most are due to the rather
remarkable nature of feedback control in itself.

Included in this chapter are continuous-time and discrete-time systems, com-
puter simulation, norms, stability and passivity definitions, stability analysis tech-
niques including Lyapunov approaches and the Bellman-Gronwall Lemma, and feed-
back linearization. More information is available, for instance, in Khalil (1992),
Vidyasagar (1993), Lewis, Abdallah, and Dawson (1993), Slotine and Li (1991),
Ioannou and Sun (1996), and Qu and Dawson (1996).

2.1 DYNAMICAL SYSTEMS

Many systems in nature, including biological systems, are dynamical in the sense
that they are acted upon by external inputs, have internal memory, and behave in
certain ways that can be captured by the notion of the development of activities
through time. The notion of system was formalized in the early 1900’s by Alfred
North Whitehead (1953) and L. von Bertalanffy (1968). A system is viewed here as
an entity distinct from its environment, whose interactions with the enviroment can
be characterized through input and output signals. An intuitive feel for dynamic
systems is provided by Luenberger (1979), which has many excellent examples.

69

70 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

2.1.1 Continuous-Time Systems

A very general class of continuous-time systems can be described by the nonlinear
ordinary differential equation in state-space form

ẋ = F (x, u)
y = H(x, u),

(2.1.1)

where x(t) ∈ �n is the internal state vector, u(t) ∈ �m is the control input, and
y(t) ∈ �p is the measured system output. Overdot represents differentiation with
respect to time t. The first equation, the state equation, captures the dynamical
portion of the system and has memory inherent in the n integrators. It may be
derived, for instance, from the physics of the system by using Lagrangian or Hamil-
tonian dynamics. The second equation, called the output or measurement equation,
represents how we chose to measure the system variables; it depends on the type
and availability of sensors. This state equation can describe a variety of dynamical
behaviors, including mechanical and electrical systems, earth atmosphere dynam-
ics, planetary orbital dynamics, aircraft systems, population growth dynamics, and
chaotic behavior (see Problems section).

2.1.1.1 Brunovsky Canonical Form

Letting x = [x1 x2 . . . xn]
T , a special form of nonlinear continuous-time dynamics

is given by the class of systems in Brunovsky canonical form

ẋ1 = x2
ẋ2 = x3

...
ẋn = f(x) + g(x)u

(2.1.2)

y = h(x). (2.1.3)

As seen from Fig. 2.1.1 this is a chain or cascade of integrators 1
s ; each integrator

stores information and requires an initial condition. The internal state can be viewed
as the initial information required to specify a unique solution of the differential
equation. The measured output y(t) can be a general function of the states as
shown, or can have more specialized forms such as

y = h(x1). (2.1.4)

The Brunovsky canonical form may equivalently be written as

ẋ = Ax+ bf(x) + bg(x)u (2.1.5)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 · · · 1 0
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦ . (2.1.6)

2.1. DYNAMICAL SYSTEMS 71

Figure 2.1.1: Continuous-time single-input Brunovsky form.

A more general Brunovsky canonical form occurs where the input is an m-vector

u(t) = [u1 u2 . . . um]T and

ẋ1 = x2

ẋ2 = x3

...
ẋn1 = f1(x) + g1(x)u1

,

ẋn1+1 = xn1+2

ẋn1+2 = xn1+3

...
ẋn1+n2 = f2(x) + g2(x)u2

,

· · ·

ẋn1+n2+...+nm−1+1 = xn1+n2+...+nm−1+2

ẋn1+n2+...+nm−1+2 = xn1+n2+...+nm−1+3

...
ẋn1+n2+...+nm = fm(x) + gm(x)um.

. (2.1.7)

Themulti-input Brunovsky form is a system withm-parallel chains of integrators
of lengths n1, n2, ..., each driven by one of the control inputs. Note that n =
n1 + n2 + . . .+ nm.

Many systems occur naturally in Brunovsky form (see subsequent examples).
Moreover, it is often possible to transform general systems of the form (2.1.1) to
Brunovsky form. This is accomplished by finding a suitable state-space transfor-
mation followed by an input transformation (Slotine and Li 1991, Isidori 1989). To
be transformable to Brunovsky form, the system must satisfy two properties: a
controllability condition (Section 2.4) and a condition known as involutivity. Gen-

72 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

erally, the controllability condition holds for practically occurring systems. The
involutivity condition is more difficult to satisfy but holds for many useful systems.

2.1.1.2 Linear Systems

A special and important class of dynamical systems are the linear time-invariant
(LTI) systems

ẋ = Ax+Bu (2.1.8)

y = Cx, (2.1.9)

with A,B,C constant matrices of general form (e.g., not restricted to (2.1.6)). An
LTI system is denoted (A,B,C). Given an initial time t0 and initial state x(t0) the
solution to the LTI system can be explicitly written down as

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ) dτ. (2.1.10)

The next examples show the relevance of these notions and demonstrate that
general nonlinear systems are very straightforward to simulate on a computer. The
first step to writing a nonlinear ordinary equation in state-space form is the appro-
priate definition of the states.

Example 2.1.1 (Newton’s Law) :
Newton’s law F = ma can be written as

ẋ1 = x2

ẋ2 = u

where the states are defined as x1 = position, x2 = velocity, and the control input is
u = F/m, with m the mass and F (t) the input force. �

Example 2.1.2 (Simulation of Dynamical Systems— Van der Pol Oscillator) :
One of the most popular examples of nonlinear systems is the van der Pol oscillator

which has dynamics
ÿ + α(y2 − 1)ẏ + y = u.

a. Brunovsky Canonical Form
The van der Pol dynamics can be written in Brunovsky form by defining the states as

x1 = position, x2 = velocity. Then,

ẋ1 = x2

ẋ2 = α(1− x2
1)x2 − x1 + u.

b. Computer Simulation
The nonlinear state-space equations are very easy to simulate on a digital computer.

First, it is necessary to have a numerical integration routine such as Runge-Kutta. Tech-
niques such as Euler’s method, Adams-Bashforth and so on are usually not sufficiently
accurate. Integration routines can easily be written in FORTRAN or C. MATLAB (1994)
provides the Runge-Kutta routines ODE23 (third-order) and ODE45 (fourth order); the
former usually suffices. These routines have adaptive step sizes.

To use the MATLAB numerical integration routines, the system dynamics must be
written into an M file. The state-space description makes this very direct; in fact, ODE23
requires the dynamics in state-space form (2.1.1). For the van der Pol oscillator the
required M file is:

2.1. DYNAMICAL SYSTEMS 73

% MATLAB .M file for van der Pol oscillator

function xdot= vdpol(t,x)

alpha= 0.8; u= 0;

xdot= [x(2) ; alpha*(1-x(1)^2)*x(2) - x(1) + u];

where it is assumed that u(t) = 0. Now, the sequence of commands required to invoke
ODE23 and obtain time history plots, for instance over a time horizon of 50 sec, is:

t0=0 ; tf= 50; % time horizon

x0= [0.1 ; 0.1]’; % initial conditions

[t,x]= ode23(’vdpol’,t0,tf,x0);

% Time History Plot:

plot(t,x)

title(’Van der Pol Oscillator Time Histories’)

xlabel(’time (sec)’)

ylabel(’states x1(t) and x2(t)’)

% Phase-Plane Plot:

plot(x(:,1),x(:,2))

title(’Van der Pol Oscillator Phase Plane Plot’)

xlabel(’x(1)’)

ylabel(’x(2)’)

The time history plot is shown in Fig. 2.1.2a. The phase-plane plot of x2 versus x1 is
shown in Fig. 2.1.2b. Note the convergence of the trajectory to a stable limit cycle. �

2.1.2 Discrete-Time Systems

If the time index is an integer k instead of a real number t the system is said to be
of discrete-time. A very general class of discrete-time systems can be described by
the nonlinear ordinary difference equation in discrete state-space form

x(k + 1) = F (x(k), u(k))
y(k) = H(x(k), u(k)),

(2.1.11)

where x(k) ∈ �n is the internal state vector, u(k) ∈ �m is the control input, and
y(k) ∈ �p is the measured system output.

These equations may either be derived directly from an analysis of the dynamical
process being studied, or they may be sampled or discretized versions of continuous-
time dynamics in the form (2.1.1). Today, controllers are generally implemented in
digital form so that a discrete-time description of the controller is needed. This may
be determined by design based on the discrete-time system dynamics. Sampling of
linear systems is well understood since the work of Ragazzini, Franklin, and others
in the 1950s, with many design techniques available. However, sampling of nonlinear
systems is not an easy topic. In fact, the exact discretization of nonlinear continuous
dynamics is based on the Lie derivatives and leads to an infinite series representation
(see e.g. Kalkkuhl and Hunt 1996). Various approximate discretization techniques
use truncated versions of the exact series.

74 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.1.2: Van der Pol Oscillator time history plots. (a) x1(t) and x2(t) versus
t. (b) Phase-plane plot x2 versus x1 showing limit cycle.

2.1. DYNAMICAL SYSTEMS 75

Figure 2.1.3: Discrete-time single-input Brunovsky form.

2.1.2.1 Brunovsky Canonical Form

Letting x(k) = [x1(k) x2(k) . . . xn(k)]
T , a special form of nonlinear dynamics is

given by the class of systems in discrete Brunovsky canonical form

x1(k + 1) = x2(k)
x2(k + 1) = x3(k)

...
xn(k + 1) = f(x(k)) + g(x(k))u(k)

(2.1.12)

y(k) = h(x(k)). (2.1.13)

As seen from Fig. 2.1.3 this is a chain or cascade of unit delay elements z−1, i.e. a
shift register. Each delay element stores information and requires an initial condi-
tion. The measured output y(k) can be a general function of the states as shown,
or can have more specialized forms such as

y(k) = h(x1(k)). (2.1.14)

The discrete Brunovsky canonical form may equivalently be written as

x(k + 1) = Ax(k) + bf(x(k)) + bg(x(k))u(k) (2.1.15)

where A, b are given by (2.1.6). A discrete-time form of the more general version
(2.1.7) may also be written (see Problems section). It is a system with m-parallel
chains of delay elements of lengths n1, n2, ... (e.g. m shift registers), each driven by
one of the control inputs.

Many practical systems occur in the continuous-time Brunovsky form. However,
if a system of the continuous Brunovsky form (2.1.2) is sampled, the result is not
generally a system in discrete Brunovsky form (2.1.12), but a discrete system in
the general form (2.1.11). Under certain conditions, general discrete-time systems
of the form (2.1.11) can be converted to discrete Brunovsky canonical form systems
(see e.g. Kalkkuhl and Hunt 1996).

76 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

2.1.2.2 Linear Systems

A special and important class of dynamical systems are the discrete-time linear
time-invariant (LTI) systems

x(k + 1) = Ax(k) +Bu(k) (2.1.16)

y(k) = Cx(k), (2.1.17)

with A,B,C constant matrices of general form (e.g., not restricted to (2.1.6)). An
LTI system is denoted (A,B,C). Given an initial state x(0) the solution to the LTI
system can be explicitly written as

x(k) = Akx(0) +

k−1∑
j=0

Ak−j−1Bu(j). (2.1.18)

The next example shows the relevance of these notions and demonstrates that
general discrete-time nonlinear systems are even easier to simulate on a computer
than continuous-time systems, as no integration routine is needed.

Example 2.1.3 (Discrete-Time System— Savings Account) :
Discrete-time descriptions can be derived from continuous-time dynamics using sam-

pling or system discretization theory. However, many phenomena are naturally modeled
using discrete-time dynamics (Luenberger 1979), including population growth/decline, epi-
demic spread, economic systems, and so on. The dynamics of a savings account using
compound interest are given by the first-order system

x(k + 1) = (1 + i)x(k) + u(k),

where i is the interest rate over each period, k is the period iteration number, and u(k) is
the amount of the deposit at the beginning of the k-th period. The state x(k) represents
the account balance at the beginning of period k.

a. Analysis
According to (2.1.18), if equal annual deposits are made of u(k) = d, the account

balance is

x(k) = (1 + i)kx(0) +

k−1∑
j=0

(1 + i)k−j−1d,

with x(0) the initial amount in the account. Using the standard series summation formula

k−1∑
j=0

aj =
1− ak

1− a

one derives

x(k) = (1 + i)kx(0) + d(1 + i)k−1

k−1∑
j=0

1

(1 + i)j

x(k) = (1 + i)kx(0) + d(1 + i)k−1

[
1− 1

(1+i)k

1− 1
(1+i)

]

x(k) = (1 + i)kx(0) + d

[
(1 + i)k − 1

i

]
,

2.2. SOME MATHEMATICAL BACKGROUND 77

the standard formula for complex interest with constant annuities of d.

b. Simulation
It is very easy to simulate a discrete-time system. No numerical integration driver

program is needed, in contrast to the continuous-time case. Instead, a simple ‘do loop’ can
be used. A complete MATLAB program that simulates the compound interest dynamics
is given by:

% Discrete-Time Simulation program for Compound Interest Dynamics

d= 100; i= .08; % 8% interest rate

x(1)= 1000;

for k= 1:100;

x(k+1)= (1+i)*x(k) + d;

end

k=[1:101];

plot(k,x)

�

2.2 SOME MATHEMATICAL BACKGROUND

2.2.1 Vector and Matrix Norms

We assume the reader is familiar with norms, both vector and induced matrix norms
(Lewis, Abdallah, and Dawson 1993). We denote any suitable vector norm by ‖ · ‖.
When it is required to be specific we denote the p-norm by ‖ · ‖p. Recall that for
any vector x ∈ �n

‖x‖1 =

n∑
i=1

| xi | (2.2.1)

‖x‖p =

(
n∑

i=1

| xi |p
)1/p

(2.2.2)

‖x‖∞ =
max
i | xi | . (2.2.3)

The 2-norm is the standard Euclidean norm.
Given a matrix A, its induced p-norm is denoted ‖A‖p. Letting A = [aij], recall

that the induced 1-norm is the maximum absolute column sum

‖A‖1 =
max
j
∑
i

| aij | (2.2.4)

and the induced ∞-norm is the maximum absolute row sum

‖A‖∞ =
max
i
∑
j

| aij | . (2.2.5)

The induced matrix p-norm satisfies the inequality, for any vector x,

‖Ax‖p ≤ ‖A‖p‖x‖p, (2.2.6)

78 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

and for any two matrices A,B one also has

‖AB‖p ≤ ‖A‖p‖B‖p. (2.2.7)

Given a matrix A = [aij], the Frobenius norm is defined as the root of the sum
of the squares of all elements:

‖A‖2F ≡
∑

a2ij = tr(ATA), (2.2.8)

with tr(·) the matrix trace (i.e., sum of diagonal elements). Though the Frobenius
norm is not an induced norm, it is compatible with the vector 2-norm so that

‖Ax‖2 ≤ ‖A‖F ‖x‖2. (2.2.9)

Singular Value Decomposition. The matrix norm ‖A‖2 induced by the vector
2-norm is the maximum singular value of A. For a general m × n matrix A, one
may write the singular value decomposition (SVD)

A = UΣV T (2.2.10)

where U is m×m, V is n× n, and both are orthogonal, that is

UTU = UUT = Im

V TV = V V T = In (2.2.11)

with In the n×n identity matrix. Them×n singular value matrix has the structure

Σ = diag{σ1, σ2, . . . , σr, 0, . . . , 0} (2.2.12)

where r is the rank of A and σi are the singular values of A. It is traditional to
arrange the singular values in nonincreasing order, so that the largest singular value
is σmax(A) = σ1. If A has full rank, then r is equal to either m or n, whichever is
smaller. Then the minimum singular value is σmin(A) = σr (otherwise the minimum
singular value is equal to zero).

The SVD generalizes the notion of eigenvalues to general nonsquare matrices.
The singular values of A are the (positive) square roots of the nonzero eigenvalues
of AAT , or equivalently of ATA (see Problems section).

Quadratic Forms and Definiteness. Given an n × n matrix Q the quadratic
form xTQx, with x an n-vector, will be important for stability analysis in this book.
The quadratic form can in some cases have certain properties that are independent
of the vector x selected. Four important definitions are:

Q is positive definite, denoted Q > 0, if xTQx > 0, ∀x �= 0

Q is positive semidefinite, denoted Q ≥ 0, if xTQx ≥ 0, ∀x
Q is negative definite, denoted Q < 0, if xTQx < 0, ∀x �= 0

Q is negative semidefinite, denoted Q ≤ 0, if xTQx ≤ 0, ∀x. (2.2.13)

2.2. SOME MATHEMATICAL BACKGROUND 79

If Q is symmetric, then it is positive definite if, and only if, all its eigenvalues are
positive, and positive semidefinite if, and only if, all eigenvalues are nonnegative. If
Q is not symmetric, tests are more complicated and involve determining the minors
of the matrix. Tests for negative definiteness and semidefiniteness may be found by
noting that Q is negative (semi)definite if, and only if, −Q is positive (semi)definite.

If Q is a symmetric matrix, its singular values are the magnitudes of its eigen-
values. If Q is a symmetric positive semidefinite matrix, its singular values and its
eigenvalues are the same. If Q is positive semidefinite then, for any vector x one
has the useful inequality

σmin(Q)‖x‖2 ≤ xTQx ≤ σmax(Q)‖x‖2. (2.2.14)

2.2.2 Continuity and Function Norms

Given a subset S ⊂ �n, a function f(x) : S → �m is continuous on S if for every
x0 ∈ S and for every ε > 0 there exists a δ(ε, x0) > 0 such that ‖x− x0‖ < δ(ε, x0)
implies that ‖f(x)− f(x0)‖ < ε.

If δ is independent of x0 then the function is said to be uniformly continuous.
Uniform continuity is often difficult to test. However, if f(x) is continuous and its
derivative f ′(x) is bounded, then it is uniformly continuous.

A function f(x) : �n → �m is differentiable if its derivative f ′(x) exists. It is
continuously differentiable if its derivative exists and is continuous. f(x) is said to
be locally Lipschitz if, for all x, z ∈ S ⊂ �n one has

‖f(x)− f(z)‖ ≤ L‖x− z‖ (2.2.15)

for some finite constant L(S). L is known as a Lipschitz constant. If S = �n the
function is globally Lipschitz.

If f(x) is globally Lipschitz then it is uniformly continuous. If it is continuously
differentiable it is locally Lipschitz. If it is differentiable it is continuous. For
example, f(x) = x2 is continuously differentiable. It is locally but not globally
Lipschitz. It is continuous but not uniformly continuous.

Given a function f(t) : [0,∞) → �n, according to Barbalat’s Lemma, if∫ ∞

0

f(t)dt ≤ ∞, (2.2.16)

and f(t) is uniformly continuous, then f(t) → 0 as t→ ∞.

Function Norms. Given a continuous-time function f(t) : [0,∞) → �n, its Lp

(function) norm is given in terms of the vector norm ‖f(t)‖p at each value of t by

‖f(·)‖p =

(∫ ∞

0

‖f(t)‖ppdt
)1/p

, (2.2.17)

and if p = ∞
‖f(·)‖∞ = supt ‖f(t)‖∞. (2.2.18)

If the Lp norm is finite we say f(t) ∈ Lp. Note that a function is in L∞ if, and
only if, it is bounded.

80 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

In the discrete-time case, let Z+ = {0, 1, 2, . . .} be the set of natural numbers
and f(k) : Z+ → �n. The lp (function) norm is given in terms of the vector norm
‖f(k)‖p at each value of k by

‖f(·)‖p =

(∞∑
k=0

‖f(k)‖pp
)1/p

, (2.2.19)

and if p = ∞
‖f(·)‖∞ = supk ‖f(k)‖∞. (2.2.20)

If the lp norm is finite we say f(k) ∈ lp. Note that a function is in l∞ if, and only
if, it is bounded.

2.3 PROPERTIES OF DYNAMICAL SYSTEMS

In this section are discussed some properties of dynamical systems, including sta-
bility, passivity, observability, and controllability. On the one hand, if the original
open-loop system is controllable and observable, then feedback control systems can
be designed to afford desired performance. If the system has certain passivity prop-
erties, this design procedure is simplified and additional closed-loop properties such
as robustness can be guaranteed. On the other hand, properties such as stability
may not be present in the original open-loop system, but are design requirements for
the closed-loop performance.

2.3.1 Stability

Stability, along with robustness (next subsection), is a performance requirement for
closed-loop systems. That is, though the open-loop stability properties of the original
system may not be satisfactory, it is desired to design a feedback control system such
that the closed-loop stability is adequate. We discuss stability for continuous-time
systems, but the same definitions also hold for discrete-time systems with obvious
modifications.

Consider the dynamical system

ẋ = f(x, t), (2.3.1)

with x ∈ �n, which might represent either an uncontrolled open-loop system, or a
closed-loop system after the control input u(t) has been specified in terms of the state
x(t). Let the initial time be t0, and the initial condition be x0 ≡ x(t0). This system
is said to be non-autonomous since the time t appears explicitly. If t does not appear
explicitly in f(·), the system is said to autonomous. A primary cause of explicit
time dependence in control systems is the presence of time-dependent disturbances
d(t).

A state xe is an equilibrium point of the system if f(xe, t) = 0, t ≥ t0. If
x0 = xe, so that the system starts out in the equilibrium state, then it will forever
remain there. For linear systems, the only possible equilibrium point is xe = 0; for
nonlinear systems, xe may be nonzero. In fact, there may be an equilibrium set,
such as a limit cycle.

2.3. PROPERTIES OF DYNAMICAL SYSTEMS 81

Asymptotic Stability. An equilibrium point xe is locally asymptotically stable
(AS) at t0 if there exists a compact set S ⊂ �n such that, for every initial condition
x0 ∈ S, one has ‖x(t)− xe‖ → 0 as t→ ∞. That is, the state x(t) converges to xe.
If S = �n so that x(t) → xe for all x(t0), then xe is said to globally asymptotically
stable (GAS) at t0. If the conditions hold for all t0, the stability is said to uniform
(e.g. UAS, GUAS).

Asymptotic stability is a very strong property that is generally extremely difficult
to achieve in closed-loop systems, even using advanced feedback controller design
techniques. The primary reason is the presence of unknown but bounded system
disturbances. A milder requirement is provided as follows.

Lyapunov Stability. An equilibrium point xe is stable in the sense of Lyapunov
(SISL) at t0 if for every ε > 0 there exists a δ(ε, t0) > 0 such that ‖x0−xe‖ < δ(ε, t0)
implies that ‖x(t) − xe‖ < ε for t ≥ t0. The stability is said to be uniform (e.g.
uniformly SISL) if δ(·) is independent of t0; that is, the system is SISL for all t0.

It is extremely interesting to compare these definitions to those of function conti-
nuity and uniform continuity. SISL is a notion of continuity for dynamical systems.
Note that for SISL there is a requirement that the state x(t) be kept arbitrarily close
to xe by starting sufficiently close to it. This is still too strong a requirement for
closed-loop control in the presence of unknown disturbances. Therefore, a practical
definition of stability to be used as a performance objective for feedback controller
design in this book is as follows.

Boundedness. This definition is illustrated in Fig. 2.3.1. The equilibrium point
xe is said to be uniformly ultimately bounded (UUB) if there exists a compact set
S ⊂ �n so that for all x0 ∈ S there exists a bound B and a time T (B, x0) such that
‖x(t) − xe‖ ≤ B for all t ≥ t0 + T . The intent here is to capture the notion that
for all initial states in the compact set S, the system trajectory eventually reaches,
after a lapsed time of T , a bounded neighborhood of xe.

The difference between UUB and SISL is that in UUB the bound B cannot be
made arbitrarily small by starting closer to xe. In fact, the van der Pol oscillator in
Example 2.1.2 is UUB but not SISL. In practical closed-loop systems, B depends on
the disturbance magnitudes and other factors. If the controller is suitably designed,
however, B will be small enough for practical purposes. The term uniform indicates
that T does not depend on t0. The term ultimate indicates that the boundedness
property holds after a time lapse T . If S = �n the system is said to be globally
UUB (GUUB).

A Note on Autonomous Systems and Linear Systems. If the system is
autonomous so that

ẋ = f(x) (2.3.2)

where f(x) is not an explicit function of time, then the state trajectory is independent
of the initial time. This means that if an equilibrium point is stable by any of the
three definitions, the stability is automatically uniform. Non-uniformity is only a
problem with non-autonomous systems.

82 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.3.1: Illustration of uniform ultimate boundedness (UUB).

If the system is linear so that

ẋ = A(t)x (2.3.3)

with A(t) an n× n matrix, then the only possible equilibrium point is the origin.
For linear time-invariant (LTI) systems, matrix A is time-invariant. Then, the

system poles are given by the roots of the characteristic equation

Δ(s) =| sI −A |= 0, (2.3.4)

with ‖ · ‖ the matrix determinant and s the Laplace transform variable. For LTI
systems, AS corresponds to the requirement that all system poles be in the open
left-half plane (i.e. none are allowed on the jω-axis). SISL corresponds to marginal
stability, that is, all the poles in the left-half plane, with any poles on the jω-axis
nonrepeated.

2.3.2 Passivity

Passive systems are important in robust control where a feedback control system
must be designed to offset the effects of bounded disturbances or unmodelled dynam-
ics. Since we intend to define some new passivity properties of NN, we discuss here
some notions of passivity (Goodwin and Sin 1984; Landau 1979; Lewis, Abdallah,
and Dawson 1993; Slotine and Li 1991). Passivity is extensively used in the theory
of networks and n-port devices.

2.3.2.1 Passivity of Continuous-Time Systems

A continuous-time system (e.g. (2.1.1)) with input u(t) and output y(t) is said to
be passive if it verifies an equality of the so-called power form

L̇(t) = yTu− g(t) (2.3.5)

for some L(t) that is lower bounded and some g(t) ≥ 0. That is (see Problems
section), ∫ T

0

yT (τ)u(τ)dτ ≥
∫ T

0

g(τ)dτ − γ2 (2.3.6)

2.3. PROPERTIES OF DYNAMICAL SYSTEMS 83

for all T ≥ 0 and some γ ≥ 0. Often, L(t) is the total energy, kinetic plus potential;
then, the power input to the system is yTu and g(t) is the dissipated power.

We say the system is dissipative if it is passive and in addition

∫ ∞

0

yT (τ)u(τ)dτ �= 0 implies

∫ ∞

0

g(τ)dτ > 0. (2.3.7)

A special sort of dissipativity occurs if g(t) is a monic quadratic function of ‖x‖
with bounded coefficients, where x(t) is the internal state of the system. We call
this state strict passivity (SSP). Then,

∫ T

0

yT (τ)u(τ)dτ ≥
∫ T

0

(‖x‖2 + LOT
)
dτ − γ2 (2.3.8)

for all T ≥ 0 and some γ ≥ 0, where LOT denotes lower-order terms in ‖x‖. Then,
the L2 norm of the state is overbounded in terms of the L2 inner product of output
and input (i.e. the power delivered to the system).

Somewhat surprisingly, the concept of SSP has not been extensively used in the
literature (Lewis, Liu, and Yeşildirek 1993; Seron et al. 1994), though see Goodwin
and Sin (1984) where input and output strict passivity are defined. We use SSP to
advantage in subsequent chapters to conclude some internal boundedness properties
of neural network controllers without the usual assumptions of observability (e.g.
persistence of excitation) that are required in standard adaptive control approaches
(see Chapter 4).

Example 2.3.1 (Passivity of System with Nonlinearity) :

Many practical systems have nonlinear and/or discontinuous measurements or actua-
tors, including backlash, deadzones, saturation limits, and so on. The time-varying system
with nonlinear measurements (Slotine and Li 1991)

ẋ+ λ(t)x = u

y = h(x) (2.3.9)

λ(t) ≥ 0, is depicted in Fig. 2.3.2. The nonlinearity h(x) satisfies the positivity condition

xh(x) > 0 for x �= 0

which means it has the same sign as its argument. Otherwise, it is arbitrary and can even
be discontinuous.

Select the trial function

L =

∫ x

0

h(z)dz ≥ 0

and, using Leibniz’ rule, differentiate to determine

L̇ = h(x)ẋ = yu− h(x)λ(t)x ≡ yu− g(t),

which is in power form. Therefore, the system is passive. Since the condition (2.3.7) holds
if λ(t) is not identically zero, the system is also dissipative. �

84 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.3.2: System with measurement nonlinearity.

2.3.2.2 Passivity of Discrete-Time Systems

The passivity notions defined here are used later in Lyapunov proofs of stability.
Discrete-time Lyapunov proofs are considerably more complex than their continuous-
time counterparts; therefore, the required passivity notions in discrete-time are more
complex.

Define the first difference of a function L(k) : Z+ → � as

ΔL(k) ≡ L(k + 1)− L(k). (2.3.10)

A discrete-time system (e.g. (2.1.11)) with input u(k) and output y(k) is said to be
passive if it verifies an equality of the power form

ΔL(k) = yT (k)Su(k) + uT (k)Ru(k)− g(k) (2.3.11)

for some L(k) that is lower bounded, some function g(k) ≥ 0, and appropriately
defined matrices R,S. That is (see Problems section),

T∑
k=0

(
yT (k)Su(k) + uT (k)Ru(k)

) ≥ T∑
k=0

g(k)− γ2 (2.3.12)

for all T ≥ 0 and some γ ≥ 0.
We say the system is dissipative if it is passive and in addition

T∑
k=0

(
yT (k)Su(k) + uT (k)Ru(k)

) �= 0 implies

T∑
k=0

g(k) > 0, (2.3.13)

for all T ≥ 0.
A special sort of dissipativity occurs if g(k) is a monic quadratic function of ‖x‖

with bounded coefficients, where x(k) is the internal state of the system. We call
this state strict passivity (SSP). Then,

T∑
k=0

(
yT (k)Su(k) + uT (k)Ru(k)

) ≥ T∑
k=0

(‖x‖2 + LOT
)− γ2 (2.3.14)

for all T ≥ 0 and some γ ≥ 0, where LOT denotes lower-order terms in ‖x‖.
Then, the l2 norm of the state is overbounded in terms of the l2 inner product of

2.3. PROPERTIES OF DYNAMICAL SYSTEMS 85

Figure 2.3.3: Two passive systems in feedback interconnection.

output and input (i.e. the power delivered to the system). We use SSP to conclude
some internal boundedness properties of the system without the usual assumptions
of observability (e.g. persistence of excitation) that are required in standard adaptive
control approaches.

2.3.2.3 Interconnections of Passive Systems

To get an indication of the importance of passivity, suppose two passive systems are
placed into a feedback configuration as shown in Fig. 2.3.3. Then,

L̇1(t) = yT1 u1 − g1(t)

L̇2(t) = yT2 u2 − g2(t)
u1 = u− y2
u2 = y1

(2.3.15)

and it is very easy to verify (see Problems section) that

d

dt
(L1 + L2) = yT1 u− (g1 + g2). (2.3.16)

That is, the feedback configuration is also in power form and hence passive. Proper-
ties that are preserved under feedback are extremely important for controller design.

If both systems in Fig. 2.3.3 are state strict passive, then the closed-loop system
is SSP. However, if only one subsystem is SSP and the other only passive, the
combination is only passive and not generally SSP (see Problems section).

It also turns out that parallel combinations of systems in power form are still in
power form. These results are particular cases of what is known in circuit theory as
Tellegen’s power conservation theorem (Slotine and Li 1991). Series interconnec-
tion does not generally preserve passivity (see Problems section).

2.3.3 Observability and Controllability

Observability and controllability are properties of the open-loop system— when they
hold, it is possible to design feedback controllers to fulfill desired closed-loop perfor-
mance specifications (e.g. track a reference trajectory and keep all internal states
stable).

86 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

The discussion in this subsection centers around the nonlinear continuous-time
system

ẋ = f(x) + g(x)u (2.3.17)

y = h(x), (2.3.18)

which is said to be affine in the control input u(t), and the linear time-invariant
(LTI) system

ẋ = Ax+Bu (2.3.19)

y = Cx, (2.3.20)

which is denoted (A,B,C). Let x ∈ �n, u ∈ �m, y ∈ �p. The definitions extend in
a straightforward manner to discrete-time systems.

2.3.3.1 Observability

Observability properties refer to the suitability of the measurements taken in a sys-
tem; that is, the suitability of the choice of the measurement function h(·) in the
output equation (2.3.18).

A system with zero input u(t) = 0 is (locally) observable at an initial state x0
if there exists a neighborhood S of x0 such that, given any other state x1 ∈ S,
the output over an interval [t0, T] corresponding to initial condition x(t0) = x0 is
different from the output corresponding to initial condition x(t0) = x1. Then, the
initial state can be reconstructed from output measurements over a time interval
[t0, T].

Consider the time-varying system

ẋ = A(t)x (2.3.21)

y = C(t)x (2.3.22)

and define the state-transition matrix Φ(t, t0) ∈ �n×n by

d

dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I. (2.3.23)

The key object in observability analysis is the observability gramian given by

N(t0, T) =

∫ T

t0

ΦT (τ, t0)C
TCΦ(τ, t0) dτ. (2.3.24)

The system is said to be uniformly completely observable (UCO) (Sastry and Bodson
1989) if there exist positive constants δ, α1, α2 such that

α1I ≤ N(t0, t0 + δ) ≤ α2I (2.3.25)

for all t0 ≥ 0.
In the linear time-invariant case (A,B,C), observability tests are straightforward

(Kailath 1980). The state transition matrix for linear systems is

Φ(t, t0) = eA(t−t0) (2.3.26)

2.3. PROPERTIES OF DYNAMICAL SYSTEMS 87

and the observability gramian is

N(t0, T) =

∫ T

t0

eA
T (τ−t0)CTCeA(τ−t0) dτ. (2.3.27)

The system is observable if, and only if, N(t0, T) has full rank n. This observability
condition can be shown equivalent to the requirement that the observability matrix

V =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn

⎤
⎥⎥⎥⎥⎥⎦ (2.3.28)

have full rank n. Note that matrix B does not enter into these requirements. Matrix
V is of full rank n if, and only if, the discrete-time observability gramian

Go = V TV (2.3.29)

is nonsingular.
If the system is observable and the input u(t) is zero, the initial state can be

reconstructed from the output y(t) measured over the interval [t0, T] using the func-
tional operator

x(t0) = N−1(t0, T)

∫ T

t0

eA
T (τ−t0)CT y(τ) dτ. (2.3.30)

Persistence of Excitation. An important property related to observability is
persistence of excitation (PE). A vector w(t) ∈ �p is said to be PE if there exist
positive constants δ, α1, α2 such that

α1I ≤
∫ t0+δ

t0

w(τ)wT (τ) dτ ≤ α2I (2.3.31)

for all t0 ≥ 0. The integral may be interpreted as a gramian and PE could be
compared to the definition of uniform complete observability. PE is a notion of a
time signal’s containing ‘sufficient richness’ so that the matrix defined by the L2

outer product in the definition is nonsingular. Note that the p × p vector outer
product matrix w(t)wT (t) has rank of only one for any given t. However, when
integrated over the interval [t0, t0 + δ] the requirement is that the resulting matrix
be nonsingular.

Roughly speaking, if w(t) is a p-vector, it should have at least p distinct complex
frequencies to be PE. For example, if p = 4, w(t) could be the sum of four real
exponentials, or contain sinusoidal components at two frequencies, etc.

2.3.3.2 Controllability

Controllability properties refer to the suitability of the control inputs selected for a
system; that is, the suitability of the choice of the input function g(·) in the state
equation (2.3.17).

88 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

A system is (locally) controllable at an equilibrium state xe if there exists a
neighborhood S of xe such that, given any initial state x(t0) ∈ S, there exists a
final time T and a control input u(t) on [0, T] that drives the state from x(t0) to
xe. A system is (locally) reachable at a given initial state x(t0) if there exists a
neighborhood S of x(t0) such that, given any prescribed final state xd(T) ∈ S, there
exists a final time T and a control input u(t) on [0, T] that drives the state from
x(t0) to xd(T). (Vidyasagar 1993).

In the linear time-invariant case (A,B,C) one may give tests for controllability
and reachability that are easy to perform (Kailath 1980). Then, local and global
controllabilty properties are the same. For continuous LTI systems, reachability
and controllability are the same and the key object in analysis is the controllability
gramian

M(t0, T) =

∫ T

t0

eA(T−τ)BBT eA
T (T−τ) dτ. (2.3.32)

The system is controllable (equivalently reachable) if M(t0, T) has full rank. It can
be shown that if M(t0, T) has full rank for any T > t0, then it has full rank for all
T > t0. This controllability condition can be shown to reduce to a full-rank condition
on the controllability matrix

U = [B AB A2B . . . AnB]. (2.3.33)

Note that matrix C does not enter into these requirements. Matrix U is of full rank
n if, and only if, the discrete-time controllability gramian

Gc = UUT (2.3.34)

is nonsingular. If the system is controllable, the initial state x(t0) can be driven
to any desired final state xd(T) using the control input computed according to (see
Problems section)

u(t) = BT eA
T (T−t)M−1(t0, T)

[
xd(T)− eATx(t0)

]
, t ∈ [t0, T]. (2.3.35)

In the case of discrete LTI systems a similar analysis holds, but then reachability
is stronger than controllability. That is, for discrete systems it is easier to drive
nonzero initial states to zero than it is to drive them to prescribed nonzero final
values.

2.4 FEEDBACK LINEARIZATION AND CONTROL SYSTEM DE-
SIGN

For linear time-invariant (LTI) systems there are a wide variety of controller design
techniques that achieve a range of performance objectives including state regulation,
tracking of desired trajectories, and so on. Design techniques include the linear
quadratic regulator, H-infinity and other robust control techniques, adaptive control,
classical approaches such as root-locus and Bode design, and so on. Generally, as
long as the system is controllable it is possible to design a controller using full state-
feedback that gives good closed-loop performance. Some problems occur with non-
minimum phase systems, but several techniques are now available for confronting

2.4. FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 89

these. If only the outputs can be measured, then good performance can be achieved by
using a dynamic regulator as long as the system is both controllable and observable
(e.g. linear quadratic gaussian design using a Kalman filter).

Unfortunately, for nonlinear systems controls design is very much more complex.
There are no universal techniques that apply for all nonlinear systems; each nonlin-
ear system must generally be considered as a separate design problem. Though there
are techniques available such as Lyapunov, passivity, hyperstability, and variable-
structure (e.g. sliding mode) approaches, considerable design insight is still required.
Feedback linearization techniques offer a widely applicable set of design tools that are
useful for broad classes of nonlinear systems. They function by basically converting
the nonlinear problem into a related linear controls design problem. They are more
powerful, where they apply, than standard classical linearization techniques such as
Lyapunov’s indirect method where the nonlinear system is linearized using Jacobian
techniques. References for this section include (Slotine and Li 1991, Isidori 1989,
Khalil 1992, Vidyasagar 1993).

2.4.1 Input-Output Feedback Linearization Controllers

There are basically two feedback linearization techniques— input-state feedback lin-
earization and input-output (i/o) feedback linearization. The former requires a com-
plex set of mathematical tools including Frobenius’ Theorem and Lie algebra. The
control laws derived are often complex due to the need to determine nonlinear state-
space transformations and their inverses. On the other hand, i/o feedback lineariza-
tion is direct to apply and represents more of an engineering approach to control
systems design. It is very useful for large classes of nonlinear controls problems in-
cluding those treated in this book, which encompass robot manipulators, mechanical
systems, and other Lagrangian systems.

2.4.1.1 Feedback Linearization Controller Design

Here, we discuss i/o feedback linearization as a controller design technique for sys-
tems of the form

ẋ = F (x, u)
y = h(x).

(2.4.1)

The technique is introduced through a sample design.

Sample Plant and Problem Specification. Given the system or plant dynam-
ics

ẋ1 = x1x2 + x3
ẋ2 = −2x2 + x1u
ẋ3 = sinx1 + 2x1x2 + u

(2.4.2)

it is desired to design a tracking controller that causes x1(t) to follow a desired
trajectory yd(t) which is prescribed by the user. This is a complex design problem
that is not approachable using any of the LTI techniques mentioned above.

90 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

I/O Feedback Linearization Step. The tracking problem is easily approached
using i/o feedback linearization. The procedure is as follows. Select the output

y(t) = x1(t). (2.4.3)

Note that the output is defined by the performance specifications. Differentiate y(t)
repeatedly and substitute state derivatives from (2.4.2) until the control input u(t)
appears. This step yields

ẏ = ẋ1 = x1x2 + x3
ÿ = x1ẋ2 + ẋ1x2 + ẋ3

= [sinx1 + x2x3 + x1x
2
2] + [1 + x21]u

≡ f(x) + g(x)u.

(2.4.4)

Now define variables as z1 ≡ y, z2 ≡ ẏ so that

ż1 = z2
ż2 = f(x) + g(x)u.

(2.4.5)

This may be converted to a linear system by redefinition of the input as

v(t) ≡ f(x) + g(x)u(t) (2.4.6)

so that

u(t) =
1

g(x)
(−f(x) + v(t)), (2.4.7)

for then one obtains
ż1 = z2
ż2 = v,

(2.4.8)

which is equivalent to
ÿ = v. (2.4.9)

This is known as the feedback linearized system.

Controller Design Step. Standard linear system techniques can now be used to
design a tracking controller for the feedback linearized system. For instance, one
possibility is the proportional-plus-derivative (PD) tracking control

v = ÿd +Kdė+Kpe (2.4.10)

where the tracking error is defined as

e(t) ≡ yd(t)− y(t). (2.4.11)

Substituting this control v(t) into(2.4.9) yields the closed-loop system

ë+Kdė+Kpe = 0, (2.4.12)

or equivalently, in state-space form

d

dt

[
e
ė

]
=

[
0 1

−Kp −Kd

] [
e
ė

]
. (2.4.13)

2.4. FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 91

Figure 2.4.1: Feedback linearization controller showing PD outer loop and nonlinear
inner loop.

As long as the PD gains are positive, the tracking error converges to zero. The PD
gains should be selected for suitable percent overshoot and rise time.

According to (2.4.7) and (2.4.10) the complete controller implied by this tech-
nique is given by

u(t) =
1

g(x)
[−f(x) + ÿd +Kdė+Kpe], (2.4.14)

where the nonlinear functions f(x), g(x) are defined in (2.4.4).

2.4.1.2 Structure of I/O Feedback Linearization Controller

The structure of the i/o feedback linearization controller is depicted in Fig. 2.4.1,
where e ≡ [e ė]T , y ≡ [y ẏ]T , y

d
≡ [yd ẏd]

T . It consists of a PD outer tracking
loop plus a nonlinear inner linearization loop. The function of the inner feedback
loop is to linearize the plant so that the system, between the points shown, looks
like 1/sn (in this example, n= 2). Then the PD controller, the design of which
is based on the system 1/sn, achieves tracking behavior. Note that the controller
incorporates feedforward acceleration compensation through the term ÿd; this is a
form of predictive control.

A major advantage of the feedback linearization controller is that it contains a
unity-gain outer tracking loop, which provides robustness and is highly desirable
in many practical applications (e.g. aircraft control system design). This design
technique also decouples the nonlinear compensation design step from the tracking
performance specification design step. Note that the feedback linearization controller
generally requires full state feedback in computing g(x), f(x).

It is to be emphasized that the feedback linearization controller generally has
performance far exceeding that of classical linearization controllers based on Jaco-
bian linearization techniques. No approximation is involved in feedback linearization
design.

92 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

2.4.1.3 Ill-Defined Relative Degree

For this technique to work, the function g(x) multiplying the control input u(t) in
(2.4.5) must never be zero (see (2.4.7)). In this example g(x) = 1 + x21. If g(x)
can be zero in a particular plant, the plant is said to have ill-defined relative degree.
Otherwise, it has well-defined relative degree.

Even if the system is ill defined, i/o feedback linearization may still be applied
under some circumstances. In fact, it can be shown that as long as the closed-loop
system

ż1 = z2
ż2 = f(x) + g(x)u
ζ = g(x).

(2.4.15)

with output ζ(t) is observable, then a modification of (2.4.7) still works (Commuri
and Lewis 1994). The observability requirement means that the control influence
coefficient g(x) may only be small, so that control effectiveness is reduced, when the
state x(t) is also small.

2.4.1.4 Internal Dynamics and Zero Dynamics

In the sample problem, the linearized dynamics (2.4.8) are only of order two while
the plant (2.4.2) is of order three. Therefore, something has been neglected in the
controls design procedure. A complete dynamical description of the closed-loop sys-
tem can be obtained by adding to [e ė]T some additional state components inde-
pendent of zi(t). In this example, one choice is x2, so that the closed-loop system
is

d

dt

[
e
ė

]
=

[
0 1

−Kp −Kd

] [
e
ė

]
(2.4.16)

ẋ2 = −2x2 +
x1

1 + x21
[−f(x) + ÿd +Kdė+Kpe]. (2.4.17)

Note that the control u(t) has been substituted into the equation for ẋ2(t).
The additional dynamics neglected in the feedback linearization design are made

unobservable by this design procedure; that is, with respect to the design output
y(t) = x1(t) they are unobservable. They are known as the internal dynamics. A
different choice of y(t) results in different internal dynamics (see Problems section).
The zero dynamics is defined as the internal dynamics when the control input is
selected to keep the output y(t) equal to zero. If the zero dynamics are unstable, the
system is said to be non-minimum phase. The zero dynamics extends to nonlinear
systems the concept of system zeros. In the LTI case, the zero dynamics define
the system zeros. For i/o feedback linearization to function correctly, the internal
dynamics must be stable. Then, the controller given in Fig. 2.4.1 performs in an
adequate manner.

In this example the zero dynamics are

ẋ2 = −2x2, (2.4.18)

which says that x2(t) = e−2tx2(0); this is an asymptotically stable (AS) system.
Therefore, the i/o feedback linearization controller performs correctly. Specifically,

2.4. FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 93

the internal dynamics (2.4.17) represent an AS system driven by additional signals.
If the PD feedback linearization controller operates correctly, these additional signals
are all bounded. The state of an AS system with bounded input is also bounded, so all
is well. One can see that, as the desired acceleration ÿd(t) increases, the magnitude
of state x2(t) will increase, so that internal dynamics can fundamentally limit the
performance capabilities of nonlinear systems. If the pole at s = 2 were further
to the left in the s-plane, the situation would be improved and faster prescribed
trajectories could be followed.

2.4.1.5 Modelling Errors, Disturbances, and Robustness

In the sample design it was assumed that all the dynamics are exactly known and
there are no disturbances. However, in practical situations there can be unmodelled
dynamics or unknown disturbances. Such effects degrade the performance of the
feedback linearization controller and are investigated in the Problems section. How-
ever, the controller is surprisingly robust to such effects. This is in great measure
due to the outer PD tracking loop. The robustness properties can be improved even
further by using various adaptive control techniques, or by adding a specially de-
signed robustifying signal to the control input u(t). Such techniques are discussed
in subsequent chapters of the book. In fact, the function of neural networks when
used in closed-loop control is exactly to compensate for unmodelled dynamics and
unknown disturbances.

2.4.1.6 Proportional-Integral-Derivative (PID) Outer Tracking Loop

The steady-state error and disturbance rejection capabilities of the controller can
be improved in many situations by using a proportional-derivative-integral (PID)
controller in the outer tracking loop instead of the PD controller (2.4.10). Then,
instead of (2.4.14) one has

ε̇ = e
u(t) = 1

g(x) [−f(x) + ÿd +Kdė+Kpe+Kiε].
(2.4.19)

This is an important example of a controller with its own dynamics— the controller
now has a state ε(t) associated with it, so that it has some internal memory.

2.4.1.7 Feedback Linearization for Systems in Brunovsky Form

If the system is in Brunovsky form, i/o feedback linearization is very easy. For the
system

ẋ1 = x2
ẋ2 = x3

...
ẋn = f(x) + g(x)u

(2.4.20)

y = x1 (2.4.21)

94 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

the design is direct, for the linearization step is not needed. In fact, the system is
already in the chained form (2.4.5). Therefore, the input redefinition

u(t) =
1

g(x)
(−f(x) + v) (2.4.22)

is the feedback linearization controller, for then the closed-loop system is simply

y(n) = v, (2.4.23)

where superscript (j) denotes the j-th derivative.
The outer-loop control v(t) may be selected using an extension of PD or PID

control to obtain a control structure like that in Fig. 2.4.1. One possibility is

u(t) =
1

g(x)
[−f(x) + y

(n)
d +Kne

(n−1) + . . .+K1e], (2.4.24)

with yd(t) the desired trajectory and e(t) = yd(t)−y(t) the tracking error. Note that
feedback of the error and its first n− 1 derivatives is needed, along with feedforward

of y
(n)
d (t). The closed-loop dynamics is

e(n) +Kne
(n−1) + . . .+K1e = 0, (2.4.25)

which is stable if the feedback gains [Kn . . .K1] are suitably selected. Here, there are
no internal dynamics.

One can write this in matrix form by defining the error vector

e ≡

⎡
⎢⎢⎢⎣
e
ė
...
e(n−1)

⎤
⎥⎥⎥⎦ (2.4.26)

and the gain vector
K ≡ [K1 K2 . . .Kn]. (2.4.27)

Then the closed-loop error dynamics may be written as

ė = (A− bK)e

ξ̇ = Φ(e, ξ, yd)
(2.4.28)

where A, b are the canonical form matrices (2.1.6). An equation has been added for
the internal dynamics ξ(t), which may be present in some examples.

A similar procedure may be used to design feedback linearization for multivariable
Brunovsky canonical form systems (2.1.7).

2.4.2 Computer Simulation of Feedback Control Systems

In Example 2.1.2 it was shown how to simulate an open-loop nonlinear system
using the state-space description and a Runge-Kutta integrator. A conscientious
engineering procedure for design of feedback control systems involves analysis of the

2.4. FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 95

open-loop dynamics to determine the system properties, then controller design, then
computer simulation of the closed-loop system prior to implementing the controller
on the actual plant. The simulation step is essential to verify closed-loop perfor-
mance and ensure that nothing has been overlooked in the design step. Continuous-
time dynamical systems with feedback controllers are straightforward to simulate. A
Runge-Kutta integrator is required, such as ODE23 in MATLAB. Then, a subrou-
tine must be written that has two parts: the computation of the control input u(t)
followed by the plant dynamics. The technique is illustrated using the sample design
problem.

Example 2.4.1 (Simulation of Feedback Linearization Controller) :
For the sample design problem (2.4.2), the complete closed-loop description is given

by the plant dynamics
ẋ1 = x1x2 + x3

ẋ2 = −2x2 + x1u
ẋ3 = sinx1 + 2x1x2 + u

and the controller

f(x) = sinx1 + x2x3 + x1x
2
2

g(x) = 1 + x2
1

y = x1

e = yd − y
u(t) = 1

g(x)
[−f(x) + ÿd +Kdė+Kpe],

where the desired trajectory yd(t) is prescribed by the user.
All this information must be written into a MATLAB M file that is called by ODE23.

Suppose that it is desired for the plant output y(t) to follow the desired trajectory

yd = sin(2πt/T).

Then, the MATLAB M file for ODE23 is:

% MATLAB file for closed-loop system simulation

function xdot= fblinct(t,x)

global T

% Computation of the desired trajectory

yD= sin(2*pi*t/T) ;

yDdot= (2*pi/T) * cos(2*pi*t/T) ;

yDddot= -(2*pi/T)^2 * sin(2*pi*t/T) ;

% Computation of the control input

kp= 100 ;

kd= 14.14 ;

f = sin(x(1)) + x(2)*x(3) + x(1)*x(2)^2 ;

g = 1 + x(1)^2 ;

y = x(1) ;

ydot= x(1)*x(2) + x(3) ;

e = yD - y ;

edot= yDdot - ydot ;

u = (-f + yDddot + kd*edot + kp*e) / g ;

% Plant dynamics

xdot(1) = x(1)*x(2) + x(3) ;

xdot(2) = -2*x(2) + x(1)*u ;

xdot(3) = sin(x(1)) + 2*x(1)*x(2) + u ;

96 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Note how closely the structure of the M file follows the controller and plant equations.
The selection of the PD gains as Kp = 100,Kd = 14.14 yields a closed-loop charac-

teristic polynomial of s2 + Kds + Kp = s2 + 14.14s + 100 ≡ s2 + 2ζωns + ω2
n, so that

the closed-loop system has a natural frequency of ωn = 10 rad/s and a damping ratio of
ζ = 1/

√
2 = 0.707.

The script session needed to run the simulation and make the plots is:

T= 10

t0= 0 ; tf=50 ;

x0= [1 1 1]’ ;

[t,x]= ode23(’fblinct’,t0,tf,x0) ;

yd= sin(2*pi*t/T) ;

e= yd - y ;

plot(t,[yd,x(:,1)])

plot(t,e)

plot(t,x(:,2)]

where the graph labeling commands are not shown.
The time constant of the internal dynamics is τ = 0.5sec. The simulation results for a

desired period of T= 10 sec are plotted in Fig. 2.4.2. The tracking behavior of x1(t) and
internal stability of x2(t) are excellent. The performance for T= 1 sec is shown in Fig. 2.4.3.
This value of T is of the order of the time constant of the internal dynamics, so problems
may be anticipated. Indeed, note that x2(t) is larger since the desired acceleration has
increased (recall that the internal dynamics are excited by the desired acceleration). This
makes the tracking error larger. �

2.4.3 Feedback Linearization for Discrete-Time Systems

This discussion involves i/o feedback linearization controller design of discrete-time
systems in the general form

x(k + 1) = F (x(k), u(k))
y(k) = h(x(k)).

(2.4.29)

The procedure is very much the same as for continuous-time systems.

2.4.3.1 I/O Linearization Step

One may proceed by several approaches to obtain the discrete-time chained Brunovsky
form

z1(k + 1) = z2(k)
z2(k + 1) = z3(k)

...
zn(k + 1) = f(x(k)) + g(x(k))u(k)

(2.4.30)

y(k) = z1(k). (2.4.31)

Specifically, one could advance the prescribed output y(k) = h(x(k)) repeatedly,
defining new states as z1(k) ≡ y(k), z2(k) ≡ y(k + 1), z3(k) ≡ y(k + 2), . . ., until
u(k) appears. The result is the chained form, possibly with some additional internal
dynamics.

2.4. FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 97

Figure 2.4.2: Simulation of feedback linearization controller, T= 10 sec. (a) Actual
output y(t) and desired output yd(t). (b) Tracking error e(t). (c) Internal dynamics
state x2(t).

98 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.4.3: Simulation of feedback linearization controller, T= 0.1 sec. (a) Actual
output y(t) and desired output yd(t). (b) Tracking error e(t). (c) Internal dynamics
state x2(t).

2.4. FEEDBACK LINEARIZATION AND CONTROL SYSTEM DESIGN 99

Alternatively, one may take differences of y(k) until u(k) appears— the first
difference and second difference are defined as

Δy(k) ≡ y(k + 1)− y(k)
Δ2y(k) ≡ Δy(k + 1)−Δy(k) = y(k + 2)− 2y(k + 1) + y(k).

(2.4.32)

The new states are defined as z1(k) ≡ y(k), z2(k) ≡ Δy(k), z3(k) ≡ Δ2y(k),
This results in considerably more complex computations, but is theoretically more
appropriate.

2.4.3.2 Controller Design Step

Providing the system has well-defined relative degree so that ‖g(xk)‖ > 0 for all k,
the obvious choice for a control input that causes y(k) to track the desired trajectory
yd(k) is now

u(k) =
1

g(x(k))
[−f(x(k))+ yd(k+n)+Kne(k+n− 1)+ . . .+K2e(k+1)+K1e(k)]

(2.4.33)
where the tracking error is e(k) = yd(k)−y(k). This yields the closed-loop dynamics

e(k + n) +Kne(k + n− 1) + . . .+K2e(k + 1) +K1e(k) = 0, (2.4.34)

which is stable as long as the gains are appropriately selected. This is a controller
with an outer tracking loop and an inner nonlinear feedback linearization loop, ex-
actly as its continuous-time counterpart in Fig. 2.4.1.

With respect to the defined output y(k), this controller is noncausal. To compute
the control input u(k) at time k, one must know the values of e(k) as well as its n−1
future values. However, note that e(k+j) = yd(k+j)−y(k+j) = yd(k+j)−zj+1(k),
for 0 < j < n. In this work we shall asssume full state variable feedback, that is, all
the states x(k) = [x1(k) x2(k) . . . xn(k)]

T are available at time k for computation of
the control uk. If only the output y(k) is available at time k, the controller design
problem is considerably more complex— then a dynamic regulator containing a state
observer must be designed. This can be accomplished using recurrent or dynamic
neural networks as shown in (Kim and Lewis 1996).

One can write the closed-loop error dynamics in matrix form by defining the
error vector

e(k) ≡

⎡
⎢⎢⎢⎣
e(k)
e(k + 1)
...
e(k + n− 1)

⎤
⎥⎥⎥⎦ (2.4.35)

and the gain vector (2.4.27). Then the closed-loop error dynamics may be written
as

e(k + 1) = (A− bK)e(k)
ξ(k + 1) = Φ(e(k), ξ(k), zd(k))

(2.4.36)

where A, b are the canonical form matrices (2.1.6). An equation has been added
for the internal dynamics ξ(k), which may be present in some examples. Note that
e(k) may be computed using the current state, for e(k) = zd(k) − x(k), with the
desired state given by zd(k) ≡ [yd(k) yd(k + 1) . . . yd(k + n − 1)]T and z(k) ≡
[z1(k) z2(k) . . . zn(k)]

T .

100 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

2.5 NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN

For linear time-invariant systems it is straightforward to investigate stability by
examining the locations of the poles in the s-plane. However, for nonlinear or non-
autonomous (e.g. time-varying) systems there are no corresponding direct tech-
niques. The (direct) Lyapunov approach provides methods for studying the stability
of nonlinear systems and shows how to design control systems for such systems.
For more information see (Lewis, Abdallah, and Dawson 1993) which deals with
robot manipulator control, as well as (Khalil 1992, Slotine and Li 1991, Vidyasagar
1993), which have proofs and many excellent examples.

2.5.1 Lyapunov Analysis for Autonomous Systems

The autonomous (time-invariant) dynamical system

ẋ = f(x), (2.5.1)

x ∈ �n, could represent a closed-loop system after the controller has been designed.
In Section 2.3.1 we defined several sorts of stability. We shall show here how to
examine the stability properties using a generalized energy approach. An isolated
equilibrium point xe can always be brought to the origin by redefinition of coordi-
nates; therefore, let us assume without loss of generality that the origin is an equi-
librium point. First, we give some definitions and results. Then, some examples
are presented to illustrate the power of the Lyapunov approach.

Let L(x) : �n → � be a scalar function such that L(0) = 0, and S be a compact
subset of �n. Then, L(x) is said to be:

Locally positive definite if L(x) > 0 when x �= 0, for all x ∈ S. (Denoted L(x) >
0.)

Locally positive semidefinite if L(x) ≥ 0 for all x ∈ S. (Denoted L(x) ≥ 0.)

Locally negative definite if L(x) < 0 when x �= 0, for all x ∈ S. (Denoted
L(x) < 0.)

Locally negative semidefinite if L(x) ≤ 0 for all x ∈ S. (Denoted L(x) ≤ 0.)

An example of a positive definite function is the quadratic form L(x) = xTPx, with
P any matrix that is symmetric and positive definite. A definite function is allowed
to be zero only when x = 0, a semidefinite function may vanish at points where
x �= 0. All these definitions are said to hold globally if S = �n.

A function L(x) : �n → � with continuous partial derivatives is said to be a
Lyapunov function for the system (2.5.1), if, for some compact set S ⊂ �n, one
has locally:

L(x) is positive definite, L(x) > 0 (2.5.2)

L̇(x) is negative semidefinite, L̇(x) ≤ 0 (2.5.3)

where L̇(x) is evaluated along the trajectories of (2.5.1) (as shown in an upcoming
example). That is,

L̇(x) =
∂L

∂x
ẋ =

∂L

∂x
f(x). (2.5.4)

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 101

Theorem 2.5.1 (Lyapunov Stability) : If there exists a Lyapunov function for system
(2.5.1), then the equilibrium point is stable in the sense of Lyapunov (SISL). �

This powerful result allows one to analyze stability using a generalized notion of
energy. The Lyapunov function performs the role of an energy function. If L(x)
is positive definite and its derivative is negative semidefinite, then L(x) is nonin-
creasing, which implies that the state x(t) is bounded. The next result shows what
happens if the Lyapunov derivative is negative definite— then L(x) continues to
decrease until ‖x(t)‖ vanishes.

Theorem 2.5.2 (Asymptotic Stability) : If there exists a Lyapunov function L(x) for
system (2.5.1) with the strengthened condition on its derivative

L̇(x) is negative definite, L̇(x) < 0 (2.5.5)

then the equilibrium point is asymptotically stable (AS). �

To obtain global stability results one needs to expand the set S to all of �n, but
also required is an additional radial unboundedness property.

Theorem 2.5.3 (Global Stability) :
a. Globally SISL. If there exists a Lyapunov function L(x) for system (2.5.1) such that

(2.5.2) and (2.5.3) hold globally and

L(x) → ∞ as ‖x‖ → ∞ (2.5.6)

then the equilibrium point is globally SISL.
b. Globally AS. If there exists a Lyapunov function L(x) for system (2.5.1) such that

(2.5.2) and (2.5.5) hold globally and also the unboundedness condition (2.5.6) holds, then
the equilibrium point is globally AS (GAS). �

The global nature of this result of course implies that the equilibrium point mentioned
is the only equilibrium point.

The next examples show the utility of the Lyapunov approach and make several
points. Among the points of emphasis are that the Lyapunov function is intimately
related to the energy properties of a system, and that Lyapunov techniques are
closely related to the passivity notions in Section 2.3.2.

Example 2.5.1 (Asymptotic Stability) :

a. Local Stability
Consider the system

ẋ1 = x1x
2
2 + x1(x

2
1 + x2

2 − 3)

ẋ2 = −x2
1x2 + x2(x

2
1 + x2

2 − 3).

Stability may often be examined for nonlinear systems by selecting the quadratic Lyapunov
function candidate

L(x) =
1

2
(x2

1 + x2
2)

which is a direct generalization of an energy function and has derivative

L̇(x) = x1ẋ1 + x2ẋ2.

102 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Evaluating this along the trajectories of the system simply involves substituting the
state derivatives from the dynamics to obtain, in this case,

L̇(x) = −(x2
1 + x2

2)(3− x2
1 − x2

2)

which is negative as long as
‖x‖ = x2

1 + x2
2 < 3.

Therefore, L(x) serves as a (local) Lyapunov function for the system, which is locally
asymptotically stable. The system is said to have a domain of attraction with radius of 3.

The system trajectories are easily plotted by writing an M file for MATLAB (see
Example 2.1.2 and Section 2.4.2). The result is shown in Fig. 2.5.1. Trajectories beginning
outside ‖x‖ = 3 in the phase plane cannot be guaranteed to converge.

b. Global Stability
Consider now the system

ẋ1 = x1x
2
2 − x1(x

2
1 + x2

2)

ẋ2 = −x2
1x2 − x2(x

2
1 + x2

2).

Selecting again the Lyapunov function candidate

L(x) =
1

2
(x2

1 + x2
2)

yields
L̇(x) = −(x2

1 + x2
2)

2

which is negative. The function L(x) is therefore a Lyapunov function and the system is
globally asymptotically stable. �

Example 2.5.2 (Lyapunov Stability) :
For the system

ẋ1 = x1x
2
2 − x1

ẋ2 = −x2
1x2

select the quadratic Lyapunov function candidate

L(x) =
1

2
(x2

1 + x2
2),

which has
L̇(x) = −x2

1.

This is only negative semidefinite (note that L̇ can be zero when x2 �= 0). Therefore, L(x)
is a Lyapunov function, but the system is only shown by this method to be SISL— that
is ‖x1‖, ‖x2‖ are both bounded.

The time histories shown in Fig. 2.5.2 were obtained using MATLAB. �

Example 2.5.3 (Energy-Related Lyapunov Functions and Passivity) :
In many situations the simple quadratic Lyapunov functions do not suffice; it can

be extremely difficult to find a Lyapunov function for complex systems. Failure to find
a Lyapunov function may be because the system is not stable, or because the designer
simply lacks insight and experience. The Lyapunov function is closely connected to the
deep physical properties of the system, which can often aid in selecting a suitable candidate.

Consider the following system (Slotine and Li 1991)

ẍ+ b(ẋ) + c(x) = 0

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 103

Figure 2.5.1: Sample trajectories of system with local asymptotic stability. (a) x1(t)
and x2(t) versus t. (b) Phase-plane plot of x2 versus x1.

104 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.5.2: Sample trajectories of SISL system. (a) x1(t) and x2(t) versus t. (b)
Phase-plane plot of x2 versus x1.

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 105

Figure 2.5.3: A function satisfying the condition xc(x) > 0.

which is a nonlinear spring-mass-damper. Functions b(·), c(·) are unknown general contin-
uous functions satisfying the positivity conditions, illustrated in Fig. 2.5.3,

ẋb(ẋ) > 0 for x �= 0

xc(x) > 0 for x �= 0

which simply require that they represent physically meaningful damping and spring effects,
respectively. Note that these assumptions mean that b(0) = 0, c(0) = 0.

a. Lyapunov Analysis
Select as a Lyapunov function candidate the positive definite function

L =
1

2
ẋ2 +

∫ x

0

c(z)dz,

which is the sum of the kinetic and potential energy of the system. Differentiating using
Leibniz’ rule yields

L̇ = ẋẍ+ c(x)ẋ = −b(ẋ)ẋ ≤ 0,

where ẍ was eliminated by substitution from the system dynamics. The entire state is
[xẋ]T , however, only ẋ appears explicitly in L̇, which is therefore only negative semidefinite.
Therefore, this shows the system is SISL. In the Problems section it is shown that the
system is actually AS by a technique based on Barbalat’s Lemma introduced in Section
2.5.4.1. The function L̇(x) is the power dissipated in the system.

b. Passivity
Lyapunov functions are closely related to the passivity notions introduced in Section

2.3.2. Considering the forced system

ẍ+ b(ẋ) + c(x) = F

one sees that
L̇ = ẋF − b(ẋ)ẋ,

which is of the power form (2.3.5). Thus, the system from input F to output ẋ is passive.
�

2.5.2 Controller Design Using Lyapunov Techniques

Though we have presented Lyapunov analysis only for unforced systems in the form
(2.5.1), which have no control input, these techniques also provide a powerful set of
tools for designing feedback control systems for systems of the form

ẋ = f(x) + g(x)u. (2.5.7)

106 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.5.4: Signum function.

Thus, select a Lyapunov function candidate L(x) > 0 and differentiate along the
system trajectories to obtain

L̇(x) =
∂L

∂x
ẋ =

∂L

∂x
[f(x) + g(x)u]. (2.5.8)

Then, it is often possible to ensure that L̇ ≤ 0 by appropriate selection of u(t).
When this is possible, it generally yields controllers in state-feedback form, that is,
where u(t) is a function of the states x(t).

Practical systems with actuator limits and saturation often contain discontinuous
functions including the signum function defined for scalars x ∈ � as

sgn(x) =

{
1, x ≥ 0
−1, x < 0

, (2.5.9)

shown in Fig. 2.5.4, and for vectors x = [x1 x2 . . . xn]
T ∈ �n as

sgn(x) = [sgn(xi)] (2.5.10)

where [zi] denotes a vector z with components zi. The discontinuous nature of
such functions often makes it impossible to apply i/o feedback linearization where
differentiation is required. In some cases, controller design can be carried out for
systems containing discontinuities using Lyapunov techniques.

Example 2.5.4 (Controller Design by Lyapunov Analysis) :
Consider the system

ẋ1 = x2sgn(x1)

ẋ2 = x1x2 + u

which has an actuator nonlinearity. A control input may not be designed using feed-
back linearization techniques, as differentiation of the signum function would be required.
However, a stabilizing controller can easily be designed using Lyapunov techniques.

Select the Lyapunov function candidate

L(x) =
1

2
(x2

1 + x2
2),

and evaluate
L̇(x) = x1ẋ1 + x2ẋ2 = x2[x1sgn(x1) + x1x2 + u].

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 107

Now selecting the feedback control

u = −kx2 − x1x2 − x1sgn(x1)

yields
L̇(x) = −kx2

2

so that L(x) is rendered a (closed-loop) Lyapunov function. Since L̇ is negative semidefi-
nite, the closed-loop system with this controller is SISL.

Note that this controller has elements of feedback linearization in that the control input
u(t) is selected to cancel some nonlinearities, with an additional proportional gain term
−kx2 to provide the stabilizing effect. However, no differentiation of the right-hand sides
of the state equation is needed in the Lyapunov approach. There are some issues in this
specific example, such as the selection of a discontinuous control signal, which could cause
chattering (as well as violation of the Caratheodory conditions (Khalil 1992)). In practice,
however, the system dynamics often provide low-pass filtering, so that the controllers work
well. �

2.5.2.1 Lyapunov Analysis and Controls Design for Linear Systems

For general nonlinear systems it is not always easy to find a Lyapunov function.
Thus, failure to find a Lyapunov function may be because the system is not stable,
or because the designer simply lacks insight and experience. However, in the case
of linear time-invariant systems

ẋ = Ax (2.5.11)

Lyapunov analysis is simplified, and a Lyapunov function is easy to find, if one
exists.

Stability Analysis. Select as a Lyapunov function candidate the quadratic form

L(x) =
1

2
xTPx, (2.5.12)

where P is a constant symmetric positive definite matrix. Since P > 0, then xTPx
is a positive definite function. This function is a generalized norm, which serves as
a system energy function. Then,

L̇(x) =
1

2
[ẋTPx+ xTPẋ] (2.5.13)

=
1

2
xT [ATP + PA]x. (2.5.14)

For stability one requires negative semidefinitess. Thus, there must exist a symmet-
ric positive semidefinite matrix Q such that

L̇(x) = −xTQx. (2.5.15)

This results in the next theorem.

Theorem 2.5.4 (Lyapunov Theorem for Linear Systems) :
The system (2.5.11) is SISL if there exist matrices P > 0, Q ≥ 0 that satisfy the

Lyapunov equation
ATP + PA = −Q. (2.5.16)

If there exists a solution such that both P and Q are positive definite, the system is AS. �

108 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

It can be shown that this theorem is both necessary and sufficient. That is, for
LTI systems, if there is no Lyapunov function of the quadratic form (2.5.12), then
there is no Lyapunov function. This result provides an alternative to examing the
eigenvalues of the A matrix.

Lyapunov Design of LTI Feedback Controllers. These notions offer a valu-
able procedure for LTI control system design. Note that the closed-loop system with
state feedback

ẋ = Ax+Bu (2.5.17)

u = −Kx (2.5.18)

is SISL if, and only if, there exist matrices P > 0, Q ≥ 0 that satisfy the closed-loop
Lyapunov equation

(A−BK)TP + P (A−BK) = −Q. (2.5.19)

If there exists a solution such that both P and Q are positive definite, the system is
AS.

Now suppose there exist P > 0, Q > 0 that satisfy the matrix Riccati equation

ATP + PA+Q− PBR−1BTP = 0 (2.5.20)

for some matrix R > 0. Select now the feedback gain as

K = R−1BTP. (2.5.21)

Then, one may write (2.5.20) in terms of K as

0 = ATP + PA+Q− PBR−1BTP

0 = ATP + PA+Q− PBR−1BTP − PBR−1BTP + PBR−1BTP

0 = ATP + PA+Q−KTBTP − PBK +KTRK

0 = (A−BK)TP + P (A−BK) + [Q+KTRK]. (2.5.22)

The last equation is a closed-loop Lyapunov equation, and verifies that this selection
for the feedback gain matrix K guarantees closed-loop asymptotic stability.

Note that the Riccati equation depends only on known matrices— the system
(A,B) and two symmetric design matrices Q,R that need only be selected positive
definite. There are many good routines that can find the solution P to this equa-
tion providing only that (A,B) is controllable (e.g. MATLAB). Then, a stabilizing
gain is given by (2.5.21). If different design matrices Q,R are selected, different
closed-loop poles will result. This approach goes far beyond classical frequency do-
main or root locus design techniques in that it allows the determination of stabilizing
feedbacks for complex multivariable systems by simply solving a matrix design equa-
tion. For more details on this linear quadratic (LQ) design techniques see (Lewis
and Syrmos 1995).

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 109

2.5.3 Lyapunov Analysis for Non-Autonomous Systems

We now consider non-autonomous (time-varying) dynamical systems of the form

ẋ = f(x, t), t ≥ t0 (2.5.23)

x ∈ �n. Assume again that the origin is an equilibrium point. For non-autonomous
systems the basic concepts just introduced still hold, but the explicit time dependence
of the system must be taken onto account. The basic issue is that the Lyapunov
function may now depend on time. In this situation, the definitions of definiteness
must be modified, and the notion of ‘decrescence’ is needed.

Let L(x, t) : �n×� → R be a scalar time-varying function such that L(0, t) = 0,
and S be a compact subset of �n. Then, L(x, t) is said to be:

Locally positive definite if L(x, t) ≥ L0(x) for some time-invariant positive definite
L0(x), for all t ≥ 0 and x ∈ S. (Denoted L(x, t) > 0.)

Locally positive semidefinite if L(x, t) ≥ L0(x) for some time-invariant positive
semidefinite L0(x), for all t ≥ 0 and x ∈ S. (Denoted L(x, t) ≥ 0.)

Locally negative definite if L(x, t) ≤ L0(x) for some time-invariant negative defi-
nite L0(x), for all t ≥ 0 and x ∈ S. (Denoted L(x, t) < 0.)

Locally negative semidefinite if L(x, t) ≤ L0(x) for some time-invariant negative
semidefinite L0(x), for all t ≥ 0 and x ∈ S. (Denoted L(x, t) ≤ 0.)

Thus, for definiteness of time-varying functions, a time-invariant definite function
must be dominated. All these definitions are said to hold globally if S = �n.

A time-varying function L(x, t) : �n×� → R is said to be decrescent if L(0, t) =
0, and there exists a time-invariant positive definite function L1(x) such that

L(x, t) ≤ L1(x), ∀t ≥ 0. (2.5.24)

The notions of decrescence and positive definiteness for time-varying functions are
depicted in Fig. 2.5.5.

Example 2.5.5 (Decrescent Function) :

Consider the time-varying function

L(x, t) = x2
1 +

x2
2

2 + sin t
.

Note that 1 ≤ 2 + sin t ≤ 3, so that

L(x, t) ≥ L0(x) ≡ x2
1 +

x2
2

3
,

and L(x, t) is globally positive definite. Also,

L(x, t) ≤ L1(x) ≡ x2
1 + x2

2

so that it is decrescent. �

110 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.5.5: Depiction of a time-varying function L(x, t) that is positive definite
(L0(x) < L(x, t)) and decrescent (L(x, t) ≤ L1(x)).

To evaluate the non-autonomous candidate Lyapunov function derivative L̇(x, t)
along the system trajectories, as required in the next result, one must use

L̇(x, t) =
∂L

∂t
+
∂L

∂x
ẋ =

∂L

∂t
+
∂L

∂x
f(x, t). (2.5.25)

Now the following stability results may be stated.

Theorem 2.5.5 (Lyapunov Results for Non-Autonomous Systems) :

a. Lyapunov Stability. If, for system (2.5.23), there exists a function L(x, t) with
continuous partial derivatives, such that for x in a compact set S ⊂ �n

L(x, t) is positive definite, L(x, t) > 0 (2.5.26)

L̇(x, t) is negative semidefinite, L̇(x, t) ≤ 0 (2.5.27)

then the equilibrium point is SISL.

b. Asymptotic Stability. If, furthermore, condition (2.5.27) is strengthened to

L̇(x, t) is negative definite, L̇(x, t) < 0 (2.5.28)

then the equilibrium point is AS.

c. Global Stability. If the equilibrium point is SISL or AS, if S = �n, and in addition
the radial unboundedness condition holds:

L(x, t) → ∞ ∀t as ‖x‖ → ∞ (2.5.29)

then the stability is global.

d. Uniform Stability. If the equilibrium point is SISL or AS, and in addition L(x, t) is
decrescent (e.g. (2.5.24) holds), then the stability is uniform (e.g. independent of t0). �

The equilibrium point may be both uniformly and globally stable— e.g. if all the
conditions of the theorem hold, then one has GUAS.

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 111

Example 2.5.6 (Damped Mathieu Equation) :

This example illustrates that Lyapunov functions may often be complex functions that
are not easy to find. The damped Mathieu equation is

ẋ1 = x2

ẋ2 = −x2 − (2 + sin t)x1.

To analyze its stability, postulate the Lyapunov function candidate

L(x, t) = x2
1 +

x2
2

2 + sin t
.

Note that β ≡ 2 + sin t ≤ 3, so that

L(x, t) ≥ L0(x) ≡ x2
1 +

x2
2

3
,

and L(x, t) is globally positive definite.

Taking the Lyapunov derivative yields

L̇ = 2x1ẋ1 +
2x2ẋ2(2 + sin t)− x2

2 cos t

(2 + sin t)2
.

At this point, to evaluate L̇ along the trajectories of the system one simply substitutes the
state derivatives from the system equation. The result is

L̇ = −x2
2(cos t+ 2 sin t+ 4)

(2 + sin t)2

= −x2
2
α

β2

≤ −x2
2

9

since α ≡ cos t + 2 sin t + 4 ≥ 1 and β ≤ 3. Therefore, L̇ is negative semidefinite. This
shows that the Lyapunov candidate is indeed a Lyapunov function so that the system is
SISL. In fact β ≥ 1, implying that L(x, t) ≤ x2

1 + x2
2 so that it is decrescent. This shows

the system to be uniformly SISL.

The time histories shown in Fig. 2.5.6 were obtained using MATLAB. �

2.5.4 Extensions of Lyapunov Techniques and Bounded Stability

The Lyapunov results so far presented have allowed the determination of SISL, if
there exists a function such that L(x, t) > 0, L̇(x, t) ≤ 0, and AS, if there exists a
function such that L(x, t) > 0, L̇(x, t) < 0. Various extensions of these results allow
one to determine more about the stability properties by further examining the deeper
structure of the system dynamics (Slotine and Li 1991).

2.5.4.1 Barbalat’s Lemma Extension of Lyapunov Analysis

The first result is based on Barbalat’s Lemma (Section 2.2.2) applied to the Lya-
punov derivative L̇. It gives a condition under which L̇→ 0.

112 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Figure 2.5.6: Sample trajectories of Mathieu system. (a) x1(t) and x2(t) versus t.
(b) Phase-plane plot of x2 versus x1.

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 113

Theorem 2.5.6 (Barbalat’s Lemma Lyapunov Extension) :
Let L(x, t) be a Lyapunov function so that L(x, t) > 0, L̇(x, t) ≤ 0. If L̇(x, t) is

uniformly continuous, then
L̇(x, t) → 0 as t → ∞.

�

Recall that one may check for the boundedness of L̈(x, t), which implies that L̇(x, t)
is uniformly continuous.

Barbalat’s extension can often be used to show that certain states of a system
actually go to zero, though the standard Lyapunov analysis has revealed only that
the system is SISL (i.e., the states are bounded). In effect, the extension can show
that the states converge to a smaller region than that implied by Lyapunov analysis,
which in the case of SISL only demonstrates that they converge to a bounded region.
In the next example the states are shown to converge to the line x1 = 0, and in the
second example they are shown to converge to the origin x1 = x2 = 0, so that the
system is actually AS.

Example 2.5.7 (Asymptotic Stability Using Barbalat’s Extension) :
The system in Example 2.5.2 was shown to be SISL using Lyapunov techniques, so

that ‖x1‖, ‖x2‖ are both bounded. The Lyapunov derivative was

L̇(x) = −x2
1.

To apply the Barbalat’s extension, one must verify that L̇ is uniformly continuous. To
accomplish this, differentiate again to determine

L̈ = −2x1ẋ1 = −2x2
1x

2
2 + 2x2

1,

where the system dynamics were used to substitute for ẋ1. Since Lyapunov analysis
has shown ‖x‖ to be bounded, it follows that L̈ is bounded. Therefore, L̇ is uniformly
continuous.

Barbalat’s Lemma now shows that L̇ goes to zero with time. Therefore, x1(t) → 0.
That is, state component x1(t) actually goes to zero, though standard Lyapunov analysis
only showed it to be bounded. The time history plots given in Example 2.5.2 corroborate
this conclusion. �

Example 2.5.8 (Barbalat’s Extension to Show AS for Mathieu Equation) :
In Example 2.5.6 it was shown using standard Lyapunov analysis that the damped

Mathieu equation is SISL, so that ‖x‖ is bounded. The Lyapunov derivative was

L̇ = −x2
2
α

β2

with α ≡ cos t+ 2 sin t+ 4, β ≡ 2 + sin t.
To apply the Barbalat’s extension, one must verify that L̇(x, t) is uniformly continuous.

To accomplish this, differentiate again to determine

L̈ = [−2αx2ẋ2 − x2
2(− sin t+ 2 cos t)]/β2 + [2αx2

2 cos t]/β
3.

Now, substitute from the system dynamics for ẋ2 to obtain

L̈ = [x2
2 + 2αx1x2]/β + [4x2

2 sin t]/β
2 + [2αx2

2 cos t]/β
3.

Since Lyapunov analysis has shown ‖x‖ to be bounded, and α, β are both upper and lower
bounded, it follows that L̈ is bounded. Therefore, L̇ is uniformly continuous.

114 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Barbalat’s Lemma now shows that L̇ goes to zero with time. Therefore, x2(t) → 0.
However, in this example Barbalat opens the door for an even deeper analysis by appealing
yet again to the dynamics. Specifically, according to the dynamics, one thus has in the
limit

ẋ1 = 0

0 = ẋ2 = −(2 + sin t)x1

since (2+sin t) �= 0, it follows that x1(t) → 0. Therefore, the system is AS. This conclusion
is actually verified by the time history plots given in Example 2.5.6. �

2.5.4.2 UUB Analysis and Controls Design

We have seen how to demonstrate that a system is SISL or AS using Lyapunov
techniques. However, in practical applications there are often unknown disturbances
or modeling errors, so that even SISL is too strong to expect in closed-loop systems.
Typical examples are systems of the form

ẋ = f(x, t) + d(t), (2.5.30)

with d(t) an unknown but bounded disturbance. A more practical notion of sta-
bility is uniform ultimate boundedness (UUB). The next result shows that UUB is
guaranteed if the Lyapunov derivative is negative outside some bounded region of
�n.

Theorem 2.5.7 (UUB by Lyapunov Analysis) :
If, for system (2.5.30), there exists a function L(x, t) with continuous partial derivatives

such that for x in a compact set S ⊂ �n

L(x, t) is positive definite, L(x, t) > 0

L̇(x, t) < 0 for ‖x‖ > R

for some R > 0 such that the ball of radius R is contained in S, then the system is UUB,
and the norm of the state is bounded to within a neighborhood of R. �

In this result note that L̇ must be strictly less than zero outside the ball of radius R.
If one has only that L̇(x, t) ≤ 0 for ‖x‖ > R, then nothing may be concluded about
the system stability.

For systems of the sort satisfying the theorem, there may be some disturbance
effects that push the state away from the equilibrium. However, if the state becomes
too large, the dynamics tend to pull it back towards the equilibrium. Due to these
two opposing effects that balance when ‖x‖ ≈ R, the time histories tend to remain in
the vicinity of ‖x‖ = R. In effect, the norm of the state is effectively or practically
bounded by R.

The notion of the ball outside which L̇ is negative should not be confused with
that of domain of attraction— in Example 2.5.1a. It was shown there that the
system is AS as long as one has ‖x0‖ < 3, defining a domain of attraction of radius
3.

The next examples show how to use this result. They make the point that it
can also be used as a control design technique where the control input is selected to
guarantee that the conditions of the theorem hold.

2.5. NONLINEAR STABILITY ANALYSIS AND CONTROLS DESIGN 115

Example 2.5.9 (UUB Lyapunov Extension) :

The system

ẋ1 = x1x
2
2 − x1(x

2
1 + x2

2 − 3)

ẋ2 = −x2
1x2 − x2(x

2
1 + x2

2 − 3)

is closely related to the systems in Example 2.5.1. Select the Lyapunov function candidate

L(x) =
1

2
(x2

1 + x2
2)

and evaluate

L̇(x) = x1ẋ1 + x2ẋ2.

= −(x2
1 + x2

2)(x
2
1 + x2

2 − 3),

which is negative as long as

‖x‖ = x2
1 + x2

2 > 3.

Standard Lyapunov techniques fail in this example since L̇ is not even negative semidef-
inite. However, the UUB extension shows that the system is UUB, so that after a finite
settling time the trajectories will remain in the vicinity of ‖x‖ = 3. �

Example 2.5.10 (UUB of Linear System with Disturbance) :

It is usual in practical systems to have unknown disturbances, which are often be
bounded by some known amount. Such disturbances result in UUB and require the UUB
extension for analysis. Suppose the system

ẋ = Ax+ d

has A stable and a disturbance d(t) that is unknown but bounded so that ‖d‖ < dM , with
the bound dM known.

Select the Lyapunov function candidate

L(x) =
1

2
xTPx

and evaluate

L̇(x) =
1

2
(ẋTPx+ xTP ẋ)

=
1

2
xT (ATP + PA)x+ xTPd

= −1

2
xTQx+ xTPd

where (P,Q) satisfy the Lyapunov equation

ATP + PA = −Q.

One may now use norm inequalities (e.g. (2.2.14)) to write

L̇(x) ≤ −1

2
σmin(Q)‖x‖2 + σmax(P)‖x‖ · ‖d‖

≤ −‖x‖
[
1

2
σmin(Q)‖x‖ − σmax(P)‖d‖

]

116 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

which is negative as long as

‖x‖ ≥ 2
σmax(P)dM
σmin(Q)

.

Thus, if the disturbance magnitude bound increases, the norm of the state will also in-
crease. There are standard results on norms of Lyapunov solutions that can be used to
argue that as the system becomes more stable, so that the system poles move further into
the left-half plane, the ratio σmax(P)

σmin(Q)
decreases. �

Example 2.5.11 (UUB of Closed-Loop System) :

The UUB extension can be used to design stable closed-loop systems. The system

ẋ1 = x1x
2
2 − 10x1 + d

ẋ2 = −x2
1x2 − x2 sinx1 + u

is excited by an unknown disturbance whose magnitude is bounded so that ‖d‖ < dM . To
find a control that stabilizes the system and mitigates the disturbance effect, select

L =
1

2
(x2

1 + x2
2)

so that

L̇ = −10x2
1 + x1d− x2

2 sinx1 + x2u.

Selecting now the control input

u = x2 sinx1 − kx2

cancels the sinusoidal nonlinearity and provides a stabilizing term, yielding the closed-loop
Lyapunov derivative

L̇ = −10x2
1 + x1d− kx2

2

= −xT

[
10 0
0 k

]
x+ xT

[
d
0

]
≡ −xTQx+ xT d.

Therefore,

L̇ ≤ −σmin(Q)‖x‖2 + ‖x‖ · ‖d‖
L̇ ≤ −σmin(Q)‖x‖2 + dM‖x‖,

which is negative as long as

‖x‖ >
dM

σmin(Q)
.

However, σmin(Q) = min{10, k}, so that the UUB bound is made smaller by increasing
the feedback gain k up to the limit when k = 10. After that, increasing k does not decrease
the bound.

The system trajectories shown in Fig. 2.5.7 display the expected closed-loop behavior.
They were made using k = 20 with d(t) a random signal uniformly distributed on [0, 5] so
that dM = 5. The initial condition was x(0) = [1 − 1]′. �

2.6. REFERENCES 117

Figure 2.5.7: Sample closed-loop trajectories of UUB system.

2.5.4.3 Bellman-Gronwall Lemma

Another result useful in showing boundedness is the following.

Theorem 2.5.8 (Bellman-Gronwall Lemma) :
Suppose that for all t ≥ t0 the function x(t) satisfies the inequality

x(t) ≤ β(t) +

∫ t

t0

α(τ)x(τ)dτ (2.5.31)

with α(·), β(·) nonnegative piecewise continuous functions. Then, a bound on x(t), t ≥ t0
is given by

x(t) ≤ β(t) +

∫ t

t0

α(τ)β(τ)Γ(τ, t) dτ (2.5.32)

where

Γ(τ, t) = e

∫ t

τ
α(σ) dσ

. (2.5.33)

Moreover, if β is a constant, then

x(t) ≤ βΓ(t0, t). (2.5.34)

�

The importance of this result lies in the fact that in (2.5.31) the signal x(t)
appears on both sides of the inequality. However, the special form allows one to
derive the bound (2.5.32), where x(t) appears only on the left.

2.6 REFERENCES

von Bertalanffy, L., General System Theory, Braziller, New York, 1968.

118 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Commuri, S., and F.L. Lewis, “Robust practical stabilization of nonlinear systems
with ill-defined relative degree,” Proc. IEEE Mediterranean Symp. New Directions
in Control and Automation, pp. 299-306, June 1994.

Goodwin, C.G., and K.S. Sin, Adaptive Filtering, Prediction, and Control,
Prentice-Hall, New Jersey, 1984.

Ioannou, P.A., and J. Sun, Robust Adaptive Control, Prentice-Hall, New Jersey,
1996.

Isidori, A., Nonlinear Control Systems, second edition, Springer-Verlag, Berlin,
1989

Kailath, T., Linear Systems, Prentice-Hall, New Jersey, 1980.

Kalkkuhl, J.C., and K.J. Hunt, “Discrete-time neural model structures for
continuous-time nonlinear systems,” Neural Adaptive Control Technology, ed. R.
Zbikowski and K.J. Hunt, Chapter 1, World Scientific, Singapore, 1996.

Khalil, H.K., Nonlinear Systems, Macmillan, New York, 1992.

Kim, Y.H., and F.L. Lewis, “Output feedback control of rigid robots using dynamic
neural networks,” Proc. IEEE Conf. Robotics and Automation, Minneapolis, pp.
1923-1928, Apr. 1996.

Landau, Y.D., Adaptive Control: The Model Reference Approach, Marcel Dekker,
Inc., Basel, 1979.

Lewis, F.L., and V.L. Syrmos, Optimal Control, second edition, John Wiley and
Sons, New York, 1995.

Lewis, F.L., C.T. Abdallah, and D.M. Dawson, Control of Robot Manipulators,
Macmillan, New York, 1993.

Lewis, F.L., K. Liu, and A. Yeşildirek, “Neural net robot controller with guaranteed
tracking performance,” Proc. Int. Symp. Intelligent Control, pp. 225-231, Chicago.,
Aug. 1993.

Luenberger, D.G., Introduction to Dynamic Systems, Wiley, New York, 1979.

MATLAB version 4.2, July 1994, The Mathworks, Inc., 24 Prime Park Way,
Natick, MA 01760, USA.

Sastry, S., and M. Bodson, Adaptive Control, Prentice-Hall, New Jersey, 1989.

Seron, M.M., D.J. Hill, and A.L. Fradkov, “Adaptive passification of nonlinear
systems,” Proc. IEEE Conf. Decision and Control, pp. 190-195, Dec. 1994.

Slotine, J.-J.E., and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey,
1991.

Qu, Z., and D.M. Dawson, Robust Tracking Control of Robot Manipulators, IEEE
Press, New York, 1996.

2.7. PROBLEMS 119

Vidyasagar, M., Nonlinear System Analysis, second edition, Prentice-Hall, New
Jersey, 1993.

Whitehead, A.N., Science and the Modern World, Lowell Lectures (1925), Macmil-
lan, New York, 1953.

2.7 PROBLEMS

Section 2.1

Problem 2.1-1 : Simulation of Chaotic System. The dynamics of the Lorenz
attractor system are given by

ẋ1 = −σ(x1 − x2)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2.

The parameter σ is proportional to the Prandtl number in ordinary viscous fluids, r
is comparable to the Rayleigh number in the Benard convection problem, and b is a
positive constant. This system exhibits chaotic behavior. Simulate the trajectories
using MATLAB with σ = 10, r = 28, b = 8/3. Use initial conditions of x1 =
0.1, x2 = 0.1, x3 = 0.1, and a time window of 200 sec. Plot the states versus time,
and also the phase-plane plot in (x1, x2, x3)-space.

Problem 2.1-2 : Predator/Prey Population Balance Dynamics. It was
observed by Volterra that the ecological balance between populations, as detailed by
Darwin and Wallace, can be modeled using dynamical equations.

a. Dynamics and Simulation. The dynamical interaction of two populations,
one predatory on the other (e.g. foxes and rabbits) is described by Luenberger (1979)

ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2

with a, b, c, d positive constants. The number of prey at time t is described by x1(t)
and of predators by x2(t). This model exhibits oscillatory behavior corresponding
to alternating periods where the prey is scarce then plentiful. In the first equation,
the first term reveals that x1(t) will increase if x2 is zero; the second term shows
the effect of encounters between predator and prey, indicating that a positive x2
causes x1(t) to decrease. In the second equation, the first term reveals that x2(t)
will decrease if x1 is zero; the second term shows that a positive x1 causes x2(t) to
increase.

Simulate this system in MATLAB using different values of the constants (begin
on the first run with all values equal to 1). Plot x1(t), x2(t) versus t, and also the
phase-plane plot x1 versus x2. Be sure to use a sufficiently long simulation run
time to observe all effects. Start with nonzero initial conditions.

120 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

b. Effect of Overcrowding. The effects of overcrowding of prey in the presence
of scarce food resources can be included by adding a term so that the model becomes

ẋ1 = ax1 − bx1x2 − ex21

ẋ2 = −cx2 + dx1x2

with e > 0. Simulate this system in MATLAB and compare its behavior to the
model in part (a).

Problem 2.1-3 : Spread of an Epidemic. The development of an epidemic can
be described by (Luenberger 1979)

ẋ1 = −βx1x2
ẋ2 = βx1x2 − γx2

ẋ3 = γx2

with x1 the number of susceptible individuals, x2 the number of infected individuals,
and x3 the number of individuals who are either immune or removed by isolation or
death. The infection rate constant is β > 0, and the removal rate constant is γ > 0.

Simulate this system in MATLAB using different values of the constants. Plot
x1(t), x2(t), x3(t) versus t, and also phase-plane plots xi versus xj. Plot the 3-D
plot in x1, x2, x3-space. Be sure to use a sufficiently long simulation run time to
observe all effects. Start with nonzero initial conditions.

Problem 2.1-4 : Discrete-Time Multi-Input Brunovsky Canonical Form.
Write the discrete-time version of (2.1.7). Draw a block diagram of the system.

Problem 2.1-5 : Simulation of Compound Interest System. Simulate the
system of Example 2.1.3 and plot the state versus time.

Problem 2.1-6 : Genetics. Many congenital diseases can be explained as the
result of both genes at a single location being the same recessive gene (Luenberger
1979). Under some assumptions, the frequency of the recessive gene at generation
k is given by the recursion

x(k + 1) =
x(k)

1 + x(k)
.

Simulate in MATLAB using x(0)= 80. Observe that x(k) converges to zero, but very
slowly. This explains why deadly genetic diseases can remain active for hundreds
of generations. Simulate the system starting for a small negative value of x(0) and
observe that it tends away from zero.

Problem 2.1-7 : Discrete-Time System. Simulate the system

x1(k + 1) =
x2(k)

1 + x2(k)2

x2(k + 1) =
x1(k)

1 + x2(k)2

using MATLAB. Plot x1(k), x2(k) versus k and the phase-plane plot.

2.7. PROBLEMS 121

Section 2.2

Problem 2.2-1 : Singular Value Decomposition.
(a) Verify that, in the SVD (2.2.10), the singular values of A are the square roots

of the nonzero eigenvalues of AAT , or equivalently of ATA. This may be achieved
by substituting from (2.2.10) into ATA and AAT and then using the properties of
U, V . (b) Find the relation between the singular values and the eigenvalues of a
(square) symmetric matrix. (c) Find the relation between the singular values and
the eigenvalues of a general square matrix.

Section 2.3

Problem 2.3-1 : Passivity. Verify the passivity of the nonlinear spring-mass-
damper system

mẍ+ x2ẋ3 + x7 = F.

Select

L(t) =
1

2
ẋ2 +

1

8
x7

which is the sum of the kinetic and potential energy. Find the dissipated power.

Problem 2.3-2 : Passivity. Verify the passivity of the nonlinear system

ẋ+ x3 = u

y = x− sin2 x.

Select

L(t) =

∫ x

0

(z − sin2 z)dz.

Problem 2.3-3 : Passivity Definitions. Verify that (2.3.5) and (2.3.6) are
saying the same thing.

Problem 2.3-4 : Discrete-Time Passivity Definitions. Verify that (2.3.11)
and (2.3.12) are saying the same thing. To accomplish this, sum both sides of the
former equation and use the boundedness assumption on L(k).

Problem 2.3-5 : Passivity of Feedback Interconnection. (a) Verify Equation
(2.3.16). (b) Show that if both systems in the feedback connection are SSP, the
closed-loop system is SSP. (c) Show that if one system is SSP but the other only
passive, the closed-loop system is generally only passive.

Problem 2.3-6 : Passivity of Interconnections. (a) Show that parallel combi-
nations of passive systems are passive. (b) Investigate the passivity of series com-
binations of passive systems.

Problem 2.3-7 : Observability of LTI Systems. Begin with the LTI solution
(2.1.10) with u(t) = 0. Write down y(t) in terms of x(0) and verify that the initial
state can be recontstructed using (2.3.30)

Problem 2.3-8 : Controllability of LTI Systems. Begin with the LTI solution
(2.1.10). Verify that the initial state can be driven to the final state x(T) using
(2.3.35). Hint— substitue the latter equation into the former.

122 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

Section 2.4

Problem 2.4-1 : Internal Dynamics. Repeat the feedback linearization design
for the system of (2.4.2) if the output is redefined as y = x2; that is, x2(t) is
required to track the desired trajectory yd(t). Find f(x), g(x). Examine the internal
dynamics; are they stable?

Problem 2.4-2 : Feedback Linearization. The system

ẋ1 = x2

ẋ2 = x3

ẋ3 = −2x1x3 + sinx2 + 5u

is in Brunovsky form. If x1(t) is required to track a desired trajectory yd(t) the
feedback linearization design is very easy. However, in this example it is desired
for y(t) ≡ x2(t) to track yd(t). Perform the design and study the zero dynamics.
Simulate the closed-loop system using MATLAB with initial conditions of x1(0) =
1, x2(0) = 1, x3(0) = 1.

Problem 2.4-3 : Effect of Modeling Uncertainties and Disturbances on
Feedback Linearization Controller. In the sample design of Subsection 2.4.1
and the computer simulation in Example 2.4.1 it was assumed that all the dynamics
are exactly known and there are no disturbances. However, in practical situations
there can be unmodelled dynamics or unknown disturbances. Suppose, therefore,
that the controller was designed assuming the plant dynamics (2.4.2) but that the
actual plant is given by

ẋ1 = x1x2 + x3 + d(t)
ẋ2 = −2x2 + x1u
ẋ3 = sinx1 + cx1x2 + u

(2.7.1)

where c is an inexactly known parameter and d(t) is a disturbance. Simulate the
controller from Example 2.4.1 on this actual dynamics for: (a) d = 0, c = 1. (b)
d = 0, c = 5. (c) The disturbance is the unit step, d(t) = u−1(t) ≡ t, t ≥ 0, and
c = 2.

Problem 2.4-4 : Integral Control Term for Disturbance Rejection. The
debilatory effects of disturbances can often be offset by including an integral term
in the outer tracking loop. Consider the system (2.7.1) with c = 2 and a unit step
distrubance d(t) = u−1(t). Replace the PD outer tracking loop by a PID controller.
Select suitable PID gains. Simulate the system using both PD and PID outer loops
to compare the performance.

Section 2.5

Problem 2.5-1 : Lyapunov Stability Analysis. Using Lyapunov techniques
examine stability for the following systems. Plot time histories to substantiate your
conclusions.

a.
ẋ1 = x1x

2
2 − x1

ẋ2 = −x21x2 − x2.

2.7. PROBLEMS 123

b. ẋ1 = x2 sinx1 − x1

ẋ2 = −x1 sinx1 − x2.

c. ẋ1 = x2 + x1(x
2
1 − 2)

ẋ2 = −x1

Problem 2.5-2 : Passivity and Lyapunov Functions. Study the passivity of
the following systems. Find the power dissipated g(t).

a.
ẋ1 = x1x

2
2 − x1 + u

ẋ2 = −x21x2 − x2 + u

y = x1 + x2.

b.
ẋ1 = x2 sinx1 − x1 + u

ẋ2 = −x1 sinx1 − x2

y = x1.

c.
ẋ1 = x2 sinx1 − x1 + u

ẋ2 = −x1 sinx1 − x2

y = x2.

Problem 2.5-3 : Lyapunov Control Design. Using Lyapunov techniques design
controllers to stabilize the following systems. Plot time histories, both open-loop and
closed-loop, to verify your designs. Verify that the closed-loop systems are passive.
Check also for dissipativity.

a.
ẋ1 = x1x2

ẋ2 = x21 − sinx1 + u.
b. ẋ1 = x1 + (1 + x22)u

ẋ2 = x2 sinx1.

c.
ẋ1 = x1(x

2
1 − 2)

ẋ2 = cos(x1) + (2 + sin(x1))u.

Problem 2.5-4 : Barbalat’s Lemma. Using Barbalat’s Lemma, show that the
nonlinear spring-mass-damper in Example 2.5.3 is AS.

Problem 2.5-5 : Bounded Stability Using Lyapunov Extensions. Use the
UUB extension to show that the van der Pol oscillator

ÿ + α(y2 − γ)ẏ + y = u

is UUB. Find the radius of the region of boundedness. Simulate the system in

124 CHAPTER 2. BACKGROUND ON DYNAMIC SYSTEMS

MATLAB and plot phase-plane trajectories to verify the result.

Problem 2.5-6 : Stability of Limit Cycle. Consider the system

ẋ1 = x1x
2
2 − x1(x

2
1 + x22 − 3)

ẋ2 = −x21x2 − x2(x
2
1 + x22 − 3)

which was shown to be UUB in Example 2.5.9. Select the Lyapunov function

L = (x21 + x22 − 3)2

to demonstrate that this system has two equilibria: a stable limit cycle and an
unstable equilibrium point at the origin. Simulate the system using MATLAB and
make phase-plane plots for several initial conditions to convince yourself that, in
this example, the limit cycle is the cause of the UUB nature of the stability.

Problem 2.5-7 : Stability Improvement Using Feedback. The system

ẋ = Ax+Bu+ d

has a disturbance d(t) that is unknown but bounded so that ‖d‖ < dM , with the
bound dM known. In Example 2.5.10 the system with no control input, B = 0,
and A stable was shown to be UUB. Show that by selecting the control input as
u(t) = −Kx(t) it is possible to improve the UUB stability properties of the system
by making the bound on ‖x‖ smaller. In fact, if feedback is allowed, the initial
system matrix A need not be stable as long as (A,B) is stabilizable.

Chapter 3

Robot Dynamics and Control

This chapter deals with the real-time motion control of robot manipulators. Robot
manipulators have complex nonlinear dynamics that might make accurate and ro-
bust control difficult. Fortunately, robots are in the class of Lagrangian dynamical
systems, so that they have several extremely nice physical properties that make their
control straightforward. In this chapter will be discussed several control techniques
including computed-torque (e.g. feedback linearization), classical joint control, and
digital control. A framework for the tracking control problem based on approxi-
mation of unknown nonlinear functions is provided that can be used to derive a
broad family of controllers including adaptive, robust, and learning controllers. This
approximation-based approach is used to design neural network controllers in the
remainder of the book. More information may be found in Lewis, Abdallah, and
Dawson (1993); Lewis, Fitzgerald, and Liu (1997). The advances that made possi-
ble this modern approach to robot control were made by Craig (1985), Slotine and
Li (1991) Slotine (1985, 1988), Spong and Ortega (Spong et al. 1987, Spong and
Vidyasagar 1989), and others.

3.0.1 Commercial Robot Controllers

Commercial robot controllers are specialized multiprocessor computing systems that
provide four basic processes allowing integration of the robot into an automation
system: motion trajectory generation and following, motion/process integration and
sequencing, human user integration, and information integration.

Motion Trajectory Generation and Following. There are two important
controller-related aspects of industrial robot motion generation. One is the extent of
manipulation that can be programmed, the other is the ability to execute controlled
programmed motion. A unique aspect of each robot system is its real-time servo-level
motion control. The details of real-time control are typically not revealed to the user
due to safety and proprietary information secrecy reasons. Each robot controller,
through its operating system programs, converts digital data from higher level coor-
dinators into coordinated arm motion through precise computation and high-speed
distribution and communication of the individual axis motion commands which are
executed by individual joint servo-controllers. Most commercial robot controllers

125

126 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

operate at a sample period of 16 msec. The real-time motion controller invari-
ably uses classical independent-joint proportional-integral-derivative (PID) control
or simple modifications of PID. This makes commercially available controllers suit-
able for point-to-point motion, but most are not suitable for following continuous
position/velocity profiles or exerting prescribed forces without considerable program-
ming effort, if at all.

Motion/Process Integration and Sequencing. Motion/process integration
involves coordinating manipulator motion with process sensors or other process con-
troller devices. The most primitive process integration is through discrete digital in-
put/output (i/o). For example a machine controller external to the robot controller
might send a one-bit signal indicating that it is ready to be loaded by the robot.
The robot controller must have the ability to read the signal and to perform logical
operations (if then, wait until, do until, etc.) using the signal. Coordination with
sensors (e.g. vision) is also often provided.

Human Integration. The controller’s human interfaces are critical to the expedi-
tious setup and programming of robot systems. Most robot controllers have two types
of human interface available: computer style CRT/keyboard terminals for writing
and editing program code off-line, and teach pendants, which are portable manual
input terminals used to command motion in a telerobotic fashion via touch keys or
joy sticks. Teach pendants are usually the most efficient means available for posi-
tioning the robot, and a memory in the controller makes it possible to play back the
taught positions to execute motion trajectories. With practice, human operators can
quickly teach a series of points which are chained together in playback mode. Most
robot applications currently depend on the integration of human expertise during
the programming phase for the successful planning and coordination of robot mo-
tion. These interface mechanisms are effective in unobstructed workspaces where
no changes occur between programming and execution. They do not allow human
interface during execution or adaptation to changing environments.

Information Integration. Information integration is becoming more important
as the trend toward increasing flexibility and agility impacts robotics. Many com-
mercial robot controllers now support information integration functions by employ-
ing integrated PC interfaces through the communications ports (e.g. RS-232), or
through direct connections to the robot controller data bus.

3.1 KINEMATICS AND JACOBIANS

The primary focus of this chapter is on the dynamics of robot manipulators and their
properties and control. However, it is usually important in robot control applications
to have an appreciation of manipulator kinematic and Jacobian transformations.
Therefore, these topics are discussed in this section.

3.1. KINEMATICS AND JACOBIANS 127

3.1.1 Kinematics of Rigid Serial-Link Manipulators

The kinematics of the robot manipulator are concerned only with relative positioning
and not with motion effects. The key notions involve position coordinate changes
and include the link transformation A matrices, the arm T matrix, joint space versus
Cartesian space coordinates, and kinematics versus inverse kinematics.

Link A Matrices. Robot manipulator geometries fall into five basic classes, illus-
trated in Fig. 3.1.1. Particularly useful for assembly and pick-and-place operations
is the selected compliant articulated robot for assembly (SCARA) arm. Fixed-base
serial-link rigid robot manipulators can be considered as a sequence of joints held
together by links. Each joint i has a joint variable qi, which is an angle (e.g. θi,
units of degrees) for revolute (R) joints and a length (e.g. di, units of length) for
prismatic (P) or extensible joints. The joint vector of an n-link robot is defined as
q = [q1 q2 . . . qn]

T ∈ �n; the joints are traditionally numbered from the base to the
end-effector, with link 0 being the fixed base. For example, in Fig. 3.1.1d, the joint
vector is q = [θ h r]T , with n = 3. A robot with n joints has n degrees of freedom,
so that for complete freedom of positioning and orientation in our 3-D space �3 one
needs a six-link arm.

For analysis purposes, it is considered that a coordinate frame is affixed to each
link. The base frame is attached to the manipulator base, link 0. The location of the
coordinate frame on the link is often selected according to the Denavit-Hartenberg
(DH) convention (Lewis, Abdallah, and Dawson 1993). The relation between the
links, shown in Fig. 3.1.2, is given by the A matrix for link i, which has the form

Ai(qi) =

[
Ri pi
0 1

]
, (3.1.1)

where Ri(qi) is a 3× 3 rotation matrix (R−1
i = RT

i) and pi(qi) = [xi yi zi]
T ∈ �3

is a translation vector. Ri specifies the rotation of the coordinate frame on link i
with respect to the coordinate frame on link i−1; pi specifies the translation of the
coordinate frame on link i with respect to the coordinate frame on link i−1. The
4× 4 homogeneous transformation Ai thus specifies completely the orientation and
translation of link i with respect to link i−1.

The A matrix Ai(qi) is a function of the joint variable, so that as qi changes with
robot motion, Ai changes correspondingly. Ai is also dependent on the parameters
link twist and link length, which are fixed for each link. The A matrices are often
given for a specific robot in the manufacturer’s handbook.

Robot T Matrix. The position of the end-effector is given in terms of the base
coordinate frame by the arm T matrix defined as the concatenation of A matrices

T (q) = A1(q1)A2(q2) . . . An(qn) ≡
[
R p
0 1

]
. (3.1.2)

This 4×4 homogeneous transformation matrix is a function of the joint variable vec-
tor q. The 3×3 cumulative rotation matrix is given by R(q) = R1(q1)R2(q2) . . . Rn(qn).

128 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.1.1: Basic robot arm geometries. (a) Articulated arm, revolute coordinates
(RRR). (b) Spherical coordinates (RRP). (c) SCARA arm (RRP).

3.1. KINEMATICS AND JACOBIANS 129

Figure 3.1.1: Basic robot arm geometries (cont’d.). (d) Cylindrical coordinates
(RPP). (e) Cartesian arm, rectangular coordinates (PPP).

Scanned by CamScanner

Figure 3.1.2: Denavit-Hartenberg coordinate frames in a serial-link manipulator.

130 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Joint Space Versus Cartesian Space. An n-link manipulator has n degrees of
freedom, and the position of the end-effector is completely fixed once the joint vari-
ables qi are prescribed. This position may be described either in joint coordinates or
in Cartesian coordinates. The joint coordinates position of the end-effector is sim-
ply given by the value of the n-vector q. The Cartesian position of the end-effector
is given in terms of the base frame by specifying the orientation and translation of a
coordinate frame affixed to the end-effector in terms of the base frame; this is exactly
the meaning of T (q). That is, T (q) gives the Cartesian position of the end-effector.

The Cartesian position of the end-effector may be completely specified in our
3-D space by a six-vector; three coordinates are needed for translation and three for
orientation. The representation of Cartesian translation by the arm T (q) matrix is
suitable, as it is simply given by p(q) = [x y z]T . Unfortunately, the representation
of Cartesian orientation by the arm T matrix is inefficient in that R(q) has nine
elements. More efficient representations are given in terms of quaternions or the
tool configuration vector.

Kinematics and Inverse Kinematics Problems. The robot kinematics prob-
lem is to determine the Cartesian position of the end-effector once the joint variables
are given. This is accomplished simply by computing T (q) for a given value of q.

The inverse kinematics problem is to determine the required joint angles qi to
position the end-effector at a prescribed Cartesian position. This corresponds to
solving (3.1.2) for q ∈ �n given a desired orientation R and translation p of the
end-effector. This is not an easy problem, and may have more than one solution (e.g.
think of picking up a coffee cup— one may reach with elbow up, elbow down, etc.).
There are various efficient techniques for accomplishing this. One should avoid the
functions arcsin, arccos and use where possible the numerically well-conditioned
arctan function.

3.1.2 Robot Jacobians

Kinematics transformations deal with conversion of positions between various coor-
dinate frames. Jacobians allow the transformation of dynamical quantities including
velocities, accelerations, and forces.

Transformation of Velocity and Acceleration. When the manipulator moves,
the joint variable becomes a function of time t. Suppose there is prescribed a gener-
ally nonlinear transformation from the joint variable q(t) ∈ �n to another variable
y(t) ∈ �p given by

y(t) = h(q(t)). (3.1.3)

An example is provided by the equation y = T (q), where y(t) is the Cartesian
position. Taking partial derivatives one obtains

ẏ =
∂h

∂q
q̇ ≡ J(q)q̇, (3.1.4)

where J(q) is the Jacobian associated with h(q). This equation tells how the joint
velocities q̇ are transformed to the velocity ẏ.

3.2. ROBOT DYNAMICS AND PROPERTIES 131

If y = T (q) the Cartesian end-effector position, then the associated Jacobian

J(q) = ∂T (q)
∂q is known as the manipulator Jacobian. There are several techniques

for efficiently computing this particular Jacobian. Note that ẏ = [vT ωT]T ∈ �6,
with v ∈ �3 the linear velocity and ω ∈ �3 the angular velocity. Therefore, in
formally computing J(q) there are some complications arising from the fact that the
representation of orientation in the homogeneous transformation T (q) is a 3 × 3
rotation matrix and not a 3-vector. If the arm has n links, then the Jacobian is a
6×n matrix; if n is less than 6 (e.g. SCARA arm), then J(q) is not square and there
is not full positioning freedom of the end-effector in 3-D space. The singularities of
J(q) (where it loses rank) define the limits of the robot workspace; singularities may
occur within the workspace for some arms.

Another example of interest is when y(t) is the position in a camera coordi-
nate frame. Then J(q) reveals the relationships between manipulator joint veloci-
ties (e.g. joint incremental motions) and incremental motions in the camera image.
This affords a technique, for instance, for moving the arm to cause desired relative
motion of a camera and a workpiece. Note that, according to the velocity trans-
formation (3.1.4), one has that incremental motions are transformed according to
Δy = J(q)Δq.

Differentiating (3.1.4) one obtains the acceleration transformation

ÿ = Jq̈ + J̇ q̇. (3.1.5)

Force Transformation. Using the notion of virtual work, it can be shown that
forces in terms of q may be transformed to forces in terms of y using

τ = JT (q)F, (3.1.6)

where τ(t) is the force in joint space (given as an n-vector of torques for a revolute
robot), and F is the force vector in y space. If y is the Cartesian position, then F
is a vector of three forces [fx fy fz]

T and three torques [τx τy τz]
T . When J(q)

loses rank, the arm cannot exert forces in all directions that may be specified.

3.2 ROBOT DYNAMICS AND PROPERTIES

Robot dynamics considers motion effects due to the control inputs and inertias,
Coriolis forces, gravity, disturbances, and other effects. It reveals the relation be-
tween the control inputs and the joint variable motion q(t), which is required for
the purpose of servo-control system design. A robot manipulator can have either
revolute joints or prismatic joints. The values of the angles, for revolute joints,
and link lengths, for prismatic joints, are called the link variables and are denoted
q1(t), q2(t), . . . , qn(t) for joints one, two, and so on. The number of links is denoted
n; for complete freedom of motion in space, six degrees of freedom are needed, three
for positioning, and three for orientation. Thus, many commercial robots have 6
links. We discuss here robots which are rigid, that is which have no flexibility in the
links or in the gearing of the joints; flexible robots are discussed in Chapter 5.

132 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

3.2.1 Joint Space Dynamics and Properties

The dynamics of robot manipulators with rigid links can be written as

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ, (3.2.1)

where M(q) is the inertia matrix, Vm(q, q̇) is the Coriolis/centripetal matrix, F (q̇)
are the friction terms, G(q) is the gravity vector, and τd(t) represents disturbances.
The control input vector τ(t) has components of torque for revolute joints and force
for prismatic joints. It is often convenient to write the robot dynamics as

M(q)q̈ +N(q, q̇) + τd = τ, (3.2.2)

where
N(q, q̇) ≡ Vm(q, q̇)q̇ + F (q̇) +G(q) (3.2.3)

represents a vector of the nonlinear terms.
The dynamics can be computed for a specific manipulator from the link A matri-

ces and link inertias (Lewis, Abdallah, and Dawson 1993). Alternatively, they can
be derived from first principles using Lagrange’s equation of motion

d

dt

∂L

∂q̇
− ∂L

∂q
= τ, (3.2.4)

with the Lagrangian defined in terms of the kinetic energy K and the potential
energy P as

L = K − P. (3.2.5)

The use of Lagrange’s equation in deriving the manipulator dynamics is illustrated
in Example 3.2.1.

The objective of robot control is generally to select the control torques τ(t) so
that the robot follows a prescribed desired motion trajectory or exerts a desired force.
Examples include spray painting, grinding, or manufacturing assembly operations.
The position control objective can be achieved by first defining a desired trajectory
qd(t), which is a vector containing the desired values versus time qdi

(t) of each
joint of the manipulator. This desired trajectory vector qd(t) is determined in a
higher-level path planner, based on an even higher-level task decomposition, and
then fed to the real-time motion control system (Lewis, Fitzgerald, and Liu 1997).
This chapter discusses the real-time motion control problem assuming that qd(t) is
given.

The robot dynamics (3.2.1) satisfy some important physical properties as a con-
sequence of the fact that they are a Lagrangian system. These properties signifi-
cantly simplify the robot control problem. The main properties of which one should
be aware are given in Table 3.2.1. The bounding properties are especially useful in
robust control approaches. The skew-symmetry property P3 is vital for Lyapunov
control proofs which provide guaranteed tracking motion and often give the structure
of the control loops. It essentially allows some very nice linear systems techniques
to be used with the time-varying robot dynamics.

The selection of Vm(q, q̇) in (3.2.1) is not unique. In the robot control applica-
tions given in this book it is necessary to select it so that property P3 holds. The
selection of Vm(q, q̇), the bounds, and the skew-symmetric matrix S(q, q̇) for a rep-
resentative robot arm are discussed in Example 3.2.2.

3.2. ROBOT DYNAMICS AND PROPERTIES 133

Table 3.2.1: Properties of Robot Arm Dynamics

P1 The inertia matrix M(q) is symmetric, positive definite, and bounded so that μ1I ≤
M(q) ≤ μ2I for all q(t). For revolute joints, the only occurrences of the joint
variables qi are as sin(qi), cos(qi). For arms with no prismatic joints, the bounds
μ1, μ2 are constants.

P2 The Coriolis/centripetal vector Vm(q, q̇)q̇ is quadratic in q̇. Vm is bounded so that
‖Vm‖ ≤ vB‖q̇‖, or equivalently ‖Vmq̇‖ ≤ vB‖q̇‖2.

P3 The Coriolis/centripetal matrix can always be selected so that the matrix S(q, q̇) ≡
Ṁ(q)− 2Vm(q, q̇) is skew symmetric. Therefore, xTSx = 0 for all vectors x. This is
a statement of the fact that the fictitious forces in the robot system do no work.

P4 The friction terms have the approximate form

F (q̇) = Fv q̇ + Fd(q̇),

with Fv a diagonal matrix of constant coefficients representing the viscous friction,
and Fd(·) a vector with entries like Kdisgn(q̇i), with sgn(·) the signum function and
Kdi the coefficients of dynamic friction. These friction terms are bounded so that
‖F (q̇)‖ ≤ fB‖q̇‖+ kB for constants fB , kB .

P5 The gravity vector is bounded so that ‖G(q)‖ ≤ gB . For revolute joints, the only
occurrences of the joint variables qi are as sin(qi), cos(qi). For revolute joint arms
the bound gB is a constant.

P6 The disturbances are bounded so that ‖τd(t)‖ ≤ dB .

Example 3.2.1 (Dynamics of 2-Link Planar Elbow Arm) :

A 2-link planar RR robot arm used extensively for simulation in the literature (Lewis,
Abdallah, and Dawson 1993) is shown in Fig. 3.2.1. This arm is simple enough to simulate
yet has all the nonlinear effects common to general robot manipulators. This example
shows how to derive the dynamics of a robot arm using Lagrange’s equation of motion.

To determine the arm dynamics, examine Fig. 3.2.1 where we have assumed that the
link masses are concentrated at the ends of the links. The joint variable is q = [q1 q2]

T

and the generalized force vector is τ = [τ1 τ2]
T , with τ1, τ2 the torques supplied by the

actuators.

a. Kinetic and Potential Energy .

To determine the dynamics of the 2-link arm using Lagrange’s equation (3.2.4), one
must first find the kinetic and potential energies. For link 1, the kinetic and potential
energies are

K1 =
1

2
m1a

2
1q̇

2
1

P1 = m1ga1 sin q1.

For link 2, we have the positions and velocities

x2 = a1 cos q1 + a2 cos(q1 + q2)

y2 = a1 sin q1 + a2 sin(q1 + q2)

134 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.2.1: Two-link planar robot arm.

ẋ2 = −a1q̇1 sin q1 − a2(q̇1 + q̇2) sin(q1 + q2)

ẏ2 = a1q̇1 cos q1 + a2(q̇1 + q̇2) cos(q1 + q2)

so that the velocity squared is

v22 = ẋ2
2 + ẏ2

2 = a2
1q̇

2
1 + a2

2(q̇1 + q̇2)
2 + 2a1a2(q̇

2
1 + q̇1q̇2) cos q2.

Therefore, the kinetic energy for link 2 is

K2 =
1

2
m2v

2
2 =

1

2
m2a

2
1q̇

2
1 +

1

2
m2a

2
2(q̇1 + q̇2)

2 +m2a1a2(q̇
2
1 + q̇1q̇2) cos q2.

The potential energy for link 2 is

P2 = m2gy2 = m2g[a1 sin q1 + a2 sin(q1 + q2)].

b. Lagrange’s Equation .
The Lagrangian for the entire arm is

L = K − P = K1 +K2 − P1 − P2

=
1

2
(m1 +m2)a

2
1q̇

2
1 +

1

2
m2a

2
2(q̇1 + q̇2)

2 +m2a1a2(q̇
2
1 + q̇1q̇2) cos q2

−(m1 +m2)ga1 sin q1 −m2ga2 sin(q1 + q2).

Equation (3.2.4) is a vector equation comprised of n = 2 scalar equations. The individual
terms needed to write down these n equations are

∂L

∂q̇1
= (m1 +m2)a

2
1q̇1 +m2a

2
2(q̇1 + q̇2) +m2a1a2(2q̇1 + q̇2) cos q2

d

dt

∂L

∂q̇1
= (m1 +m2)a

2
1q̈1 +m2a

2
2(q̈1 + q̈2) +m2a1a2(2q̈1 + q̈2) cos q2

−m2a1a2(2q̇1q̇2 + q̇22) sin q2

3.2. ROBOT DYNAMICS AND PROPERTIES 135

∂L

∂q1
= −(m1 +m2)ga1 cos q1 −m2ga2 cos(q1 + q2)

∂L

∂q̇2
= m2a

2
2(q̇1 + q̇2) +m2a1a2q̇1 cos q2

d

dt

∂L

∂q̇2
= m2a

2
2(q̈1 + q̈2) +m2a1a2q̈1 cos q2 −m2a1a2q̇1q̇2 sin q2

∂L

∂q2
= −m2a1a2(q̇

2
1 + q̇1q̇2) sin q2 −m2ga2 cos(q1 + q2).

Finally, according to Lagrange’s equation, the arm dynamics are given by the two
coupled nonlinear differential equations

τ1 = [(m1 +m2)a
2
1 +m2a

2
2 + 2m2a1a2 cos q2]q̈1 + [m2a

2
2 +m2a1a2 cos q2]q̈2

−m2a1a2(2q̇1q̇2 + q̇22) sin q2 + (m1 +m2)ga1 cos q1 +m2ga2 cos(q1 + q2)

τ2 = [m2a
2
2 +m2a1a2 cos q2]q̈1 +m2a

2
2q̈2 +m2a1a2q̇

2
1 sin q2 +m2ga2 cos(q1 + q2).

c. Manipulator Dynamics .
Writing the arm dynamics in vector form yields[

(m1 +m2)a
2
1 +m2a

2
2 + 2m2a1a2 cos q2 m2a

2
2 +m2a1a2 cos q2

m2a
2
2 +m2a1a2 cos q2 m2a

2
2

][
q̈1
q̈2

]

+

[
−m2a1a2(2q̇1q̇2 + q̇22) sin q2

m2a1a2q̇
2
1 sin q2

]
+

[
(m1 +m2)ga1 cos q1 +m2ga2 cos(q1 + q2)

m2ga2 cos(q1 + q2)

]

=

[
τ1
τ2

]
.

These manipulator dynamics are in the standard form

M(q)q̈ + V (q, q̇) +G(q) = τ

with M(q) the inertia matrix, V (q, q̇) the Coriolis/centripetal vector, and G(q) the gravity
vector. Note that M(q) is symmetric. Friction terms may be added of the form in Property
P4 in Table 3.2.1.

One may write the dynamics of the 2-link arm compactly as[
α+ β + 2η cos q2 β + η cos q2

β + η cos q2 β

][
q̈1
q̈2

]

+

[
−η(2q̇1q̇2 + q̇22) sin q2

ηq̇21 sin q2

]
+

[
αe1 cos q1 + ηe1 cos(q1 + q2)

ηe1 cos(q1 + q2)

]
=

[
τ1
τ2

]
where α = (m1 +m2)a

2
1, β = m2a

2
2, η = m2a1a2, e1 = g/a1.

The bounds and the skew-symmetric matrix in properties P1-P6 for the 2-link planar
robot arm are given in Example 3.2.2. �

Example 3.2.2 (Exercise — Bounds and Coriolis Matrices) :
The choice of the Coriolis/centripetal matrix Vm(q, q̇) in (3.2.1) is not unique. Show

that the correct selection for property P3 to hold for the 2-link planar arm is

Vm(q, q̇) =

[
−q̇2m2a1a2 sin q2 −(q̇1 + q̇2)m2a1a2 sin q2
q̇1m2a1a2 sin q2 0

]

136 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

=

[
−ηq̇2 sin q2 −η(q̇1 + q̇2) sin q2
ηq̇1 sin q2 0

]
with η = m2a1a2. Show that the skew-symmetric matrix is then given by

S(q, q̇) =

[
0 (2q̇1 + q̇2)m2a1a2 sin q2

−(2q̇1 + q̇2)m2a1a2 sin q2 0

]

=

[
0 η(2q̇1 + q̇2) sin q2

−η(2q̇1 + q̇2) sin q2 0

]
.

The bounds on the various dynamics terms discussed in properties P1-P6 depend on
the norm selected (Chapter 2 discusses norms). The correct selection of norm can simplify
the computations. Show that the bounds in properties P1-P6 are given for the 2-link
planar arm of Example 3.2.1 in terms of the 1-norm by the following.
Inertia matrix lower and upper bounds:

μ1 = (m1 +m2)a
2
1 + 2m2a

2
2 ≡ α+ 2β

μ2 = (m1 +m2)a
2
1 + 2m2a

2
2 + 3m2a1a2 ≡ α+ 2β + 3η.

Coriolis bound:
vB = m2a1a2 ≡ η.

Gravity bound:
gB = (m1 +m2)ga1 + 2m2ga2 ≡ αe1 + 2ηe1,

where α = (m1 +m2)a
2
1, β = m2a

2
2, η = m2a1a2, e1 = g/a1. �

3.2.2 State Variable Representations

The nonlinear state-variable representation ẋ = f(x, u), with x(t) the internal state
and u(t) the control input, is very convenient for many applications, including the
derivation of suitable control laws and computer simulation. Once the system has
been put into state-space form, it can easily be integrated to obtain simulation time
plots using, for instance, a Runge-Kutta integrator; many standard software pack-
ages have such integration routines, including MATLAB, MATRIXX , and SIM-
NON. Computer simulation of nonlinear state-space systems was discussed in Chap-
ter 2. Simulation of robot controllers is discussed in Section 3.3.2.

It is supposed for convenience in this section that the disturbance τd(t) is equal
to zero. There are three convenient state-space formulations for the robot dynamics
(3.2.1). In the position/velocity state-space form, one defines the state as the 2n-
vector x ≡ [qT q̇T]T and writes

ẋ =

[
q̇

−M−1(q)N(q, q̇)

]
+

[
0

M−1(q)

]
τ, (3.2.6)

which is in state-space form with u(t) ≡ τ(t).
An alternative linear state-space equation in the form ẋ = Ax+Bu can be defined

as

ẋ =

[
0 I
0 0

]
x+

[
0
I

]
u, (3.2.7)

with u(t) ≡ −M−1(q)N(q, q̇)+M−1(q)τ . This is known as the Brunovsky canonical
form.

3.2. ROBOT DYNAMICS AND PROPERTIES 137

The third state-space formulation is the Hamiltonian form, which derives from
Hamilton’s equations of motion. Here, the state is defined as the 2n-vector x =
[qT pT]T , with p(t) ≡ M(q)q̇ the generalized momentum. Then, the state-space
equation is

ẋ =

[
M−1(q)p

− 1
2 (In ⊗ pT)∂M

−1(q)
∂q p

]
+

[
0
In

]
u, (3.2.8)

with the control input defined by u = τ −G(q) and ⊗ the Kronecker product (Lewis,
Abdallah, and Dawson, 1993).

3.2.3 Cartesian Dynamics and Actuator Dynamics

Cartesian Dynamics. The dynamics (3.2.1) are known as the joint-space dy-
namics as they are expressed in the joint-space coordinates q. Cartesian coordinates
referred to some frame, often the base of the robot manipulator, may be used to
describe the position of the end-effector of the robot arm. Denote the Cartesian
coordinates of the end of the arm as y(t) = h(q), whose first three coordinates rep-
resent position and last coordinates represent orientation. The nonlinear function
h(q) gives the end-effector Cartesian coordinates in terms of the current joint posi-
tions q and is called the arm kinematics transformation. The arm Jacobian relates

joint and Cartesian velocites and is defined as J(q) ≡ ∂h(q)
∂q so that

[
v
ω

]
≡ ẏ = J(q)q̇ (3.2.9)

where v(t) is the linear velocity and ω(t) the angular velocity of the end-effector.
Both these velocities are 3-vectors. Differentiating this equation gives the accelera-
tion transformation ÿ = Jq̈ + J̇ q̇.

By substituting these expressions in (3.2.1) one discovers that the dynamics may
be written in Cartesian form as

M̄ÿ + N̄ + fd = F, (3.2.10)

where M̄ ≡ J−TMJ−1, N̄ ≡ J−T (N −MJ−1J̇J−1ẏ), and the disturbance is fd ≡
J−T τd. In the Cartesian dynamics, the control input is F , which has three compo-
nents of force and three of torque.

The important conclusion of this discussion is that the Cartesian dynamics are
of the same form as (3.2.2). Furthermore, it can be shown that the properties in
Table 3.2.1 also hold in Cartesian form. Therefore, all the control techniques to
be described in this book can be used for either the joint-space or the Cartesian
dynamics.

Actuator Dynamics. The robot manipulator is driven by actuators which may
be electric, hydraulic, pneumatic, and so on. Considering the case of electric mo-
tors it is straightforward to show that, if the armature inductance is negligible, the
dynamics of the arm plus actuators can be written as

(JM +R2M)q̈ + (BM +R2Vm)q̇ + (RFM +R2F) +R2G = RKMv, (3.2.11)

138 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

where the robot arm dynamics are described by M(q), Vm(q, q̇), F (q̇), G(q), and JM
is the motor inertia, BM is given by the rotor damping constant and back emf, and
R has diagonal elements containing the gear ratios of the motor/joint couplings.
The control input is the motor voltage v(t), with KM the diagonal matrix of motor
torque constants.

The important conclusion is that the dynamics of the arm-plus-actuators has the
same form as the dynamics (3.2.1) and can be shown to enjoy all the properties in
Table 3.2.1. Therefore, the control methods to be described in this book apply to this
composite system as well. Similar comments hold for other sorts of actuators such
as hydraulic. If the armature inductances of the electric motors are not negligible,
then the arm-plus-actuators have a coupled form of dynamics such as those discussed
in Chapter 5. Special controls techniques must then be used.

3.3 COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIM-
ULATION

In this section we introduce a variety of controllers for robot manipulators; these are
collected for easy reference in Table 3.3.1. It is shown how to simulate these control
algorithms on a digital computer, and examples are given to examine the sort of
performance to be expected from the various controllers. The computed-torque (CT)
method provides a unifying point of view for many control schemes, including PD-
gravity control, classical independent joint control, and digital control. For many
years during the 1960s and 1970s the major techniques for robot dynamics control
were based on CT. Recently, advanced mathematical techniques based on feedback
linearization have been derived. For the rigid-link arms, these are equivalent.

It is assumed that the desired motion trajectory for the manipulator qd(t), as de-
termined for instance by a path planner, is prescribed. To use feedback linearization
controls design, define the tracking error as

e(t) = qd(t)− q(t) (3.3.1)

and differentiate twice to see that the Brunovsky canonical form (3.2.7) can be
written in terms of the state x = [eT ėT]T as

d

dt

[
e
ė

]
=

[
0 I
0 0

] [
e
ė

]
+

[
0
I

]
u, (3.3.2)

with

u ≡ q̈d +M−1(q)(N(q, q̇)− τ). (3.3.3)

3.3.1 Computed-Torque (CT) Control

A two-step design procedure now suggests itself. First, use linear system design
techniques to select a feedback control u(t) that stabilizes the tracking error system
(3.3.2), then compute the required arm torques using the inverse of (3.3.3), namely

τ =M(q)(q̈d − u) +N(q, q̇). (3.3.4)

3.3. COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 139

Table 3.3.1: Robot Manipulator Control Algorithms

Robot Dynamics:

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ,

PD Computed Torque (CT) Control:

τ =M(q)(q̈d +Kv ė+Kpe) + Vm(q, q̇)q̇ + F (q̇) +G(q)

PID Computed Torque (CT) Control:

ε̇ = e
τ = M(q)(q̈d +Kv ė+Kpe+Kiε) + Vm(q, q̇)q̇ + F (q̇) +G(q)

PD-Gravity Controller:
τ = Kv ė+Kpe+G(q)

Classical Joint Controller:

ε̇ = e
τ = Kv ė+Kpe+Kiε

Digital Controller:

τk =M(qk)(q̈dk
+Kv ėk +Kpek) + Vm(qk, q̇k)q̇k + F (q̇k) +G(qk)

This is a nonlinear feedback control law that guarantees tracking of the desired
trajectory. It relies on computing the torque τ that makes the nonlinear dynamics
(3.2.1) equivalent to the linear dynamics (3.3.2), which is termed feedback lineariza-
tion.

PD Computed-Torque Control. Selecting proportional-plus-derivative (PD)
feedback for u(t) results in the PD computed-torque controller

τ =M(q)(q̈d +Kv ė+Kpe) +N(q, q̇) (3.3.5)

and yields the tracking error dynamics ë = −Kv ė − Kpe, which is stable as long
as the derivative gain matrix Kv and the proportional gain matrix Kp are selected
positive definite. It is common to select the gain matrices diagonal, so that stability
is ensured as long as all gains are selected positive.

The PD computed-torque controller is shown in Fig. 3.3.1, which has a multiloop
structure, with a nonlinear inner feedback linearization loop and an outer unity-gain
tracking loop. Note that there are actually n outer loops, one for each joint. In this
figure q ≡ [qT q̇T]T , e ≡ [eT ėT]T and q

d
≡ [qTd q̇Td]

T .

140 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.3.1: PD computed-torque controller.

PID Computed-Torque Control. To improve steady-state tracking errors, n
integrators can be added, one to each joint controller, to place an integrator in
the outer tracking loop in the figure. In fact, selecting u(t) as a proportional-plus-
integral-plus-derivative controller yields the PID computed-torque controller

ε̇ = e
τ = M(q)(q̈d +Kv ė+Kpe+Kiε) +N(q, q̇).

(3.3.6)

which has its own dynamics, and gives stable tracking as long as the integral gain
Ki is not chosen too large.

3.3.2 Computer Simulation of Robot Controllers

The robot dynamics are given by

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ, (3.3.7)

where the joint variable vector is q ∈ �n for an n-link arm. One may alternatively
write

M(q)q̈ +N(q, q̇) + τd = τ, (3.3.8)

where the nonlinear vector is given by

N(q, q̇) ≡ Vm(q, q̇)q̇ + F (q̇) +G(q). (3.3.9)

These dynamics may include the actuators, and may be in Cartesian space, where
q(t) should be interpreted as the end-effector Cartesian position.

Robot controllers can be simulated using the dynamical system techniques intro-
duced in Chapter 2. A Runge-Kutta integrator such as ODE23 in MATLAB (1994)
may be used. Then, a subroutine may be written that has two parts, the control input
computation (e.g. (3.3.5)) and the robot dynamics in state-space form ẋ = f(x, u).

3.3. COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 141

One state-space form suitable for simulation is the position/velocity form, where the
state is the 2n-vector x ≡ [qT q̇T]T and the dynamics are written as

ẋ =

[
q̇

−M−1(q)N(q, q̇)

]
+

[
0

M−1(q)

]
τ. (3.3.10)

For numerical integration purposes, the matrix inversion M−1(q) is required at
every integration time step to find ẋ. For arms with simple dynamics it is often
possible to invert the inertia matrix analytically off-line, reducing the on-line com-
putational burden. Otherwise, it is more suitable to solve (3.3.8) for q̈, required by
the integration routine, at each time step using least-squares techniques to avoid the
inversion of M(q).

The next example is provided to illustrate computer simulation of robot con-
trollers as well as to demonstrate the performance of computed-torque controllers.

Example 3.3.1 (Simulation – Performance of PD/PID CT Controllers) :
It is desired to design and simulate a PD computed-torque controller for the 2-link

robot arm in Example 3.2.1. The dynamics are given in that example, and the PD control
law by (3.3.5). The M file to be called by MATLAB routine ode23 is given in Fig. 3.3.2.
Note that it has two parts— the controller and the arm dynamics. The controller computes
the desired trajectory qd(t), the tracking error, and the arm torques. Here was selected
qd1(t) = g1 sin(2πt/T), qd2(t) = g2 sin(2πt/T), with amplitudes gi = 0.1 and period T=
2 sec. The arm dynamics is in state-space form and computes the state derivatives for
ode23.

To simulate a PID controller one must add additional states x(5), x(6) corresponding
to the integrators. Then, the control torque computation lines in Fig. 3.3.2 are replaced
by

% PID CT control torques

s1= qdpp(1) + kv*ep(1) + kp*e(1) + ki*x(5) ;

s2= qdpp(2) + kv*ep(2) + kp*e(2) + ki*x(6) ;

tau1= M11*s1 + M12*s2 + N1 ;

tau2= M12*s1 + M22*s2 + N2 ;

xdot(5)= e(1)

xdot(6)= e(2)

where the integral gain ki must be specified as a controller parameter. The integrator
states should be initialized at zero on calling ode23.

Due to the idiosyncracies of ode23, one must compute the outputs y = h(x, u) of
the state equation ẋ = f(x, u) after completing the integration over [t0, tf]. The outputs
required for plotting are the desired trajectory qd(t) and the tracking error e(t). The
MATLAB M file for computing them is given by

% file robout.m

function [qd,e]= robout(t,x)

% compute desired trajectory

period= 2 ; amp1= 0.1 ; amp2= 0.1 ;

fact= 2*pi/period ;

sinf= sin(fact*t) ;

cosf= cos(fact*t) ;

qd= [amp1*sinf amp2*cosf] ;

% tracking errors

e= qd - x(:,1:2) ;

142 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

% file robctl.m, to be called by MATLAB function ode23

function xdot= robctl(t,x) ;

% --

% COMPUTE CONTROL INPUT FOR ROBOT ARM

% compute desired trajectory

period= 2 ; amp1= 0.1 ; amp2= 0.1 ;

fact= 2*pi/period ;

sinf= sin(fact*t) ;

cosf= cos(fact*t) ;

qd= [amp1*sinf amp2*cosf]’ ;

qdp= fact*[amp1*cosf -amp2*sinf]’ ;

qdpp= -fact^2*qd ;

% PD Computed-Torque control input

m1= 1 ; m2= 1 ; a1= 1 ; a2= 1 ; g= 9.8 ; % arm parameters

kp= 100 ; kv= 20 ; % controller parameters

% tracking errors

e= qd - [x(1) x(2)]’ ;

ep= qdp - [x(3) x(4)]’ ;

% computed inertia M(q) and nonlinear terms N(q,qdot)

M11= (m1 + m2)*a1^2 + m2*a2^2 + 2*m2*a1*a2*cos(x(2)) ;

M12= m2*a2^2 + m2*a1*a2*cos(x(2)) ;

M22= m2*a2^2 ;

N1= -m2*a1*a2*(2*x(3)*x(4) + x(4)^2)*sin(x(2)) ;

N1= N1 + (m1 + m2)*g*a1*cos(x(1)) + m2*g*a2*cos(x(1) + x(2));

N2= m2*a1*a2*x(3)^2*sin(x(2)) + m2*g*a2*cos(x(1) + x(2)) ;

Figure 3.3.2: PD computed-torque controller, Part I.

3.3. COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 143

% file robctl.m, to be called by MATLAB function ode23, CONTINUED

% PD CT control torques

s1= qdpp(1) + kv*ep(1) + kp*e(1) ;

s2= qdpp(2) + kv*ep(2) + kp*e(2) ;

tau1= M11*s1 + M12*s2 + N1 ;

tau2= M12*s1 + M22*s2 + N2 ;

% --

% ROBOT ARM DYNAMICS

m1= 1 ; m2= 1 ; a1= 1 ; a2= 1 ; g= 9.8 ; % arm parameters

% inertia M(q) and nonlinear terms N(q,qdot)

M11= (m1 + m2)*a1^2 + m2*a2^2 + 2*m2*a1*a2*cos(x(2)) ;

M12= m2*a2^2 + m2*a1*a2*cos(x(2)) ;

M22= m2*a2^2 ;

N1= -m2*a1*a2*(2*x(3)*x(4) + x(4)^2)*sin(x(2)) ;

N1= N1 + (m1 + m2)*g*a1*cos(x(1)) + m2*g*a2*cos(x(1) + x(2));

N2= m2*a1*a2*x(3)^2*sin(x(2)) + m2*g*a2*cos(x(1) + x(2)) ;

% Inversion of M(q) (for large values of n, use least-squares)

det= M11*M22 - M12*M12 ;

MI11= M22/det ;

MI12= -M12/det ;

MI22= M11/det ;

% state equations

xdot(1)= x(3) ;

xdot(2)= x(4) ;

xdot(3)= MI11*(-N1 + tau1) + MI12*(-N2 + tau2) ;

xdot(4)= MI12*(-N1 + tau1) + MI22*(-N2 + tau2) ;

Figure 3.3.2 PD computed-torque controller (cont’d, Part II).

144 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.3.3: Joint tracking errors using PD computed-torque controller under ideal
conditions.

The MATLAB dialog for running the simulation and plotting the tracking error is

t0= 0; tf= 10;

x0= [.1 0 0 0]’;

[t,x]= ode23(’robctl’,t0,tf,x0);

[qd,e]= robout(t,x);

plot(t,e)

Three simulations were performed using this code.

a. Ideal PD CT control. Since CT is theoretically an exact cancellation of non-
linearities, under ideal circumstances the PD CT controller yields performance like that
shown in Fig. 3.3.3, where the initial tracking errors go to zero quickly, so that each joint
perfectly tracks its prescribed trajectory. In this figure are shown the plots for joint 1
tracking error e1(t) and joint 2 tracking error e2(t).

b. PD CT control with constant unknown disturbance. Now, a constant
unknown disturbance τd is added to the robot arm dynamics. As shown in Fig. 3.3.4, the
PD controller now exhibits steady-state tracking errors of e1 = −0.01 rad, e2 = 0.035 rad.

c. PID CT control. If an integral term is now added to the outer loop to achieve
PID CT control, even with a constant unknown disturbance, the simulation results look
very much like the original plots in Fig. 3.3.3; that is, the integral term reduces to zero
the steady-state tracking errors due to a constant disturbance. �

3.3. COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 145

Figure 3.3.4: Joint tracking errors using PD computed-torque controller with con-
stant unknown disturbance.

3.3.3 Approximate Computed-Torque Control and Classical Joint Con-
trol

A large class of useful robot controllers can be derived using the notion of approxi-
mate computed-torque control.

A Family of Approximate Computed-Torque Controllers. A class of computed-
torque-like controllers is given by selecting

τ = M̂(q̈d − u) + N̂ , (3.3.11)

where M̂, N̂ are approximations, estimates, or simplified expressions forM(q), N(q, q̇).
If M̂, N̂ are selected not as the actual inertia matrix and nonlinear terms, but

only as approximations or simplified values, it is not always possible to guarantee
stable tracking. In fact, the error dynamics (3.3.2) are then driven by modeling mis-
match errors which can degrade or even destabilize the closed-loop system. Substi-
tuting the controller (3.3.11) into the dynamics (3.3.8) yields (see Problems section)
the error dynamics

ë = u−Δu+ d, (3.3.12)

where the inertia and nonlinear-term model mismatch errors are given by

Δ ≡ M−1(M − M̂) = I −M−1M̂ (3.3.13)

δ ≡ M−1(N − N̂) (3.3.14)

and the disturbance is
d ≡M−1τd +Δq̈d + δ(t). (3.3.15)

146 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.3.5: PD classical joint controller.

Therefore, if approximate CT control is used, the dynamics of the tracking error
e = qd−q are driven by the model mismatch terms, as well as the desired acceleration
q̈d(t). Thus, as the performance expectations (e.g. maximum required acceleration)
of the arm increase, the tracking error increases as well.

PD-Gravity Control. One example of the approximate CT family is the PD-
gravity controller

τ = Kv ė+Kpe+G(q) (3.3.16)

which selects M̂ = I and only includes the gravity nonlinear terms, so that it is
very easy to implement compared to full CT control. This has been used with good
results in many applications.

Classical Joint Control. Another computed-torque-like controller is PID clas-
sical joint control, where all nonlinearities of the robot arm are neglected and one
selects simply

ε̇ = e
τ = Kv ė+Kpe+Kiε

(3.3.17)

with the gain matrices diagonal, so that all the joints are decoupled. A PD classical
joint controller is shown in Fig. 3.3.5, which may seem familiar to many readers.
The same figure may be drawn for each joint. In this figure, d(t) represents the
neglected nonlinear coupling effects from the other joints, and r is the gear ratio.
The motor angle is θ(t) and q(t) is the joint angle. The effective joint inertia and
damping are J and B respectively.

The simplified classical joint controller is very easy to implement as no digital
computations are needed to determine nonlinear terms. It has been found suitable
in many applications if the PD gains are selected high enough, particularly when the
gear ratio r is small so that the neglected nonlinearities d(t) are attenuated. Unfor-
tunately, if the gains are selected too high, the control may excite vibratory modes
of the links and degrade performance. Moreover, practical applications often benefit
by including additional terms such as gravity G(q), desired acceleration feedforward
q̈d(t), and various additional nonlinear terms.

3.3. COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 147

Example 3.3.2 (Performance of PD-Gravity and Classical Joint Controllers) :
The sort of performance to be expected from PD-gravity and classical joint controllers

is shown in this example. It is desired for the 2-link robot arm in Example 3.2.1 to follow,
in each of its joints, sinusoidal trajectories qd(t) with period of 2 sec.

a. PD-Gravity controller. The PD-Gravity controller is simulated using the same
sort of MATLAB functions as in Example 3.3.1. The controller code in Fig. 3.3.2 is replaced
by the following simplified code that implements the PD-gravity controller (3.3.16).

% PD-Gravity control input

m1= 1 ; m2= 1 ; a1= 1 ; a2= 1 ; g= 9.8 ; % arm parameters

kp= 100 ; kv= 20 ; % controller parameters

% tracking errors

e= qd - [x(1) x(2)]’ ;

ep= qdp - [x(3) x(4)]’ ;

% computed gravity terms

G1= (m1 + m2)*g*a1*cos(x(1)) + m2*g*a2*cos(x(1) + x(2));

G2= m2*g*a2*cos(x(1) + x(2)) ;

% PD CT control torques

s1= kv*ep(1) + kp*e(1) ;

s2= kv*ep(2) + kp*e(2) ;

tau1= s1 + G1

tau2= s2 + G2

The resulting joint 1 and 2 tracking errors are shown in Fig. 3.3.6. Note that the errors
are small but not exactly zero, a reflection of the fact that the nonlinear Coriolis/centripetal
terms are missing in the controller. However, the DC error is equal to zero, since gravity
compensation is used. (The gravity terms are effectively the ‘DC terms’ of the robot
dynamics.)

b. Classical PD controller. The sort of behavior to be expected from classical
(independent joint) control is illustrated in Fig. 3.3.7. In this figure, the tracking errors
are nonzero, but using large enough PD gains can often make them small enough. Note
that the DC error is no longer equal to zero; the offset is due to ignoring the gravity terms.
�

3.3.4 Digital Control

Another important CT-like controller is the PD digital controller given by

τk =M(qk)(q̈dk
+Kv ėk +Kpek) +N(qk, q̇k). (3.3.18)

Digital control amounts to selecting in (3.3.11) M̂ = M(qk), N̂ = N(qk, q̇k), so
that the control input can only be computed at the sample times, tk = KT , with
T the sample period and k taking on integer values. Digital control is usually re-
quired in modern applications as robot control laws are generally implemented using
microprocessors or digital signal processors. Unfortunately, the stability of robot

148 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.3.6: Joint tracking errors using PD-gravity controller.

Figure 3.3.7: Joint tracking errors using classical independent joint control.

3.3. COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 149

digital controllers has not been generally addressed, so that the traditional approach
relies on designing continuous-time controllers, meticulously proving stability, then
sampling ‘fast enough’ and hoping for the best.

In practice there are many other problems to be faced in robot controller imple-
mentation, including actuator saturation, antiwindup compensation, and so on. See
Lewis, Abdallah, and Dawson, (1993) and Lewis (1992).

Simulation of Digital Controllers. In digital controllers the control input τ
may only be updated at times kT , integer multiples of the sampling period T . In
using fourth-order Runge-Kutta integrators for simulation, for instance, the inte-
grator calls the state-space dynamics routine ẋ = f(x, u) four times during each
integration interval, and there are usually many integration intervals during each
sampling period. During all these calls the control input should be held at the same
value τk. This requires some trickery since in MATLAB, for instance, ode23 is not
built to function in such a manner.

A digital control simulator for MATLAB is given for the 2-link robot arm (Ex-
ample 3.2.1) in Fig. 3.3.8. It has several modules for easy modification, including
the robot arm nonlinear term computation arm.m, the robot dynamics staspace.m,
the digital controller control.m, and the desired trajectory generator sysinp.m. The
driver program robot.m calls param.m (for parameter initialization), the digital
controller control.m, and the Runge Kutta integrator ode23. In turn ode23 calls
staspace.m, which calls arm.m. The controller control.m calls sysinp.m, and com-
putes the control sample τk using (3.3.18).

The way this program works is as follows. Using the initial conditions for the
robot dynamics state x, the first control sample τ0 is computed. Then, ode23 is used
to integrate the system over one sample period T using this constant control value.
Over the next period, the final state x of the previous period is reassigned as the new
initial state, the next control sample τk is computed, and ode23 is used to integrate
over the next sample period T . Note that the control inputs (called t1, t2) are global
variables. Much of the complexity of the code is due to machinations required for
plotting the graphs.

Example 3.3.3 (Performance of Digital CT Controllers) :

The performance of digital robot controllers has several idiosyncracies of which one
should be aware. In this example, it is desired for the 2-link robot arm in Example 3.2.1
to follow, in each of its joints, sinusoidal trajectories qd(t) with periods of 2 sec. The code
just described was used for simulation purposes.

a. Digital CT controller. Using a sample period of T= 20 msec yields the tracking
error plots shown in Fig. 3.3.9. There, the performance is quite good for the specific choice
of PD gains. The associated control input for joint 2 is shown in Fig. 3.3.10.

b. Limit cycle of digital robot controller. Unacceptable behavior in digital
robot controllers can be due to integrator windup problems, selecting too large a sample
period, selecting too small a sample period (so that there is not enough time to perform all
control calculations in each period), or the occurrence of limit cycles. If the sample period
is selected as T= 100 msec, everything seems acceptable according to Fig. 3.3.11, where
the tracking errors are somewhat increased but still small. However, Fig. 3.3.12 shows the

150 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

% Digital Robot Controller- J. Campos July 23, 1996

% robot.m, Driver program, Part I

clear all;

global t1 t2

param; % Setting all the parameters

t0=0; % Initial Simulation Time (Sec)

tf=5; % Final Simulation Time (Sec)

x0=[0.1 0 0 0]’; % Initial Conditions

xx=x0;

tt=0:T:tf; % generating the discrete steps between t0 and tf

for i=1:length(tt)-1,

t1=0;

t2=0;

[t1,t2]=control(kv,kp,tt(i),xx);

clear t

clear y

[t,y]=ode23(’staspace’,tt(i),tt(i+1),x0,0.001);

x0=y(length(t),:)’;

xx=x0;

k111(i)=t1;

k112(i)=t2;

yyy(i,:)=x0’;

end

for i=1:length(tt)-1,

ttt(i)=tt(i);

end

stairs(ttt,yyy(:,1));

hold on

stairs(ttt,yyy(:,2));

hold off

title(’Joint Angles theta1(t) and theta2(t) in rad (T=100 msec)’);

xlabel(’Time (sec)’);

figure;

stairs(ttt,k111);

hold on

stairs(ttt,k112);

hold off

title(’Input Torque Tao1(t) and Tao2(t) (T=100 msec)’);

xlabel(’Time (sec)’);

Figure 3.3.8: Digital controller, Part I: Routine robot.m Part I.

3.3. COMPUTED-TORQUE (CT) CONTROL AND COMPUTER SIMULATION 151

% robot.m, Driver program, Part II

for i=1:length(ttt),

[qd,qdp,qdpp]=sysinp(g1,g2,T,ttt(i));

e(:,i)=qd-[yyy(i,1) yyy(i,2)]’;

end

figure;

stairs(ttt,e(1,:));

hold on

stairs(ttt,e(2,:));

hold off

title(’Tracking Error for Theta1(t) and Theta2(t) (T=100 msec)’);

xlabel(’Time (sec)’);

--

% control.m, Digital controller for 2-link Planar Arm

function [t1,t2]=control(kv,kp,t,xx);

param;

[qd,qdp,qdpp]=sysinp(g1,g2,T,t);

e=qd-[xx(1) xx(2)]’;

ep=qdp-[xx(3) xx(4)]’;

[M,N]=arm(m1,m2,a1,a2,g,xx);

s1=qdpp(1)+kv*ep(1)+kp*e(1);

s2=qdpp(2)+kv*ep(2)+kp*e(2);

t1=M(1,1)*s1+M(1,2)*s2+N(1);

t2=M(1,2)*s1+M(2,2)*s2+N(2);

--

% param.m, arm and controller parameters

g1=0.1; g2=0.1;

T=100e-3; % Sampling period in seconds

m1=1; m2=1;

a1=1; a2=1;

g=9.8;

kp=100; kv=20;

--

Figure 3.3.8 Digital controller, Part II: robot.m Part II and controller routines.

152 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

% sysinp.m , compute the desired trajectory

function [qd,qdp,qdpp]=sysinp(g1,g2,T,t)

fact=2*pi/2;

sinf=sin(fact*t);

cosf=cos(fact*t);

qd=[g1*sinf g2*cosf]’;

qdp=fact*[g1*cosf -g2*sinf]’;

qdpp=-fact^2*qd;

% staspace.m, robot arm state equation

function xdot=staspace(t,x);

global t1 t2

param;

[M,N]=arm(m1,m2,a1,a2,g,x);

MI=inv(M);

xdot(1)=x(3);

xdot(2)=x(4);

xdot(3)=MI(1,1)*(-N(1)+t1)+MI(1,2)*(-N(2)+t2);

xdot(4)=MI(1,2)*(-N(1)+t1)+MI(2,2)*(-N(2)+t2);

% arm.m, 2-link robot arm inertia matrix and nonlinear term computation

function [M,N]=arm(m1,m2,a1,a2,g,x)

M11=(m1+m2)*a1^2+m2*a2^2+2*m2*a1*a2*cos(x(2));

M12=m2*a2^2+m2*a1*a2*cos(x(2));

M22=m2*a2^2;

N1=-m2*a1*a2*(2*x(3)*x(4)+x(4)^2)*sin(x(2));

N1=N1+(m1+m2)*g*a1*cos(x(1))+m2*g*a2*cos(x(1)+x(2));

N2=m2*a1*a2*x(3)^2*sin(x(2))+m2*g*a2*cos(x(1)+x(2));

M=[M11 M12;M12 M22];

N=[N1 N2]’;

Figure 3.3.8 Digital controller, Part III: Robot arm routines.

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 153

Figure 3.3.9: Joint tracking errors using digital computed-torque controller, T= 20
msec.

control torque for link 2, which has now entered a limit cycle type behavior due to too
large a sample period. �

3.4 FILTERED-ERROR APPROXIMATION-BASED CONTROL

Computed-torque control works very well when all the dynamical termsM(q), Vm(q, q̇),
F (q̇), G(q) are known. In practice, robot manipulator parameters such as friction
coefficients are unknown or change with time, and the masses picked up by the arm
are often unknown. Therefore, in many applications simplified CT controllers that
do not compute all nonlinear terms are used (e.g. classical joint control). These
methods often rely on increasing the PD gains to obtain good performance. How-
ever, large control signals may result and stability proofs of such controllers are few
and far between. A large class of controllers are the approximation-based controllers
which are based on approximating unknown robot functions. In this class are in-
cluded various sorts of adaptive and robust control techniques, as well as learning
control and the neural network techniques discussed later in the book. These con-
trollers provide good performance even in the presence of unknown dynamics and
disturbances. Performance and stability can be mathematically proven and so relied
upon in applications. Such advanced techniques also extend directly to more com-
plicated control objectives such as force control for grinding, polishing, and so on
where straight PD methods are inadequate.

In this section we discuss approximation-based control based on the filtered track-
ing error, deriving several adaptive and robust controllers which are collected for easy
reference in Table 3.4.1.

154 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.3.10: Joint 2 control torque using digital computed-torque controller, T=
20 msec.

Figure 3.3.11: Joint tracking errors using digital computed-torque controller, T=
100 msec.

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 155

Table 3.4.1: Filtered-Error Approximation-Based Control Algorithms

Robot Dynamics:

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ,

Filtered Tracking Error r(t):

e = qd − q

r = ė+ Λe

with Λ a positive definite design parameter matrix and qd(t) the desired trajectory.

Computed-Torque Control Variant:

τ = Kvr +M(q)(q̈d + Λė) + Vm(q, q̇)(q̇d + Λe) + F (q̇) +G(q).

Adaptive Controller:

τ = W (x)φ̂+Kvr

˙̂
φ = ΓWT (x)r,

where W (x) is the regression matrix and Γ is a positive definite tuning rate matrix.
Saturation-Based Robust Controller:

τ = f̂ +Kvr − v(t)

v(t) =

⎧⎪⎨
⎪⎩

−rF (x)
‖r‖ , ‖r‖ ≥ ε

−rF (x)
ε , ‖r‖ < ε

where ε is a small positive design parameter and F (x) is a known scalar function

that bounds the uncertainties f̃ = f − f̂ so that ‖f̃‖ ≤ F (x).
Variable Structure Robust Controller:

τ = f̂ +Kvr − v
v = −(F (x) + η)sgn(r)

where η is a small positive design parameter and F (x) is a known function that

bounds the uncertainties ‖f − f̂‖.
Learning Controller:

τ� = f̂� +Kvr − v
v = −(Kpe+Ks‖e‖2r)
f̂� = f̂�−1 +KLr

where � is the iteration number, the gains Kv,Kp,Ks are positive diagonal design
matrices, and KL is a positive diagonal learning gain matrix.

156 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.3.12: Joint 2 control torque using digital computed-torque controller, T=
100 msec.

3.4.1 A General Controller Design Framework Based on Approximation

The robot dynamics is given by

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ. (3.4.1)

In this section is derived a general tracking controller structure for robots that can be
used to design adaptive, robust, and learning controllers, as well as neural network
controllers.

The Tracking Problem. In robot control the objective is generally to make
the robot manipulator follow a prescribed desired trajectory, often expressed in
joint space as qd(t). Finding a control input τ(t) that causes this to occur is
called the tracking design problem. A general framework for tracking control that
includes many adaptive, robust, learning, and neural network techniques is the
approximation-based technique now presented. Given the desired trajectory qd(t)
define the tracking error e(t) and filtered tracking error r(t) by

e = qd − q (3.4.2)

r = ė+ Λe (3.4.3)

with Λ a positive definite design parameter matrix. Common usage is to select Λ
diagonal with large positive entries. Then, (3.4.3) is a stable system so that e(t) is
bounded as long as the controller guarantees that the filtered error r(t) is bounded.
In fact, it is easy to show that one has

‖e‖ ≤ ‖r‖
σmin(Λ)

, ‖ė‖ ≤ ‖r‖, (3.4.4)

where σmin(Λ) is the minimum singular value of Λ and the 2-norm is used.

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 157

In practical situations the desired trajectory is specified by the design engineer,
so that it always satisfies the following boundedness assumption.

Bounded Trajectory. The desired trajectory is bounded so that∥∥∥∥∥∥
qd(t)
q̇d(t)
q̈d(t)

∥∥∥∥∥∥ ≤ qB , (3.4.5)

with qB a known scalar bound.

Differentiating (3.4.3) and invoking (3.4.1) it is seen that the robot dynamics
are expressed in terms of the filtered error as

Mṙ = −Vmr + f(x) + τd − τ (3.4.6)

where the nonlinear robot function is defined as

f(x) =M(q)(q̈d + Λė) + Vm(q, q̇)(q̇d + Λe) + F (q̇) +G(q). (3.4.7)

Vector x contains all the time signals needed to compute f(·) and may be defined for
instance as x ≡ [eT ėT qTd q̇Td q̈Td]

T . It is important to note that f(x) contains all
the potentially unknown robot arm parameters, except for the Vmr term in (3.4.6),
which cancels out in controller stability Lyapunov proofs.

The definition of the nonlinear Coriolis/centripetal matrix Vm(q, q̇) in the robot
dynamics (3.4.1) is not unique (Lewis, Abdallah, and Dawson 1993). In approximation-
based control using the approach given here, it is necessary to select the correct
version of Vm(q, q̇); specifically, one must use the version of Vm(q, q̇) so that the
skew-symmetry property P3 holds. See Example 3.2.2 and Problems section.

Approximation-Based Controllers. A general sort of approximation-based con-
troller is now derived by setting

τ = f̂ +Kvr − v(t), (3.4.8)

with f̂ an estimate of f(x), Kvr = Kv ė + KvΛe an outer PD tracking loop, and
v(t) an auxiliary signal to provide robustness in the face of disturbances and mod-

elling errors. The estimate f̂ and robustifying signal v(t) are defined differently for
adaptive control, robust control, neural net control, fuzzy logic control, etc. The mul-
tiloop control structure implied by this scheme is shown in Fig. 3.4.1. In adaptive
control techniques, most of the effort goes into selecting and updating the estimate
ˆf(x); in robust control, most of the effort goes into selecting the control term v(t).

The Error Dynamics. Using nonlinear stability proofs based on Lyapunov or
passivity techniques, it can be shown that tracking error stability can be guaranteed
by selecting one of a variety of specific controllers. The controllers are derived and
proofs of stability are given based on the all-important closed-loop error dynamics.
The closed-loop error dynamics are found by substitution of (3.4.8) into (3.4.6) to
be

Mṙ = −Vmr −Kvr + f̃ + τd + v(t), (3.4.9)

158 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.4.1: Filtered error approximation-based controller.

where the function approximation error is given by

f̃ = f − f̂ . (3.4.10)

It is important to note that the tracking error dynamics is disturbed by the functional
approximation error.

The controller design problem is to select the estimate f̂ and the robust term v(t)
in control law (3.4.8) (see Fig. 3.4.1) so that this error dynamics is stable, for then
the filtered tracking error r(t) is bounded and (3.4.4) implies that the tracking error
e(t) is bounded. Consequently, the robot manipulator follows the prescribed trajec-
tory qd(t). Several specific controllers that guarantee stable tracking are subsequently
presented.

The error dynamics satisfy an important passivity property that is crucial in the
design of robust neural network controllers. The proof uses a technique like those
introduced in Chapter 2. State strict passivity (SSP) was defined in Chapter 2.

Theorem 3.4.1 (State Strict Passivity (SSP) of Error Dynamics) :
The error dynamics (3.4.9) are a state strict passive system from ζ0(t) ≡ f̃ + τd + v(t)

to r(t).
Proof:

Take the nonnegative function

L =
1

2
rTM(q)r

so that, using (3.4.9), one obtains

L̇ = rTMṙ +
1

2
rT Ṁr = −rTKvr +

1

2
rT (Ṁ − 2Vm)r + rT ζ0

whence the skew-symmetry property P3 yields the power form

L̇ = rT ζ0 − rTKvr.

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 159

This is the power delivered to the system minus a quadratic term in ‖r‖, verifying state
strict passivity. �

3.4.2 Computed-Torque Control Variant

Several approximation-based controllers of the form (3.4.8) are now presented. A
variant of computed-torque control can be used if the nonlinear function f(x) is

known. Then, one may select f̂(x) = f(x) so that the control input is

τ = Kvr +M(q)(q̈d + Λė) + Vm(q, q̇)(q̇d + Λe) + F (q̇) +G(q). (3.4.11)

This may be compared to (3.3.5).

3.4.3 Adaptive Control

Adaptive control has proven successful in dealing with modeling uncertainties in
general linear and nonlinear systems by on-line tuning of parameters. Variants of
adaptive control include the model-reference approach (Landau 1976), hyperstability
techniques (Landau 1976), self-tuning regulators (Åström and Wittenmark 1989),
gradient-based techniques, and so on. See Narendra and Annaswamy (1989), Ioan-
nou and Sun (1996), Goodwin and Sin (1984), Sastry and Bodson (1989) and other
references too prolific to mention.

Included in the class of controllers (3.4.8) are many sorts of adaptive controllers
for robot manipultors (Craig 1985; Lewis, Abdallah, Dawson 1993; Slotine and Li
1991; Spong and Vidyasagar 1989). Conventional adaptive controller applications
in robotics rely on the following linear-in-the-parameters (LIP) assumption (Craig
1985) (see however the work of Colbaugh et al. (1994, 1995) where LIP is not
needed).

LIP The nonlinear robot function (3.4.7) is linear in the unknown parameters (e.g.
masses and friction coefficients) so that one can write

f(x) =M(q)(q̈d +Λė) + Vm(q, q̇)(q̇d +Λe) + F (q̇) +G(q) =W (x)φ (3.4.12)

where W (x) is a matrix of known robot functions and φ is a vector of unknown
parameters (e.g. masses and friction coefficients). The regression matrixW (·)
can be computed for any specified robot arm.

One adaptive controller is given by Slotine (1988),

τ = W (x)φ̂+Kvr (3.4.13)

˙̂
φ = ΓWT (x)r (3.4.14)

where Γ is a tuning parameter matrix, generally selected diagonal with positive ele-
ments. The adaptive controller manufactures an estimate φ̂ for the unknown param-
eter vector φ by dynamic on-line tuning using Equation (3.4.14), thus the controller
has its own dynamics. The estimate of the nonlinear function is given by

f̂(x) =W (x)φ̂. (3.4.15)

160 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

The adaptive controller has the structure shown in Fig. 3.4.1. It has a multiloop
structure with an outer PD tracking loop and an inner nonlinear adaptive loop whose
function is to estimate the nonlinear function required for feedback linearization of
the robot arm. Its performance is described in the following theorem and illustrated
in the next example. Uniform ultimate bounded (UUB) stability was defined in
Chapter 2.

Theorem 3.4.2 (Adaptive Controller) :
Suppose the disturbance τd(t) in (3.4.1) is zero and the desired trajectory qd(t) is

bounded according to (3.4.5). Assume the linear-in-the-parameters asumption (3.4.12)
holds and the unknown parameter vector φ is constant. Then, using the control (3.4.13)
with adaptive parameter tuning given by (3.4.14), the tracking error r(t) goes to zero and
the parameter estimates φ̂(t) are UUB.
Proof:

Due to the LIP assumption one has

f̃ = f − f̂ = W (x)φ−W (x)φ̂ = W (x)φ̃,

with φ̃ = φ − φ̂ the parameter estimation error. Therefore, using the proposed control
yields the closed-loop error dynamics

Mṙ = −Vmr −Kvr +W (x)φ̃.

Select the Lyapunov function candidate

L =
1

2
rTM(q)r +

1

2
φ̃TΓ−1φ̃,

with Γ a symmetric positive definite weighting matrix. Differentiate to discover

L̇ =
1

2
rT Ṁr + rTMṙ + φ̃TΓ−1 ˙̃φ,

whence substitution from the error dynamics yields

L̇ =
1

2
rT Ṁr − rTVmr − rTKvr + rTW (x)φ̃+ φ̃TΓ−1 ˙̃φ

=
1

2
rT (Ṁ − 2Vm)r − rTKvr + φ̃T (Γ−1 ˙̃φ+WT (x)r).

Now use the skew-symmetry property P3 and select

˙̃
φ = −ΓWT (x)r

to yield
L̇ = −rTKvr.

In view of the definition φ̃ = φ − φ̂, and the assumption that φ is constant, the selection

for
˙̃
φ yields the tuning law (3.4.14).
Since L is positive definite in the overall state [rT φ̃T]T and L̇ is negative semidefinite,

both r and φ̃ are bounded according to Lyapunov’s theorem. Boundedness of the parameter
estimate φ̂ follow from the fact that φ is bounded.

To show that r(t) goes to zero, one may use Barbalat’s Lemma to show that L̇ goes to
zero with t. To accomplish this, differentiate to obtain

L̈ = −2rTKv ṙ,

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 161

and substitute the error dynamics to obtain

L̈ = −2rTKvM
−1[−Vmr −Kvr +W (x)φ̃].

The right-hand side is bounded due to the bounding assumptions P1-P6 and the demon-
strated boundedness of r and φ̂; for one has

M−1 ≤ 1

μ1
I, ‖Vm‖ ≤ vB‖q̇‖;

but q̇ is bounded since r is bounded and the desired trajectory qd(t) is bounded. Therefore,
L̈ is bounded, implying that L̇ is uniformly continuous, and by the Barbalat’s Lemma
Lyapunov extension (Chapter 1), L̇ goes to zero with t. Therefore, r(t) vanishes as t
becomes large. �

It has only been shown that the parameter error φ̃ is bounded, not small. It can
be shown that under an additional persistence of excitation condition (Chapter 2),

the parameter error goes to zero so that the parameter estimates φ̂ approach the
actual values φ (Slotine 1985, 1988). However, for practical controls purposes the
result of the theorem is good enough, since the tracking error r(t) is small so that one
has tracking of the prescribed trajectory. Note also that the UUB of the parameter
estimate φ̂ guarantees the boundedness of the control input τ(t) in (3.4.13).

This proof is typical of adaptive control and recurs in various forms throughout
the book— The parameter to be tuned is weighted in the Lyapunov function candidate
L. Then, the derivative of the parameter apppears in L̇, yielding the tuning law.

Example 3.4.1 (Performance of Adaptive Controller) :
This example illustrates the sort of performance to be expected from the adaptive

controller. It is also shown that if the regression matrix is not exactly known, the adaptive
controller does not perform well. In this example, it is desired for the 2-link robot arm in
Example 3.2.1 to follow a prescribed trajectory.

To implement the adaptive controller just described, it is necessary to determine the
regression matrix W (x). In computing W (x) one must begin with the version of Vm(q, q̇)
that satisfies the skew-symmetry property P3 (see Example 3.2.2). The unknown parame-
ter vector is selected to contain the masses, so that φ = [m1 m2]

T , where m2 includes the
payload mass. The joint tracking errors are e1 = qd1 − q1, e2 = qd2 − q2. Referring to the
dynamics derived in Example 3.2.1, one sees that the elements of the 2 × 2 matrix W (x)
are given (see Problems section) by

W11 = a2
1(q̈d1 + λ1ė1) + a1g cos q1

W12 = (a2
2 + 2a1a2 cos q2 + a2

1)(q̈d1 + λ1ė1) + (a2
2 + a1a2 cos q2)(q̈d2 + λ2ė2)

− a1a2q̇2(q̇d1 sin q2 + λ1e1)− a1a2(q̇1 + q̇2)(q̇d2 sin q2 + λ2e2)

+ a2g cos(q1 + q2) + a1g cos q1

W21 = 0

W22 = (a2
2 + a1a2 cos q2)(q̈d1 + λ1ė1) + a2

2(q̈d2 + λ2ė2)

+ a1a2(q̇d1 + λ1e1) sin q2 + a2g cos(q1 + q2).

A function M file was written in MATLAB (1994) to simulate the adaptive controller—
this procedure is very direct. The adaptive controller is an easy modification of the func-
tion routine given in Example 3.3.1. The PD CT controller equations in Fig. 3.3.2 are
simply replaced by the adaptive controller equations (3.4.13)-(3.4.14). The lines of code
implementing the adaptive controller are given in Fig. 3.4.2.

162 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

% file robadapt.m, to be called by MATLAB routine ode23

function xdot= robadapt(t,x) ;

% compute desired trajectory as in Fig. 3.3.2

% Use period= 2*pi ; amp1= 1 ; amp2= 1 ;

% Adaptive control input

m1= 0.8 ; m2= 2.3 ; a1= 1 ; a2= 1 ; g= 9.8 ; % arm parameters

Kv= 20*eye(2) ; lam= 5*eye(2); gam= 10*eye(2) ; % controller parameters

% tracking errors

e= qd - [x(1) x(2)]’ ;

ep= qdp - [x(3) x(4)]’ ;

r= ep + lam*e ;

% compute regression matrix

f= qdpp + lam*ep ;

W(1,1) = a1^2*f(1) + a1*g*cos(x(1)) ;

W(1,2) = (a2^2 + 2*a1*a2*cos(x(2)) + a1^2)*f(1) ...

+ (a2^2 + a1*a2*cos(x(2)))*f(2) ...

- a1*a2*x(4)*(qdp(1)*sin(x(2)) + lam(1,1)*e(1)) ...

- a1*a2*(x(3)+ x(4))*(qdp(2)+sin(x(2)) + lam(2,2)*e(2)) ...

+ a2*g*cos(x(1) + x(2)) + a1*g*cos(x(1)) ;

W(2,1) = 0 ;

W(2,2) = (a2^2 + a1*a2*cos(x(2)))*f(1) + a2^2*f(2) ...

+ a1*a2*(qdp(1) + lam(1,1)*e(1))*sin(x(2)) ...

+ a2*g*cos(x(1) + x(2)) ;

% control torques. Parameter estimates are [x(5) x(6)]’

tau= Kv*r + W*[x(5) x(6)]’;

tau1= tau(1) ; tau2= tau(2) ;

% parameter updates

phidot= gam*W’*r ;

xdot(5)= phidot(1) ;

xdot(6)= phidot(2) ;

% ROBOT ARM DYNAMICS from Fig. 3.3.2

Figure 3.4.2: Adaptive controller.

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 163

Figure 3.4.3: Response using adaptive controller. (a) Actual and desired joint
angles. (b) Mass estimates.

The arm parameters were taken as a1 = a2 = 1m,m1 = 0.8kg,m2 = 2.3kg. The
desired trajectory was selected as qd1(t) = sin t, qd2(t) = cos t. The controller parameters
were selected as Kv = diag{20, 20},Γ = diag{10, 10},Λ = diag{λ1, λ2} = diag{5, 5}. The
dialog required to run the adaptive controller is the same as in Example 3.3.1. Remember
to modify the output function robout.m to reflect the new desired trajectory parameters!

a. Adaptive Control. The response with the adaptive controller is given in Fig. 3.4.3,
which is excellent even though the masses m1,m2 are unknown by the controller. It is seen
that, after an initial error, the actual joint angles closely match the desired joint angles. In
adaptive control, the controller dynamics allow for learning of the unknown parameters,
so that the performance improves over time. Note that the parameter (mass) estimates
converge to the correct constant values.

b. Adaptive Control with Unmodelled Dynamics. To show how important
it is to model all the dynamics in the regression matrix, the simulation was now repeated
using the incorrect value

W11 = a2
1(q̈d1 + λ1ė1);

164 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.4.4: Response using adaptive controller with incorrect regression matrix,
showing the effects of unmodelled dynamics. (a) Actual and desired joint angles.
(b) Mass estimates.

the rest of W (x) was not changed. The simulation results shown in Fig. 3.4.4 reveal
that the performance of the adaptive controller is very bad. This corresponds to unmod-
elled dynamics which generally destroys the performance of adaptive controllers. Several
techniques are available for making adaptive controllers robust to unmodelled dynamics,
including the e-modification (Narendra and Annaswamy 1987), the σ-modification (Ioan-
nou and Kokotovic 1984), and deadzone techniques (Kreisselmeier and Anderson 1986).
These all involve adding correction terms to the tuning algorithm (3.4.14). �

3.4.4 Robust Control

Robust controllers for robot arms (Spong et al. 1987, Corless 1989, Dawson et
al. 1990) comprise a large class of controllers, some of which are based on ap-
proximation techniques. Referring to Equation (3.4.8) and Fig. 3.4.1, in adaptive

controllers the primary design effort goes into selecting a dynamic estimate f̂ for the
nonlinear function (3.4.7) that is tuned on-line. By contrast, in robust controllers,
the primary design effort goes into selecting the robust term v(t). An advantage
of standard robust controllers is that they have no dynamics, so they are generally

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 165

simpler to implement. On the other hand, adaptive controllers are somewhat more
refined in that the dynamics are learned on-line and less control effort is usually
needed. Furthermore, in adaptive control it is necessary to compute a regression
matrix W (x), while in robust control it is necessary to compute a bounding func-
tion F (x). In some modern techniques, robust and adaptive techniques are combined
to provide the advantages of each class. These are called adaptive-robust controllers,
or robust-adaptive controllers. Two popular robust controllers are now described.

Robust Saturation Controller. A robust saturation controller is given by

τ = f̂ +Kvr − v

v =

⎧⎪⎨
⎪⎩

−rF (x)
‖r‖ , ‖r‖ ≥ ε

−rF (x)
ε , ‖r‖ < ε

(3.4.16)

where f̂ is an estimate for f(x) that is not changed on-line— for instance, a PD-

gravity-based robust controller would use f̂ = G(q), ignoring the other nonlinear
terms. In computing the robust control term v(t), ε is a small design parameter, ‖·‖
denotes the norm, and F (x) is a known scalar function that bounds the uncertainties

f̃ = f − f̂ so that

‖f̃‖ ≤ F (x). (3.4.17)

The intent is that F (x) is a simplified function that can be computed using the
bounding properties in Table 3.2.1 even if the exact value of the complicated non-
linear function f(x) is unknown.

The performance of the robust controller is described in the next theorem and
illustrated in a subsequent example.

Theorem 3.4.3 (Robust Saturation Controller) :
Suppose the disturbance τd(t) in (3.4.1) is zero and the desired trajectory qd(t) is

bounded according to (3.4.5). Then, using the robust controller (3.4.16), the tracking
error norm ‖r(t)‖ is eventually bounded to the neighborhood of ε.
Proof:

Using the proposed control yields the closed-loop error dynamics

Mṙ = −Vmr −Kvr + f̃ + v,

with ‖f̃‖ < F (x) the known function. Select the Lyapunov function candidate

L =
1

2
rTM(q)r.

Differentiate to discover

L̇ =
1

2
rT Ṁr + rTMṙ

whence substitution from the error dynamics yields

L̇ =
1

2
rT Ṁr − rTVmr − rTKvr + rT (f̃ + v)

=
1

2
rT (Ṁ − 2Vm)r − rTKvr + rT (f̃ + v),

166 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

so that skew-symmetry property P3 yields

L̇ = −rTKvr + rT (f̃ + v).

Recall from Chapter 2 the norm property σmin(Kv)‖r‖2 ≤ rTKvr, with σmin(Kv) the
smallest singular value of the gain matrix Kv. (If Kv is diagonal, this is simply equal to
the smallest gain value.) Therefore,

L̇ ≤ −σmin(Kv)‖r‖2 + ‖r‖ · ‖f̃‖+ rT v

L̇ ≤ −σmin(Kv)‖r‖2 + ‖r‖F (x) + rT v.

There are now two cases to consider.

Case 1. ‖r‖ ≥ ε. In this case, according to the definition of the robust control term
v(t) one has

L̇ ≤ −σmin(Kv)‖r‖2 + ‖r‖F (x)− ‖r‖2F (x)/‖r‖
≤ −σmin(Kv)‖r‖2 + ‖r‖F (x)− ‖r‖F (x)

L̇ ≤ −σmin(Kv)‖r‖2.
Therefore, L̇ is negative definite in terms of ‖r(t)‖. Hence, L is decreasing in this region
and ‖r‖ decreases towards ε.

Case 2. ‖r‖ < ε. In this case, according to the definition of the robust control term
v(t) one has

L̇ ≤ −σmin(Kv)‖r‖2 + ‖r‖F (x)− ‖r‖2F (x)/ε

≤ −σmin(Kv)‖r‖2 + ‖r‖F (x)

(
1− ‖r‖

ε

)
.

The last term is generally positive in this region, so that nothing can be said about whether
L is increasing or decreasing. In general, L may be increasing in this region so that ‖r‖
increases towards ε. �

This proof is typical of robust control and recurs in various forms throughout
the book— During the proof, various norm inequalities are used to manipulate L̇,
ending finally in the selection for the robust control term v(t) overbounding some
remaining uncooperative terms. It is often required to consider different disjoint
regions. The result is generally that the tracking error is bounded by some ‘small
enough’ value, though not equal to zero. Contrast this with the situation in adaptive
control (e.g. Theorem 3.4.2)

Variable Structure Robust Controller. Another robust controller is the vari-
able structure robust controller (Slotine 1985)

τ = f̂ +Kvr − v
v = −(F (x) + η)sgn(r)

(3.4.18)

where sgn(·) is the signum function and F (x) is a known function computed using

the properties in Table 3.2.1 to bound the uncertainties ‖f − f̂‖. The design param-
eter η is selected as a small value. This controller takes advantage of the properties
of sliding mode or variable structure controllers to provide its robustness.

3.4. FILTERED-ERROR APPROXIMATION-BASED CONTROL 167

Example 3.4.2 (Design and Performance of Robust Controller) :
To implement the robust controllers just described, it is necessary to determine a bound

F (x) on the functional estimation error f̃ . This may be accomplished using the bounding
properties in Table 3.2.1. For the 2-link planar arm, for instance, the required bounds are
located in Example 3.2.2.

a. Control Design and Bounding Function. Assume, for instance, that a robust
PD gravity controller is to be implemented. Then one has f̂ = G(q) and the control input
(3.4.8) is

τ = Kvr +G(q)− v.

Compare this to the computed-torque PD-gravity controller (3.3.16).
For this choice of control, according to (3.4.7) one has

f̃ = f(x)− f̂ = M(q)(q̈d + Λė) + Vm(q, q̇)(q̇d + Λe) + F (q̇).

Now, some norm inequalities (Chapter 2) and the bounding properties in Table 3.2.1 can
be used to determine that

‖f̃‖ ≤ ‖M‖ · ‖q̈d + Λė‖+ ‖Vm(q, q̇)‖ · ‖q̇d + Λe)‖+ ‖F (q̇)‖
≤ μ2‖q̈d + Λė‖+ vB‖q̇‖ · ‖q̇d + Λe‖+ fB‖q̇d − ė‖+ kB

≡ F (x),

where the inertia matrix and Coriolis/centripetal bounds are given for the 2-link arm in
Example 3.2.2 as

μ2 = (m1 +m2)a
2
1 + 2m2a

2
2 + 3m2a1a2.

vB = m2a1a2

and the friction bounds fB , kB depend on the arm, gears, and actuators used. In this
example friction will be neglected. One recalls that x ≡ [eT ėT qTd q̇Td q̈Td]

T .

b. Computer Simulation. A function M file was written in MATLAB (1994) to
simulate the robust saturation controller— this procedure is very direct. The robust
controller is an easy modification of the function routine given in Example 3.3.1. The CT
controller equations in Fig. 3.3.2 are simply replaced by the robust saturation controller
equations (3.4.16). The lines of code implementing the robust saturation controller are
given in Fig. 3.4.5. Note that this code is significantly simpler than either the CT controller
in Example 3.3.1 or the adaptive controller in Example 3.4.1. No dynamics are contained
in the robust controller so that additional states for ode23 are not needed.

In typical robust controllers, there are no controller dynamics so that the performance
does not improve with time. However, with good designs (and large enough control gains)
the errors are bounded so that they are small enough. Typical plots are like those in
Fig. 3.4.6, where the errors are always small, though nonzero, but do not become smaller
with time. �

3.4.5 Learning Control

In many industrial applications robot manipulators are used to perform the same
task repeatedly, such as in spray painting, short assembly operations, component
insertion, and so on. In such repetitive motion situations, information from one
iteration can be recorded and used to improve the performance on the next iteration.

168 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

% file robrob.m, to be called by MATLAB routine ode23

function xdot= robrob(t,x) ;

% compute desired trajectory as in Fig. 3.3.2

% Use period= 2*pi ; amp1= 1 ; amp2= 1 ;

% Robust control input

m1= 0.8 ; m2= 2.3 ; a1= 1 ; a2= 1 ; g= 9.8 ; % arm parameters

Kv= 20*eye(2) ; lam= 5*eye(2); eps= 0.1 ; % controller parameters

% tracking errors

e= qd - [x(1) x(2)]’ ;

ep= qdp - [x(3) x(4)]’ ;

r= ep + lam*e ;

% compute bounding function

mu2= (m1+m2)*a1^2 + 2*m2*a2^2 + 3*m2*a1*a2 ;

vB= m2*a1*a2 ;

fsig= qdp + lam*e ;

fsigp= qdpp + lam*ep ;

F= mu2*norm(fsigp) + vB*norm([x(3) x(4)]’)*norm(fsig) ;

% control torques.

G= [(m1 + m2)*g*a1*cos(x(1)) + m2*g*a2*cos(x(1) + x(2))

m2*g*a2*cos(x(1) + x(2))] ;

div= max([norm(r) eps]’) ;

v= -r*F/div ;

tau= Kv*r + G - v ;

tau1= tau(1) ; tau2= tau(2) ;

% ROBOT ARM DYNAMICS from Fig. 3.3.2

Figure 3.4.5: Robust controller.

3.5. CONCLUSIONS 169

Figure 3.4.6: Typical behavior of robust controller.

This is termed repetitive motion learning control. Using the filtered error approach
of section 3.4.1, it is direct to derive the learning controller of Sadegh et al. (1990)
for the robot arm (3.4.1).

Let � = 1, 2, ... denote the iteration number of the trajectory repetition. Then,
using information from the (�− 1)-st iteration, the controller for the �-th iteration
is given by

τ� = f̂� +Kvr − v
v = −(Kpe+Ks‖e‖2r)
f̂� = f̂�−1 +KLr

(3.4.19)

where the filtered error is r = ė+Λe and the tracking error is e = qd − q, with qd(t)
the specified trajectory to be followed repeatedly. The gains Kv,Kp,Ks are positive
diagonal design matrices, and KL is a positive diagonal learning gain matrix. The
function f̂� is a learning term that uses its value on the previous iteration to improve
on an estimate for the nonlinear function appearing in the error analysis. The
functions e(t), r(t) appearing in the equations may be interpreted as e�(t), r�(t), the
errors ocurring on the �-th repetition.

3.5 CONCLUSIONS

In this chapter we have provided the basics for robot servo-controller design by sum-
marizing kinematics, Jacobians, and dynamics for serial-link robot manipulators.
Computed-torque control was reviewed; this technique is important because it pro-
vides a general framework for unifying a variety of robot control algorithms. It was
shown how to simulate robot controllers using a digital computer. We discussed
classical joint control, digital control, adaptive control, robust control, and repetitive
learning control. Extensive examples were provided to show the sort of behavior that
can be expected from each sort of controller.

170 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Standard commercially available robot controllers generally employ PD or PID
classical joint control, though the ADEPT controller does provide velocity feedfor-
ward and a basic sort of force control. PID control allows positioning at a sequence
of ‘via’ points taught by a human user using a teach pendant, but does not allow
accurate dynamic following of a prescribed trajectory. Since adaptation and learn-
ing techniques are seldom used, there is no mechanism for accurately correcting for
unknown payload masses, varying and unknown frictions, and unknown motor dy-
namics. As performance requirements for improved positioning accuracy increase
in semiconductor manufacturing applications and elsewhere, outmoded PID control
technology lags further behind in providing desired accuracy and speed of response.
In subsequent chapters we shall describe biologically motivated learning adaptation
techniques for improving the capabilities of robot controllers.

3.6 REFERENCES

Åström, K.J. and B. Wittenmark, Adaptive Control, Addison-Wesley, Reading,
MA, 1989.

Craig, J., Adaptive Control of Mechanical Manipulators, Addison-Wesley, Read-
ing, MA, 1985.

Colbaugh, R., H. Seraji, and K. Glass, “A new class of adaptive controllers for
robot trajectory tracking,” J. Robotic Systems, vol. 11, no. 8, pp. 761-772, 1994.

Colbaugh, R., K. Glass, and H. Seraji, “ Performance-based adaptive tracking
control of robot manipulators,” J. Robotic Systems, vol. 12, no. 8, pp. 517-530,
1995.

Corless, M., “Tracking controllers for uncertain systems: applications to a
Manutec R3 robot,” J. Dynam. Sys. Meas. Control, vol. 111, pp. 609-618, Dec.
1989.

Dawson, D., Z. Qu, F.L. Lewis, and J.F. Dorsey, “Robust control for the tracking
of robot motion,” Int. J. Control, vol. 52, no. 3, pp. 581-595, 1990.

Goodwin, G.C., and K.S. Sin, Adaptive Filtering, Prediction, and Control,
Prentice-Hall, NJ, 1984.

Ioannou, P.A., and P.V. Kokotovic, “Instability analysis and improvement of ro-
bustness of adaptive control,” Automatica, vol. 20, no. 5, pp. 583-594, 1984.

Ioannou, P.A., and J. Sun, Robust Adaptive Control, Prentice-Hall, NJ, 1996.

Kreisselmeier, G., and B. Anderson, “Robust model reference adaptive control,”
IEEE Trans. Automat. Control, vol. AC-31, no. 2, pp. 127-133, Feb. 1986.

Landau, Y.D., Adaptive Control: The Model Reference Approach, Marcel Dekker,
Inc., 1979.

Lewis, F.L., Applied Optimal Control and Estimation, Prentice Hall, New Jersey,
1992.

3.7. PROBLEMS 171

Lewis, F.L., C.T. Abdallah, and D.M. Dawson, Control of Robot Manipulators,
Macmillan, New York, 1993.

Lewis, F.L., M. Fitzgerald, and K. Liu “Robotics,” in The Computer Science and
Engineering Handbook, ed. Allen B. Tucker, Jr., Chapter 33, CRC Press, 1997.

MATLAB version 4.2, July 1994, The Mathworks, Inc., 24 Prime Park Way,
Natick, MA 01760, USA.

Narendra, K.S., and A.M. Annaswamy, “A new adaptive law for robust adaptation
without persistent excitation,” IEEE Trans. Automat. Control, vol. AC-32, no. 2,
pp. 134-145, Feb. 1987.

Narendra, K.S., and A.M. Annaswamy, Stable Adaptive Systems, Prentice-Hall,
NJ, 1989.

Sadegh, N., R. Horowitz, W. Kao, and M. Tomizuka, “A unified approach to
the design of adaptive and repetitive controllers for robot manipulators,” Trans.
ASME, vol. 112, pp. 618-629, Dec. 1990.

Sastry, S., and M. Bodson, Adaptive Control, Prentice-Hall, NJ, 1989.

Slotine, J.-J.E., “The robust control of robot manipulators,” Int. J. Robotics Re-
search, vol. 4, no. 4, pp. 49-64, 1985.

Slotine, J.-J., “Putting physics in control: the example of robotics,” Control Sys-
tems Magazine, vol. 8., pp. 12-15, Dec. 1988.

Slotine, J.-J.E., and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey,
1991.

Spong, M.W., J.S. Thorp, and J.M. Kleinwaks, “Robust microprocessor control of
robot manipulators,” Automatica, vol. 23, no. 3, pp. 373-379, 1987.

Spong, M.W., and M. Vidyasagar, Robot Dynamics and Control, Wiley, New York,
1989.

3.7 PROBLEMS

Section 3.2

Problem 3.2-1 : Dynamics of 2-Link Polar Arm. A 2-link polar RP arm is
shown in Fig. 3.7.1. The motion of the arm is in the plane of the drawing. (a)
Use Lagrange’s equation to derive the dynamics of this robot arm. (b) Find the
bounds of the properties in Table 3.2.1 in a suitable norm. (c) Find the correct
Coriolis/centripetal matrix Vm(q, q̇) so that Property P3 holds. (d) Find the skew-
symmetric matrix S(q, q̇).

Problem 3.2-2 : Dynamics of 3-Link Cylindrical Arm. A 3-link cylindrical
RPP arm is shown in Fig. 3.7.2. (a) Use Lagrange’s equation to show that the

172 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

Figure 3.7.1: Two-link polar robot arm.

dynamics of this robot arm are given by⎡
⎣ J +m2r

2 0 0
0 m1 +m2 0
0 0 m2

⎤
⎦
⎡
⎣ θ̈

ḧ
r̈

⎤
⎦+
⎡
⎣ 2m2rṙθ̇

0

m2rθ̇
2

⎤
⎦+
⎡
⎣ 0

(m1 +m2)gh
0

⎤
⎦ =

⎡
⎣ τ1
f2
f3

⎤
⎦ ,

where J is the inertia of the base link, τ1 is a torque, and f2, f3 are forces. (b)
Find the bounds of the properties in Table 3.2.1 in a suitable norm. (c) Find the
correct Coriolis/centripetal matrix Vm(q, q̇) so that Property P3 holds. (d) Find the
skew-symmetric matrix S(q, q̇).

Problem 3.2-3 : Cartesian Dynamics. Derive the Cartesian dynamics (3.2.10).

Figure 3.7.2: Three-link cylindrical robot arm.

3.7. PROBLEMS 173

Prove that properties P1-P6 in Table 3.2.1 hold for the Cartesian dynamics.

Problem 3.2-4 : Dynamics of Robot Arm with Actuators. The dynamics
of n electric motors whose electrical time constants are very fast and can be ignored
with respect to the mechanical time constants can be written as

JM q̈M +BM q̇M + FM +Rτ = KMv,

with qM the n-vector of individual motor angles qMi . The motor inertias are in the
diagonal matrix JM , and BM is given by the rotor damping constant and back emf.
The torque supplied to the n joints of a robot arm is τ ∈ �n, and R = diag{ri}
with ri the gear ratios of the n motor/robot joint couplings. The control input is the
motor voltage vector v(t) and KM is the diagonal matrix of motor torque constants.
(a) Derive the dynamics of a robot arm with motor actuators (3.2.11). (Note that
q = RqM .) (b) Prove that properties P1-P6 in Table 3.2.1 hold for these dynamics.

Section 3.3

Problem 3.3-1 : Error Dynamics of Approximate CT Controller. Derive
the error dynamics (3.3.12).

Problem 3.3-2 : Controller Simulation for 3-Link Cylindrical Arm. For
the 3-link cylindrical arm described in the Problems for Section 3.2, run MATLAB
simulations for: (a) PD CT control. (b) PID CT control. (c) PD Gravity control.
(d) Classical joint control. Select suitable control gains in each case and compare
the performance of the different types of controllers. You should be able to write a
general purpose MATLAB function routine that simulates all these controllers with
suitable minor modification.

Problem 3.3-3 : Controller Simulation for 2-Link Planar Elbow Arm. For
the 2-link planar elbow arm described in Example 3.2.1 run MATLAB simulations
for the following cases. Use a sinusoidal desired trajectory with a small period.
(a) Classical joint control. (b) PD gravity control. (c) PD gravity control with
acceleration feedforward. (That is, include the acceleration term in (3.3.4).) (d) Full
PD CT control. Isolate the improvements yielded by each control term added. You
should see that major improvements occur on the addition of gravity and acceleration
feedforward.

Section 3.4

Problem 3.4-1 : Derivation of Regression Matrix. Derive the regression
matrix W (x) used in Example 3.4.1.

Problem 3.4-2 : Adaptive Controller Simulation for 3-Link Cylindrical
Arm. Simulate the adaptive controller (3.4.13)-(3.4.14) for the 3-link cylindrical
arm described in the Problems for Section 3.2.

Problem 3.4-3 : Robust Controller Simulation for 3-Link Cylindrical
Arm. (a) Simulate the saturation-based robust controller (3.4.16) for the 3-link
cylindrical arm described in the Problems for Section 3.2. Use a sinusoidal desired
trajectory with a small period. Assume that the estimate f̂ is taken simply as the

174 CHAPTER 3. ROBOT DYNAMICS AND CONTROL

gravity terms. You will need to find the bounds on f̃ , which corresponds to the
neglected Coriolis/centripetal terms and M(q) matrix. (b) Now, simulate only the
PD control and gravity terms. That is, turn off the robustifying term v(t). What
happens to the performance?

Problem 3.4-4 : Robust Controller Simulation for 2-Link Planar Elbow
Arm. Repeat the previous problem for the 2-link planar elbow arm described in
Example 3.2.1 using the variable structure robust controller (3.4.18).

Chapter 4

Neural Network Robot
Control

Most commercially available robot controllers implement some variety of PID con-
trol algorithm, though the ADEPT does have a simple version of velocity feedforward
and a basic force control option. PID control allows accuracy acceptable for many
applications at a set of ’via’ points specified by a human user using the teach pen-
dant, but it does not allow accurate dynamic trajectory following between the via
points. As performance requirements on speed and accuracy of motion increase in
today’s manufacturing environments, PID controllers lag further behind in provid-
ing adequate robot manipulator performance. Since most commercial controllers do
not use any adaptive or learning capability, control accuracy is lost when unknown
frictions change, for force control in surface finishing applications, and elsewhere.
In this chapter we show how to use biologically inspired control techniques to remedy
these problems.

In Chapter 3 were introduced the robot dynamics and an approximation technique
for controller design based on the filtered error. Using this technique, we showed how
to design adaptive, robust, and learning controllers. A serious problem in using
adaptive control in robotics is the requirement for the assumption of linearity in the
unknown system parameters (Craig 1985):

f(x) = R(x)ξ (4.0.1)

where f(x) is a nonlinear robot function, R(x) is a regression matrix of known
robot functions and ξ is a vector of unknown parameters (e.g. masses and friction
coefficients). This is an assumption that restricts the sorts of systems amenable
to control. Some forms of friction, for instance, are not linear in the parameters
(LIP). Moreover, this LIP assumption requires one to determine the regression ma-
trix for the system; this can involve tedious computations, and a new regression
matrix must be computed for each different robot manipulator. Some recent adap-
tive control techniques for robotics avoid the requirement for LIP (Colbaugh et al.
1994, 1995). Hyperstability and some model-reference techniques in adaptive control
(Landau 1979), for instance, do not require LIP, though they have not been applied
in a rigorous manner to robot tracking control.

175

176 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Figure 4.0.1: Two-layer neural net.

In Chapter 1 we saw that neural networks (NN) possess some very important
properties, including a universal approximation property (Cybenko 1989, Hornik et
al. 1989, Barron 1993) where, for every smooth function f(x), there exists a neural
network such that

f(x) =WTσ(V Tx) + ε (4.0.2)

for some weights W,V . This approximation holds for all x in a compact set S, and
the functional estimation error ε is bounded so that

‖ε‖ < εN , (4.0.3)

with εN a known bound dependent on S. The approximating weights may be un-
known, but the NN approximation property guarantees that they exist. In contrast
with the adaptive control LIP requirement, which is an assumption that restricts the
sorts of system one can deal with, the result (4.0.2) is a property that holds for all
smooth functions f(·). The two-layer NN required for approximation is shown in
Fig. 4.0.1.

In this chapter we propose to use a filtered-error-based approach, employing a
NN to approximate unknown nonlinear functions in the robot arm dynamics, thereby
overcoming some limitations of adaptive control (Lewis et al. 1995-1996, Yeşildirek
1994). The main result of this chapter is the controller presented in Section 4.3 and
displayed in Table 4.3.2. Instead of requiring knowledge of the system structure,
as in adaptive control, NN controls design uses some deep structural properties of
the system, including skew symmetry and passivity, to guarantee good performance.
The NN will be designed to adapt its weights on-line to learn the unknown portion
of the dynamics. The study will be for rigid-link robot arms. In Chapter 5 NN

4.1. ROBOT ARM DYNAMICS AND TRACKING ERROR DYNAMICS 177

controllers will be designed for several more complex robotic systems including arms
with link flexibility and motor coupling dynamics, and for force control tasks.

In this book we assume all the system states are measurable. If only some states
are measurable, corresponding to the case of output feedback, then an additional
dynamical or recurrent NN is required to estimate the unmeasured states (Kim and
Lewis 1996).

Overcoming requirements for linearity in the tunable parameters has been a ma-
jor obstacle to continued development of adaptive control techniques. In this chapter
we overcome this problem, providing tuning rules for a set of NN weights, some of
which appear in a nonlinear fashion. In fact, the two-layer NN required in (4.0.2)
is nonlinear in the first-layer weights V .

The nonlinear dependence of the two-layer NN makes for some difficulties in
designing a NN controller that adapts its weights on-line. Therefore, in Section 4.2
we first design a controller based on a simplified one-layer NN. In Section 4.3 are
given the main results of this chapter— the general two-layer NN controller. Some
implementation considerations are given in Section 4.4, including partitioned NN
of simplified structure and signal preconditioning to improve the performance of the
NN. The NN controllers have important passivity properties that make them robust
to disturbances and unmodeled dynamics; these are detailed in Section 4.5.

In open-loop NN applications such as system identification, prediction, classi-
fication, and pattern recognition, boundedness of the NN weights alone implies the
stability of the overall system, since the open-loop system is assumed stable. This
is why standard gradient methods (e.g. backpropagation) yielding non-increasing
weight energy functions are widely applied to these types of systems. Unfortunately,
in closed-loop feedback control applications, boundedness of the weights alone demon-
strates very little. Thus, standard open-loop weight training algorithms do not suffice
in closed-loop control systems. There, it must be guaranteed that the NN weights re-
main bounded and also that the tracking error remains small and all internal states
remain bounded.

A foundation for neural networks in control has been provided in seminal results
by Narendra et al. (1987,1989,1990,1991), Werbos (1974, 1989)) and others. See
the Handbook of Intelligent Control (White and Sofge 1992) and Neural Networks for
Control (Miller et al. 1991). Papers employing NN in robot control are too numer-
ous to mention, but for the most part omit stability proofs and rely on ad hoc design
and simulation studies. Several researchers have studied NN control and managed
to prove stability (F.-C. Chen et al. 1992, 1994, Rovithakis and Christodoulou 1994,
Polycarpou and Ioannou 1991, Sanner and Slotine 1991, Sadegh 1993). See as well
the collection of papers in (Zbikowski and Hunt 1996). Of key importance is the
backpropagation NN tuning algorithm (Werbos 1974, Rumelhart et al. 1986), which
is modified in various ways in this chapter to provide stable tracking.

4.1 ROBOT ARM DYNAMICS AND TRACKING ERROR DYNAM-
ICS

The dynamics of rigid-link robot arms introduced in Chapter 3 have the form

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ (4.1.1)

178 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Table 4.1.1: Properties of Robot Arm Dynamics

P1 The inertia matrix M(q) is symmetric, positive definite, and bounded so that μ1I ≤
M(q) ≤ μ2I for all q(t). For revolute joints, the only occurrences of the joint
variables qi are as sin(qi), cos(qi). For arms with no prismatic joints, the bounds
μ1, μ2 are constants.

P2 The Coriolis/centripetal vector Vm(q, q̇)q̇ is quadratic in q̇. Vm is bounded so that
‖Vm‖ ≤ vB‖q̇‖, or equivalently ‖Vmq̇‖ ≤ vB‖q̇‖2.

P3 The Coriolis/centripetal matrix can always be selected so that the matrix S(q, q̇) ≡
Ṁ(q)− 2Vm(q, q̇) is skew symmetric. Therefore, xTSx = 0 for all vectors x. This is
a statement of the fact that the fictitious forces in the robot system do no work.

P4 The friction terms have the approximate form

F (q̇) = Fv q̇ + Fd(q̇),

with Fv a diagonal matrix of constant coefficients representing the viscous friction,
and Fd(·) a vector with entries like Kdisgn(q̇i), with sgn(·) the signum function and
Kdi the coefficients of dynamic friction. These friction terms are bounded so that
‖F (q̇)‖ ≤ fB‖q̇‖+ kB for constants fB , kB .

P5 The gravity vector is bounded so that ‖G(q)‖ ≤ gB . For revolute joints, the only
occurrences of the joint variables qi are as sin(qi), cos(qi). For revolute joint arms
the bound gB is a constant.

P6 The disturbances are bounded so that ‖τd(t)‖ ≤ dB .

or
M(q)q̈ +N(q, q̇) + τd = τ, (4.1.2)

where
N(q, q̇) ≡ Vm(q, q̇)q̇ + F (q̇) +G(q) (4.1.3)

is the vector of the nonlinear terms. In these dynamics, M(q) is the inertia ma-
trix, Vm(q, q̇) is the Coriolis/centripetal matrix, F (q̇) are the friction terms, G(q)
is the gravity vector, and τd(t) represents disturbances. These dynamics can include
actuators, as shown in Chapter 3, and can be referred to Cartesian motion coordi-
nates. Thus, control input τ(t) can represent torques or motor currents, etc. The
rigid robot dynamics enjoy the properties in Chapter 3, which are reproduced here
in Table 4.1.1.

The objective in this chapter is to make the robot manipulator follow a prescribed
desired trajectory qd(t). Define the tracking error e(t) and filtered tracking error r(t)
by

e = qd − q (4.1.4)

r = ė+ Λe (4.1.5)

with Λ > 0 a positive definite design parameter matrix. Since (4.1.5) is a stable
system, it follows that e(t) is bounded as long as the controller guarantees that the

4.1. ROBOT ARM DYNAMICS AND TRACKING ERROR DYNAMICS 179

Figure 4.1.1: Filtered error approximation-based controller.

filtered error r(t) is bounded. In fact, ‖e‖ ≤ ‖r‖/σmin(Λ), ‖ė‖ ≤ ‖r‖, with σmin

the minimum singular value. Since it is specified by the human user, the desired
trajectory satisfies the following assumption.

Assumption 4.1.1 (Bounded Reference Trajectory) : The desired trajectory is bounded
so that ∥∥∥∥∥

qd(t)
q̇d(t)
q̈d(t)

∥∥∥∥∥ ≤ qB , (4.1.6)

with qB a known scalar bound.

As in Chapter 3, the robot dynamics are expressed in terms of the filtered error
as

Mṙ = −Vmr + f(x) + τd − τ (4.1.7)

where the unknown nonlinear robot function is defined as

f(x) =M(q)(q̈d + Λė) + Vm(q, q̇)(q̇d + Λe) + F (q̇) +G(q). (4.1.8)

One may define, for instance,

x ≡ [eT ėT qTd q̇Td q̈Td]
T . (4.1.9)

A general sort of approximation-based controller is derived by setting

τ = f̂ +Kvr − v(t), (4.1.10)

with f̂ an estimate of f(x), Kvr = Kv ė+KvΛe an outer PD tracking loop, and v(t)
an auxiliary signal to provide robustness in the face of disturbances and modeling
errors. The multiloop control structure implied by this scheme is shown in Fig. 4.1.1.

Using this controller, the closed-loop error dynamics are

Mṙ = −Vmr −Kvr + f̃ + τd + v(t), (4.1.11)

180 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

where the function approximation error is given by

f̃ = f − f̂ . (4.1.12)

The next bound for x is needed in subsequent work.

Lemma 4.1.1 (Bound on NN Input x) : For each time t, x(t) is bounded by

‖x‖ ≤ c1 + c2‖r‖ ≤ qB + c0‖r(0)‖+ c2‖r‖ (4.1.13)

for computable positive constants c0, c1, c2.

Proof:

The solution of the LTI system (4.3.4) with the initial value vector q(t0) is

e(t) = e0ε
−Λ(t−t0) +

∫ t

t0

ε−Λ(t−τ)r(τ)dτ, ∀t ≥ t0

where e0 = qd(t0)− q(t0). Thus,

‖e‖ ≤ ‖e0‖+ ‖r(t)‖
σmin(Λ)

,

with σmin(Λ) the minimum singular value of Λ. The NN input can be written as

x =

⎡
⎢⎢⎢⎣

e
ė
qd
q̇d
q̈d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

e
r − Λe
qd
q̇d
q̈d

⎤
⎥⎥⎥⎦ .

Then a bound can be given as

‖x‖ ≤ (1 + σmax(Λ))‖e‖+ qB + ‖r‖

≤ {[1 + σmax(Λ)] ‖e0‖+ qB}+
{
1 +

1

σmin(Λ)
+

σmax(Λ)

σmin(Λ)

}
‖r‖

= c1 + c2‖r‖

with

c1 = [1 + σmax(Λ)] ‖e0‖+ qB (4.1.14)

and

c2 = 1 +
1

σmin(Λ)
+

σmax(Λ)

σmin(Λ)
. (4.1.15)

Now, from (4.1.5) one has ‖e‖ < ‖r‖/σmin(Λ) for all t, whence one obtains that

c0 =
1 + σmax(Λ)

σmin(Λ)
.

�

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 181

Figure 4.2.1: One-layer functional-link neural net.

4.2 ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CON-
TROLLER

Neural net (NN) controllers for a general serial-link rigid robot arm are developed
in this chapter. The main result in this chapter is the two-layer NN controller
derived in Section 4.3 and displayed in Table 4.3.2, as the controller that is the
most versatile and easy to initialize. The derivation of this controller is somewhat
involved since the two-layer NN is nonlinear in the tunable weights. Therefore, we
develop here a controller that uses a NN with one layer of tunable weights. Though
in practical situations, one would implement the two-layer NN controller if there
is enough computing power, the one-layer NN controller sometimes presents an
attractive alternative since it is less complex to implement.

The one-layer NN is shown in Fig. 4.2.1 and is described by the equation

y =WTφ(x), (4.2.1)

with x ∈ �n, φ(·) : �n → �L, y ∈ �m. The L-vector function φ(x) consists of L
scalar functions [φ1(x) φ2(x) . . . φL(x)]

T . Input vector x is augmented by a first
component of x0 = 1, so that the thresholds for the first layer are included as the
first column of the weight matrix WT (see Chapter 1). In Chapter 1 we discussed
several such linear-in-the-parameter (LIP) NN, including the radial basis function
(RBF) and cerebellar model arithmetic computer (CMAC) nets. The one-layer NN
controller case has been treated using radial basis functions by Sanner and Slotine
(1991) and Polycarpou and Ioannou (1991) (where a projection algorithm was used
for weight tuning), and for discrete-time systems in Sadegh (1993). The material
in this section is from Lewis, Liu, and Yeşildirek (1995).

182 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

4.2.1 Approximation by One-Layer Functional-Link NN

The NN universal approximation property (4.0.2) holds in general for NN with two
or more layers of weights, not for one-layer NN. In Chapter 1 we discussed the con-
ditions under which one-layer LIP networks can serve as function approximators.
Indeed, if the activation functions φ(x) are selected as a basis set, then one has
the following approximation property for one-layer NN. Let S be a compact, simply
connected set of �n and f(·) : S → �m. Define Cm(S) as the space of continuous
functions f(·). Then, for all f(·) ∈ Cm(S), there exist weights W such that

f(x) =WTφ(x) + ε (4.2.2)

with the estimation error bounded by

‖ε‖ < εN . (4.2.3)

In this section we consider the case where εN is constant. The case where εN is a
function of x is treated in Lewis, Liu, and Yeşildirek (1995).

It has been shown that the sigmoids can form a basis set (Cybenko 1989, Hornik
et al. 1989, Barron 1993). In Sanner and Slotine (1991) it was shown that the radial
basis functions can form a basis. In Commuri and Lewis (1995) it is shown that a
basis set is particularly easy to choose for CMAC NN. In Chapter 1 it was shown how
to select the parameters of the functions φ(·) randomly to obtain a basis. In Section
4.4 appears more discussion on selecting a basis suitable for rigid robot arm control.
We shall suppose that a suitable basis has been selected. Then, (4.2.2) holds for
any smooth function; that is, the one-layer NN possesses a universal approximation
property.

Barron [1993] has shown that for linear-in-the-parameters sums of the form
(4.2.2), the approximation error can never be made smaller than order 1/L2/n.
This lower bound can be overcome for nonlinear-in-the-parameter approximations
such as (4.0.2), which we use in Section 4.3. However, despite the lower bound on
εN for the FLNN, the closed-loop performance of the NN controller presented in
this section is good since the tracking error will be found to be bounded by a term
like εN/Kvmin , with Kvmin the smallest PD control gain, which can be made large
to improve tracking accuracy.

Advantage of NN Control Over Adaptive Control. The contrast between the
property (4.2.2) and the adaptive control LIP assumption (4.0.1) should be clearly
understood. Both are linear in the tunable parameters, but the former is linear in
the tunable NN weights, while the latter is linear in the unknown system parame-
ters. The former holds for all functions f(x) in Cm(S), while the latter holds only
for a specific function f(x). In the NN property the same basis set φ(x) suffices
for all f(·) ∈ Cm(S), while in the LIP assumption the regression matrix R(x) de-
pends on f(x) and must be recomputed for each different f(x). That is, for each
different type of robot arm, one must recompute R(x). Therefore, the one-layer
NN controller is significantly more powerful than adaptive controllers; it provides a
universal controller for all rigid-link robot arms.

One must notice as well that (4.2.2) includes a modeling approximation error
term; the result will turn out to be a more robust control scheme. Robust adaptive

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 183

Figure 4.2.2: Neural net control structure.

control techniques are available for handling modeling errors (Narendra and An-
naswamy 1989), including the sigma-modification (Ioannou and Kokotovic 1984),
the e-modification (Narendra and Annaswamy 1987), and dead-zone techniques (Pe-
terson and Narendra 1982, Kreisselmeier and Anderson 1986).

4.2.2 NN Controller and Error System Dynamics

Suppose now that a FLNN is used to approximate the nonlinear robot function
(4.1.8) according to (4.2.2), with W the ideal approximating weights. The ideal
weights are unknown and may even be nonunique. Assume they are constant and
bounded so that

‖W‖F ≤WB , (4.2.4)

with the bound WB known. The Frobenius norm ‖ · ‖F was defined in Chapter 2.
Then, an estimate of f(x) is given by

f̂(x) = ŴTφ(x), (4.2.5)

with Ŵ the current actual values of the FLNN weights as provided by the tuning
algorithm to be specified. Then the control law (4.1.10) becomes

τ = ŴTφ(x) +Kvr − v. (4.2.6)

The proposed NN control structure is shown in Fig. 4.2.2, where q ≡ [qT q̇T]T ,

e ≡ [eT ėT]T .
It is now necessary to show how to tune the NN weights Ŵ on-line so as to guar-

antee stable tracking. The tuning algorithm found will presumably modify the actual
weights Ŵ so that they become close to the ideal weights W , which are unknown.
To this end, define the weight deviations or weight estimation errors as

W̃ =W − Ŵ . (4.2.7)

184 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Then, f − f̂ = WTφ(x) + ε − ŴTφ(x) and the closed-loop filtered error dynamics
(4.1.11) becomes

Mṙ = −(Kv + Vm)r + W̃Tφ(x) + (ε+ τd) + v. (4.2.8)

Initial Tracking Error Requirement. The next assumption specifies the region
of convergence of the FLNN controllers designed in this section.

Assumption 4.2.1 (Initial Condition Requirement) : Suppose the desired trajec-
tory qd, q̇d, q̈d is bounded by qB as in Assumption 4.1.1. Define known constants c0, c2
by Lemma 4.1.1. Let the NN approximation property (4.2.2) hold for the function f(x)
given in (4.1.8) with a given accuracy εN for all x inside the ball of radius bx > qB . Let
the initial tracking error satisfy ‖r(0)‖ < (bx − qB)/(c0 + c2).

This set specifies the set of allowed initial tracking errors r(0). Note that the ap-
proximation accuracy of the NN determines the allowed magnitude of the initial
tracking error r(0). For a larger NN (i.e. more hidden-layer units), εN is small for
a larger radius bx. Thus, the allowed initial condition set Sr is larger. Likewise, a
more active desired trajectory (e.g. containing higher frequency components) results
in a larger acceleration q̈d(t), which yields a larger bound qB, thereby decreasing Sr.
It is important to note the dependence of Sr on the PD design ratio Λ— both c0
and c2 depend on Λ.

Though the initial condition requirement may seem to be cast in terms of complex
inequalities, its key role is in showing the dependence of the allowed initial condition
set Sr on the design parameters. The constants qB , c0, c2, bx need not be explicitly
determined. In practical situations, the IC requirement merely indicates that the NN
should be ‘large enough’ in terms of the number L of hidden-layer units. Therefore,
in design, one would select a value for L, run a simulation to test the controller, then
repeat with a larger value of L. The value of L selected for implementation on the
actual system is that above which there is no appreciable increase in performance.

A key feature of the initial condition requirement is its independence of the NN
initial weights. This is in stark contrast to other techniques in the literature where
the proofs of stability depend on selecting some initial stabilizing NN weights, which
is very difficult to do.

4.2.3 Unsupervised Backpropagation Weight Tuning

In this and the next subsection we give some FLNN weight tuning algorithms that
guarantee the tracking stability of the closed-loop system. It is required to demon-
strate that the tracking error r(t) is suitably small and that the FLNN weights Ŵ
remain bounded, for then the control τ(t) is bounded. In this subsection we show
that, under some conditions, a modified unsupervised version of the continuous-time
backpropagation algorithm in Chapter 1 works.

4.2.3.1 Ideal Case— Unsupervised Backpropagation Tuning of Weights

The first result details the closed-loop behavior in the idealized case of no net func-
tional reconstruction error ε and no unmodeled disturbances τd(t) in the robot arm
dynamics. The FLNN controller is shown in Fig. 4.2.2. The next theorem derives

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 185

the NN weight tuning law given in Table 4.2.1. Note that no robustifying signal v(t)
is needed for this FLNN controller.

Theorem 4.2.1 (FLNN Controller in an Ideal Case) :
Let the desired trajectory qd(t) be bounded by qB as in Assumption 4.1.1 and the

initial tracking error r(0) satisfy Initial Condition Assumption 4.2.1. Suppose the NN
functional reconstruction error εN and unmodeled disturbances τd(t) are equal to zero.
Let the control input for (4.1.1) be given by (4.2.6) with v(t) = 0 and NN weight tuning
provided by

˙̂
W = Fφ(x)rT , (4.2.9)

with F = FT > 0 a constant design parameter matrix. Then the tracking error r(t) goes
to zero with t and the weight estimates Ŵ are bounded.

Proof:
Let the NN approximation property (4.2.2) hold for the function f(x) given in (4.1.8)

with a given accuracy εN for all x in the compact set Sx ≡ {x | ‖x‖ < bx} with bx > qB .
Define Sr ≡ {r | ‖r‖ < (bx − qB)/(c0 + c2)}. Let r(0) ∈ Sr. Then the approximation
property holds.

Under the ideal case the error system is

Mṙ = −(Kv + Vm)r + W̃Tφ(x). (4.2.10)

Select the Lyapunov function candidate

L =
1

2
rTMrT +

1

2
tr{W̃TF−1W̃}. (4.2.11)

Differentiating yields

L̇ = rTMṙ +
1

2
rT Ṁr + tr{W̃TF−1 ˙̃W} (4.2.12)

whence substitution from (4.2.10) yields

L̇ = −rTKvr +
1

2
rT (Ṁ − 2Vm)r + tr{W̃T (F−1 ˙̃W + φrT)}. (4.2.13)

The skew symmetry property makes the second term zero and the third term is zero if we
select

˙̃W = −FφrT . (4.2.14)

Since W̃ = W − Ŵ and W is constant, this yields the weight tuning law. Now,

L̇ = −rTKvr. (4.2.15)

Since L > 0 and L̇ ≤ 0 this shows stability in the sense of Lyapunov so that r and W̃
(and hence Ŵ) are bounded. Thus, ∫ ∞

0

−L̇dt < ∞. (4.2.16)

Now L̈ = −2rTKv ṙ, and the boundedness of M−1(q) and of all signals on the right-hand
side of (4.2.10) verify the boundedness of ṙ and hence of L̈, and therefore the uniform
continuity of L̇. This allows us to invoke Barbalat’s Lemma (Chapter 2) in connection
with (4.2.16) to conclude that L̇ goes to zero with t, and hence that r(t) vanishes. �

186 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Table 4.2.1: FLNN Controller for Ideal Case, or for Nonideal Case with PE

Control Input:
τ = ŴTφ(x) +Kvr, with φ(x) a basis

NN Weight/Threshold Tuning Algorithms:

˙̂
W = Fφ(x)rT , with F a positive definite design matrix

Unsupervised Backprop Through Time Tuning. Note that algorithm (4.2.9)
is nothing but the continuous-time backpropagation algorithm of Chapter 1 for the
one-layer case. However, it is an unsupervised version of backprop in that the ideal
plant output is not needed; instead the filtered error, which is easily measurable
in the closed-loop system, is used in tuning the weights. It should also be realized
that this is a version of the backprop through time algorithm, as the weights are
continuously tuned as a function of time t.

Weight Initialization and On-Line Tuning. In the NN control schemes de-
rived in this book there is no preliminary off-line learning phase. The weights are
simply initialized at zero, for then Fig. 4.2.2 shows that the controller is just a PD
controller. Standard results in the robotics literature (Dawson et al. 1990) show that
a PD controller gives bounded errors if Kv is large enough. Therefore, the closed-
loop system remains stable until the NN begins to learn. The weights are tuned
on-line in real-time as the system tracks the desired trajectory. As the NN learns
f(x), the tracking performance improves. This is a significant improvement over
other NN control techniques where one must find some initial stabilizing weights,
generally an impossible feat for complex nonlinear systems.

4.2.3.2 Unsupervised Backprop with PE Condition in Non-Ideal Case

It has just been seen that under the ideal case of no NN functional approximation
errors or unmodeled disturbances, an unsupervised version of backprop through time
tuning suffices to make the tracking error go to zero. However, in actual systems
there are disturbances. Moreover, the NN approximation error decreases as the
number of hidden-layer neurons L increases, therefore, in practical NN of limited
size there generally are approximation errors. In this subsection it will be seen that
if the NN approximation errors and system disturbances are not zero but bounded
(see Property P6 in Table 4.1.1 and (4.2.3)), then backprop still works under an
additional assumption of persistence of excitation (PE). However, now the tracking
errors do not vanish, but are bounded by small enough values to guarantee good
tracking performance. PE conditions are well-known in adaptive control (Sastry
and Bodson 1989). PE of signals was defined in Chapter 2. The notion of PE for
a one-layer NN is defined in this subsection.

A vector w(t) ∈ �p is said to be PE if there exist positive constants δ, α1, α2

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 187

such that

α1I ≤
∫ t0+δ

t0

w(τ)wT (τ) dτ ≤ α2I (4.2.17)

for all t0 ≥ 0. Uniform complete observability (UCO) of time-varying systems was
defined in Chapter 2. The following technical lemma is needed (Lewis Liu, and
Yeşildirek 1995).

Lemma 4.2.1 (Technical Lemma for a Special System) :
Consider the linear time-varying system (0, B(t), C(t)) defined by

ẋ = B(t)u

y = C(t)x

with x ∈ �n, u ∈ �m, y ∈ �p and the elements of B(t) and C(t) piecewise continuous
functions of time. Since the state transition matrix is the identity matrix, the observability
gramian is

N(t, t0) =

∫ t

t0

CT (τ)C(τ)dτ.

Let the system be uniformly completely observable with B(t) bounded. Then if u(t) and
y(t) are bounded, the state x(t) is bounded. �

The UCO of this system may be compared to a PE condition with w(t) = CT (t).
Note that this result holds despite the less-than-desirable stability properties of the
system.

The FLNN controller is shown in Fig. 4.2.2. The next result details tuning
algorithms for stable tracking under nonideal conditions but with a PE condition.
Uniformly ultimately bounded (UUB) stability was defined in Chapter 2. The the-
orem shows that the FLNN controller in Table 4.2.1 still works as long as PE is
satisfied in the NN, in the sense defined in the theorem.

Theorem 4.2.2 (FLNN Controller with PE Requirement) :
Let the desired trajectory qd(t) be bounded by qB as in Assumption 4.1.1 and the initial

tracking error r(0) satisfy Initial Condition Assumption 4.2.1. Let the NN reconstruction
error bound εN and the disturbance bound dB be constants. Let the control input for
(4.1.1) be given by (4.2.6) with v(t) = 0 and gain satisfying

Kvmin >
(εN + dB)(c0 + c2)

bx − qB
. (4.2.18)

Let NN weight tuning be provided by

˙̂
W = Fφ(x)rT , (4.2.19)

with F = FT > 0 a constant design parameter matrix. Suppose the hidden-layer output
φ(x) is persistently exciting. Then the filtered tracking error r(t) is UUB, with a practi-
cal bound given by the right-hand side of (4.2.25), and the NN weight estimates Ŵ are
bounded. Moreover, r(t) may be kept as small as desired by increasing the gain Kv.

Proof:
Let the NN approximation property (4.2.2) hold for the function f(x) given in (4.1.8)

with a given accuracy εN for all x in the compact set Sx ≡ {x | ‖x‖ < bx} with bx > qB .

188 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Define Sr ≡ {r | ‖r‖ < (bx − qB)/(c0 + c2)}. Let r(0) ∈ Sr. Then the approximation
property holds.

Define the Lyapunov function candidate

L =
1

2
rTMrT +

1

2
tr{W̃TF−1W̃}. (4.2.20)

Differentiating yields

L̇ = rTMṙ +
1

2
rT Ṁr + tr{W̃TF−1 ˙̃W} (4.2.21)

whence substitution from (4.2.8) yields

L̇ = −rTKvr +
1

2
rT (Ṁ − 2Vm)r + tr{W̃T (F−1 ˙̃W + φrT)}+ rT (ε+ τd). (4.2.22)

The skew symmetry property makes the second term zero and the third term is zero if we
select

˙̃W = −FφrT . (4.2.23)

Since W̃ = W − Ŵ and W is constant, this yields the weight tuning law.

Now,

L̇ = −rTKvr + rT (ε+ τd) ≤ −Kvmin‖r‖2 + (εN + dB)‖r‖ (4.2.24)

with Kvmin the minimum singular value of Kv. Since εN + dB is constant, L̇ ≤ 0 as long
as

‖r‖ > (εN + dB)/Kvmin ≡ br. (4.2.25)

Selecting the gain according to (4.2.18) ensures that the compact set defined by ‖r‖ ≤ br
is contained in Sr, so that the approximation property holds throughout. Therefore, the
tracking error r(t) is bounded and continuity of all functions shows as well the boundedness
of ṙ(t).

It remains to show that Ŵ , or equivalently W̃ , is bounded. Boundedness of r(t)
guarantees the boundedness of e(t) and ė(t), whence boundedness of the desired trajectory
shows q and q̇ are bounded. Property P2 in Table 4.1.1 then shows boundedness of Vm(q, q̇).
These facts guarantee boundedness of the function

y ≡ Mṙ + (Kv + Vm)r − (ε+ τd) (4.2.26)

since M(q) is bounded. Therefore, the dynamics relative to W̃ are given by

˙̃W = −FφrT

yT = φT W̃
(4.2.27)

with y(t) and r(t) bounded. (The second equation is (4.2.8).)

Note that W̃ is a matrix. Using the Kronecker product ⊗ allows one to write the
vector dynamics

d
dt
vec(W̃) = −(I ⊗ Fφ)r

y = (I ⊗ φT)vec(W̃)

where the vec(A) operator stacks the columns of a matrix A to form a vector, and one
notes that vec(zT) = z for a vector z. Now, the PE condition on φ is equivalent to PE of
(I⊗φ), and so to the uniform complete observability of this system, so that by Lemma 4.2.1
boundedness of y(t) and r(t) assures the boundedness of W̃ , and hence of Ŵ . (Note that
boundedness of x(t) verifies boundedness of Fφ(x(t)).) �

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 189

The case where the NN estimation error bound εN depends on x is covered in
(Lewis, Liu, and Yeşildirek 1995).

See the comments following Assumption 4.2.1 regarding the allowed initial track-
ing error r(0) and NN design. According to the PD gain condition (4.2.18), the
required PD gains increase with εN and the disturbances, and also as the desired
trajectory becomes more active. They decrease as the NN size increases. The fol-
lowing properties of the NN controller are also important.

Weight Initialization and On-Line Tuning. As discussed at the end of The-
orem 4.2.1, the tuning algorithm is an unsupervised backpropagation through time
scheme. There is no preliminary off-line learning phase. The weights are simply ini-
tialized at zero, for then Fig. 4.2.2 shows that the controller is just a PD controller,
which holds the system stable until the NN begins to learn. The weights are tuned
on-line in real-time as the system tracks the desired trajectory; as the NN learns
f(x), the tracking performance improves.

Bounds on the Tracking Error and NN Weight Estimation Errors. In the
ideal case of no NN approximation error ε or unmodeled disturbances τd(t), Theorem
4.2.1 showed that the tracking error r(t) vanishes with time. In the nonideal case,
a PE condition is needed, and then the tracking error does not vanish but is UUB.
The right-hand side of (4.2.25) can be taken as a practical bound on the tracking
error in the sense that r(t) will never stray far above it. It is important to note from
this equation that the tracking error increases with the NN reconstruction error εN
and robot disturbances dB, yet arbitrarily small tracking errors may be achieved by
selecting large gains Kv. (If Kv is taken as a diagonal matrix, Kvmin is simply the
smallest gain element.)

Note that the NN weights Ŵ are not guaranteed to approach the ideal unknown
weights W that give good approximation of f(x). However, this is of no concern
as long as W − Ŵ is bounded, as the proof guarantees. This guarantees bounded
control inputs τ(t) so that the tracking objective can be achieved.

4.2.4 Augmented Unsupervised Backpropagation Tuning— Removing
the PE Condition

In adaptive control the possible unboundedness of the weight (e.g. ‘parameter’)
estimates when PE fails to hold is known as ‘parameter drift’. This phenomenon has
been called ‘weight overtraining’ in the NN literature. The PE condition in Theorem
4.2.2 is meant to ensure that drift does not occur. To correct this problem without
requiring the PE condition, one may modify the NN weight tuning algorithm using
techniques from adaptive control, including σ-modification (Ioannou and Kokotovic
1984), e-modification (Narendra and Annaswamy 1987) or dead-zone techniques
(Kreisselmeier and Anderson 1986). Lifting of the PE condition results in a more
robust NN controller that is stable under a wide variety of unmodeled dynamics and
unforseen situations.

The FLNN controller structure is shown in Fig. 4.2.2. The next theorem derives
the tuning law for the FLNN controller in Table 4.2.2 that does not require PE. It
is found necessary to augment the tuning law by an extra term. The proof relies on

190 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Table 4.2.2: FLNN Controller with Augmented Tuning to Avoid PE

Control Input:
τ = ŴTφ(x) +Kvr, with φ(x) a basis

NN Weight/Threshold Tuning Algorithms:

˙̂
W = Fφ(x)rT − κF‖r‖Ŵ

Design parameters: F a positive definite matrix and κ > 0 a small parameter.

an extension to Lyapunov theory. The disturbance τd and NN reconstruction error
ε make it impossible to show that the Lyapunov derivative is nonpositive for all r(t)
and weight values. In fact, it is only possible to show that L̇ is negative outside a
compact set in the state space. This, however, allows one to conclude boundedness of
the tracking error and the neural net weights. In fact, explicit bounds are discovered
during the proof.

Theorem 4.2.3 (Augmented NN Weight Tuning Algorithm) :
Given the hypotheses of Theorem 4.2.2, assume the ideal NN target weights are

bounded by WB as in (4.2.4). Let the control input for the robot arm be given by

τ = ŴTφ(x) +Kvr (4.2.28)

with gain satisfying

Kvmin >
(κW 2

B/4 + εN + dB)(c0 + c2)

bx − qB
. (4.2.29)

Let the weight tuning be modified as

˙̂
W = FφrT − κF‖r‖Ŵ , (4.2.30)

with F = FT > 0 and κ > 0 a small design parameter. Make no assumptions of any
sort of PE requirements on φ(x). Then the filtered tracking error r(t) and the NN weight
estimates Ŵ (t) are UUB with practical bounds given respectively by the right-hand sides
of (4.2.33) and (4.2.34). Moreover, the tracking error may be made as small as desired by
increasing the tracking gain Kv.

Proof:
Let the NN approximation property (4.2.2) hold for the function f(x) given in (4.1.8)

with a given accuracy εN for all x in the compact set Sx ≡ {x | ‖x‖ < bx} with bx > qB .
Define Sr ≡ {r | ‖r‖ < (bx − qB)/(c0 + c2)}. Let r(0) ∈ Sr. Then the approximation
property holds.

Select the Lyapunov function candidate (4.2.20) and obtain (4.2.22). Then, using
tuning rule (4.2.30) yields

L̇ = −rTKvr + κ‖r‖tr{W̃T (W − W̃)}+ rT (ε+ τd). (4.2.31)

Since

tr{W̃T (W − W̃)} =< W̃ ,W >F −‖W̃‖2F ≤ ‖W̃‖F ‖W‖F − ‖W̃‖2F ,

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 191

with ‖ · ‖F the Frobenius norm (Chapter 2), there results

L̇ ≤ −Kvmin‖r‖2 + κ‖r‖ · ‖W̃‖F (WB − ‖W̃‖F) + (εN + dB)‖r‖
= −‖r‖[Kvmin‖r‖+ κ‖W̃‖F (‖W̃‖F −WB)− (εN + dB)], (4.2.32)

which is negative as long as the term in braces is positive. Completing the square yields

Kvmin‖r‖+ κ‖W̃‖F (‖W̃‖F −WB)− (εN + dB)

= κ(‖W̃‖F −WB/2)
2 − κW 2

B/4 +Kvmin‖r‖ − (εN + dB)

which is guaranteed positive as long as

‖r‖ >
κW 2

B/4 + (εN + dB)

Kvmin

≡ br (4.2.33)

or
‖W̃‖F > WB/2 +

√
κW 2

B/4 + (εN + dB)/κ ≡ bW . (4.2.34)

Thus, L̇ is negative outside a compact set. Selecting the gain according to (4.2.29) ensures
that the compact set defined by ‖r‖ ≤ br is contained in Sr, so that the approximation
property holds throughout. This demonstrates the UUB of both ‖r‖ and ‖W̃‖F . �

See the remarks at the end of Theorem 4.2.2 about the region of convergence and
the required PD gain magnitudes (4.2.29).

Weight Initialization and On-Line Learning. The remarks following Theo-
rem 4.2.2 are valid here as well. The NN weights may be initialized at zero, and
stability will be provided by the outer tracking loop until the NN learns. This means
that there is no off-line learning phase, but NN learning occurs in real-time.

Discussion on the NN Tuning Rules. Note that PE is not needed to establish
the bounds on W̃ with the modified weight tuning algorithm. The importance of the
κ term added to the NN weight tuning algorithm is that it adds a quadratric term
in ‖W̃‖F in (4.2.32), so that it is possible to establish that L̇ is negative outside
a compact set in the (‖r‖, ‖W̃‖F) plane (Narendra and Annaswamy 1987). The κ
term is known in adaptive control as Narendra’s e-modification. Its function is to
make the tuning law robust to unmodelled dynamics so that the PE condition is not
needed. In (Polycarpou and Ioannou 1991) a projection algorithm is used to keep
the weights bounded. In (Chen et al. 1992, 1994) a deadzone technique is employed.

The first term in the augmented tuning algorithm (4.2.30) is an unsupervised
backprop through time term.

Tracking Error and NN Weight Bounds. The right-hand sides of (4.2.33)
and (4.2.34) respectively may be taken as practical bounds on the tracking error
and NN weight errors in the sense that excursions beyond these bounds will be very
small. Note, moreover, from the former that arbitrarily small tracking error bounds
may be achieved by selecting large control gains Kv. On the other hand, the NN
weight error is fundamentally bounded by WB, the known bound on the ideal weights
W . The tuning parameter κ offers a design tradeoff between the relative eventual
magnitudes of ‖r‖ and ‖W̃‖F ; a smaller κ yields a smaller ‖r‖ and a larger ‖W̃‖F ,
and vice versa.

192 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Figure 4.2.3: Two-link planar elbow arm.

4.2.5 Functional-Link NN Controller Design and Simulation Example

The FLNN controller is shown in Fig. 4.2.2. We should like to illustrate this control
scheme using the weight tuning laws given in Table 4.2.1 and Table 4.2.2, comparing
the performance to a standard adaptive controller and a PD controller. The design
ease of the FLNN controllers will be evident; they require no knowledge of the system
dynamics, not even their structure which is needed for adaptive control.

Example 4.2.1 (FLNN Control of two-Link Robot Arm) .
The planar two-link revolute arm in Fig. 4.2.3 is used extensively in the literature for

simulation of nonlinear controllers. The dynamics were given in Chapter 3 and are fairly
complicated. We took the arm parameters as a1 = a2 = 1 m, m1 = 0.8 kg, m2 = 2.3 kg,
and selected the desired trajectory q1d(t) = sin(t), q2d(t) = cos(t).

a. Adaptive Controller— Baseline Design. In Chapter 3 an adaptive controller
was designed for this robot arm. It was found that the adaptive controller required the
computation of a complex regression matrix. It was found that the performance of the
adaptive controller was very bad if any elements of this regression matrix were not known,
corresponding to unmodeled dynamics.

b. Functional-Link NN Controller With Backprop Weight Tuning. A
MATLAB M file was written to simulate the NN controller. It is very similar to the
code given in the adaptive control example in Chapter 3. For the NN controller, all the
dynamics are unmodeled as the controller requires no knowledge of the system dynamics.
First, the performance of the NN controller in Table 4.2.1 that uses unsupervised backprop
tuning was simulated. The controller parameters were taken as Kv = diag{20, 20}, F =
diag{50, 50}, Λ = diag{5, 5}. The basis set φ(x) for the FLNN was selected as detailed
in Section 4.4. Other techniques for selecting a basis set are given in (Sanner and Slotine
1991, Commuri and Lewis 1995).

The response using the NN controller with backprop weight tuning as in Table 4.2.1,
with q(0) = 0, q̇(0) = 0, and initial NN weights of zero, appears in Figs. 4.2.4 and 4.2.5.

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 193

Figure 4.2.4: Response of NN controller with backprop weight tuning: actual and
desired joint angles.

The tracking performance is not bad. Note the large values of weights required. In this
case they appear to remain bounded, though this cannot in general be guaranteed unless
PE holds.

No initial NN training or learning phase was needed. The NN weights were simply
initialized at zero in this simulation.

c. FLNN Controller With Augmented Weight Tuning. The performance of
the FLNN controller in Table 4.2.2 that uses augmented backprop tuning was simulated
next. The controller parameters were taken as Kv = diag{20, 20}, F = diag{50, 50},
Λ = diag{5, 5}, κ = 0.1. The basis set φ(x) for the FLNN was selected as detailed in
Section 4.4.

No initial NN training or learning phase was needed. The NN weights were simply
initialized at zero in this simulation.

The response of the controller with improved weight tuning appears in Figs. 4.2.6 and
4.2.7. The tracking response is much better than that using straight backprop tuning,
and the weights are smaller; they are guaranteed to remain bounded even though PE does
not hold. The comparison with the performance of the standard adaptive controller in
Chapter 3 is impressive, even though neither the dynamics of the arm nor a regression
matrix was required to implement the NN controller.

d. PD Control Without NN. To study the contribution of the NN in the controller
of Fig. 4.2.2, we simulated the PD controller τ = Kvr, which has no neural net inner loop.
Fig. 4.2.8 shows the result. Standard results in the robotics literature (Dawson et al.
1990) indicate that a PD controller should give bounded errors if Kv is large enough. This
is observed in the figure. However, it is now clear that the addition of the NN makes a
significant improvement in the tracking performance. �

194 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Figure 4.2.5: Response of NN controller with backprop weight tuning: representa-
tive weight estimates.

Figure 4.2.6: Response of NN controller with improved weight tuning: actual and
desired joint angles.

4.2. ONE-LAYER FUNCTIONAL-LINK NEURAL NETWORK CONTROLLER 195

Figure 4.2.7: Response of NN controller with improved weight tuning: representa-
tive weight estimates.

Figure 4.2.8: Response of controller without NN. actual and desired joint angles.

196 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

4.3 TWO-LAYER NEURAL NETWORK CONTROLLER

In Section 4.2 we presented a rigid-link robot manipulator tracking controller based
on the NN y = WTφ(x) with one layer of tunable weights. This functional-link
NN (FLNN) controller displayed good performance, even though it required no de-
tailed knowledge of the system. However, using a FLNN requires one to select the
activation functions φ(x) corresponding to a basis set for smooth functions f(x).

In this section we present our main result in this chapter, deriving a controller
based on the two-layer NN shown in Fig. 4.0.1 and described by

y =WTσ(V Tx). (4.3.1)

This NN requires no preselection of a basis set. In effect, tuning of the first layer
weights V allows the NN to learn its own basis set for the system nonlinearities.
Three NN weight tuning algorithms are given: (1) unsupervised backpropagation, (2)
unsupervised backpropagation with extra robustifying terms, (3) simplified Hebbian
tuning. The main outcome of our work is the controller displayed in Table 4.3.2
which is very easy to use and works for any rigid-link robot arm.

A major limitation of standard adaptive control applications in robotics is the
requirement for linearity in the unknown system parameters (LIP assumption). Re-
cent approaches are overcoming this limitation (Colbaugh et al. 1994, 1995). The
FLNN relaxes this assumption by providing a universal approximation property as
long as φ(x) is a basis. The FLNN is linear in the tunable weights W , but this is
a less severe restriction than linearity in the system parameters, since the FLNN
approximation property holds for all smooth f(x). Overcoming requirements for lin-
earity in the tunable parameters has been a major obstacle to continued development
of adaptive control techniques. In this section we overcome this problem, providing
tuning rules for a set of NN weights, some of which appear in a nonlinear fashion.

4.3.1 NN Approximation and the Nonlinearity in the Parameters Prob-
lem

The robot arm has dynamics

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ. (4.3.2)

To make the robot manipulator follow a prescribed desired trajectory qd(t), define
the tracking error e(t) and filtered tracking error r(t) by

e = qd − q (4.3.3)

r = ė+ Λe (4.3.4)

with Λ > 0 a positive definite design parameter matrix. The robot dynamics are
expressed in terms of the filtered error as

Mṙ = −Vmr + f(x) + τd − τ (4.3.5)

where the unknown nonlinear robot function is defined as

f(x) =M(q)(q̈d + Λė) + Vm(q, q̇)(q̇d + Λe) + F (q̇) +G(q). (4.3.6)

4.3. TWO-LAYER NEURAL NETWORK CONTROLLER 197

One may define x ≡ [eT ėT qTd q̇Td q̈Td]
T .

Now, according to the universal aproximation property of NN, there is a Two-
layer NN such that

f(x) =WTσ(V Tx) + ε (4.3.7)

with the approximation error bounded on a compact set by

‖ε‖ < εN , (4.3.8)

with εN a known bound. W and V are ideal target weights that give good approxi-
mation to f(x); they are unknown. All we require is the knowledge that they exist, it
is not even required for them to be unique. Define the matrix of all the NN weights
as

Z ≡
[
W 0
0 V

]
. (4.3.9)

Determining the number L of hidden-layer neurons required for good approxima-
tion is an open problem for general fully connected two-layer NN of the sort shown
in Fig. 4.0.1. In Commuri and Lewis (1995) it is shown how to determine the NN
size L for cerebellar model arithmetic computer (CMAC) NN. In practical situa-
tions, one performs computer simulations of the NN controller on the system prior
to implementing it. A value of L can be selected, the controller simulated, and then
L increased for another simulation run. When there is no further improvement,
that value of L is used. It was found that, for the two-link robot arm used in the
examples, ten hidden-layer neurons suffices.

We shall require Assumption 4.1.1 that the reference trajectory qd(t) is bounded
by a known scalar bound qB. The next assumption is also true in every practical
situation. These assumptions are standard in the existing literature.

Assumption 4.3.1 (Bounded Ideal Target NN Weights) : On any compact subset
of �n, the ideal NN weights are bounded so that

‖Z‖F ≤ ZB (4.3.10)

with ZB known and ‖ · ‖F the Frobenius norm (Chapter 2).

Now, let a NN estimate of f(x) be given by

f̂(x) = ŴTσ(V̂ Tx) (4.3.11)

with V̂ , Ŵ the actual values of the NN weights given by the tuning algorithm to be
specified. Note that V̂ , Ŵ are estimates of the ideal weight values and define the
weight deviations or weight estimation errors as

Ṽ = V − V̂ , W̃ =W − Ŵ , Z̃ = Z − Ẑ. (4.3.12)

4.3.1.1 Overcoming the Restriction of Linearity in the Tunable Parameters

In most standard adaptive robot control schemes, and in Section 4.2, linearity in
the tunable parameters is needed to determine tuning algorithms. In this section we

198 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

overcome this restriction, providing tuning algorithms for a general set of param-
eters, some of which (e.g. V) appear in a nonlinear fashion. The next steps are
crucial in this development.

Define the hidden-layer output error for a given x as

σ̃ = σ − σ̂ ≡ σ(V Tx)− σ(V̂ Tx). (4.3.13)

The Taylor series expansion of σ(x) for a given x may be written as

σ(V Tx) = σ(V̂ Tx) + σ′(V̂ Tx)Ṽ Tx+O(Ṽ Tx)2, (4.3.14)

with

σ′(ẑ) ≡ dσ(z)

dz

∣∣∣∣
z=ẑ

the Jacobian matrix and O(z)2 denoting terms of order two. Denoting σ̂′ = σ′(V̂ Tx),
we have

σ̃ = σ′(V̂ Tx)Ṽ Tx+O(Ṽ Tx)2 = σ̂′Ṽ Tx+O(Ṽ Tx)2. (4.3.15)

The importance of this equation is that it replaces σ̃, which is nonlinear in Ṽ , by
an expression linear in Ṽ plus higher-order terms. This will allow us to determine
tuning algorithms for V̂ in subsequent derivations.

It is important to note that it is very easy to compute the Jacobian σ̂′ using
the current NN weights and measurements of the signal x(t), which appears in the
closed-loop system.

Different bounds may be put on the Taylor series higher-order terms depending
on the choice for activation functions σ(·). Noting that

O(Ṽ Tx)2 = [σ(V Tx)− σ(V̂ Tx)]− σ̂′Ṽ Tx (4.3.16)

one has the following. The numbering of the constants ci takes up after the c0, c1, c2
defined in Lemma 4.1.1.

Lemma 4.3.1 (Bounds on Taylor Series Higher-Order Terms) : For sigmoid, RBF,
and tanh activation functions, the higher-order terms in the Taylor series are bounded by

‖O(Ṽ Tx)‖ ≤ c3 + c4qB‖Ṽ ‖F + c5‖Ṽ ‖F ‖r‖ (4.3.17)

where ci are computable positive constants.

Proof: Direct using (4.1.13), some standard norm inequalities, and the fact that σ(·) and
its derivative are bounded by constants for RBF, sigmoid, and tanh.

The extension of these ideas to nets with greater than three layers is not difficult
and leads to composite function terms in the Taylor series (giving rise to backprop-
agation filtered error terms for the multilayer net case).

4.3.2 Controller Structure and Error System Dynamics

Select the control input

τ = ŴTσ(V̂ Tx) +Kvr − v, (4.3.18)

4.3. TWO-LAYER NEURAL NETWORK CONTROLLER 199

Figure 4.3.1: Multilayer NN controller structure.

with v(t) a function to be detailed subsequently that provides robustness in the face
of higher-order terms in the Taylor series. The proposed NN control structure is
shown in Fig. 4.3.1.

Using this controller, the closed-loop filtered error dynamics become

Mṙ = −(Kv + Vm)r +WTσ(V Tx)− ŴTσ(V̂ Tx) + (ε+ τd) + v. (4.3.19)

Adding and subtracting WT σ̂ yields

Mṙ = −(Kv + Vm)r + W̃T σ̂ +WT σ̃ + (ε+ τd) + v (4.3.20)

with σ̂ and σ̃ defined in (4.3.13). Adding and subtracting now ŴT σ̃ yields

Mṙ = −(Kv + Vm)r + W̃T σ̂ + ŴT σ̃ + W̃T σ̃ + (ε+ τd) + v. (4.3.21)

The key step is the use now of the Taylor series approximation (4.3.15) for σ̃,
according to which the closed-loop error system is

Mṙ = −(Kv + Vm)r + W̃T σ̂ + ŴT σ̂′Ṽ Tx+ w1 + v (4.3.22)

where the disturbance terms are

w1(t) = W̃T σ̂′Ṽ Tx+WTO(Ṽ Tx)2 + ε+ τd. (4.3.23)

Unfortunately, using this error system does not yield a compact set outside which
a certain Lyapunov function derivative is negative. Therefore, finally write the error
system

Mṙ = −(Kv + Vm)r + W̃T (σ̂ − σ̂′V̂ Tx) + ŴT σ̂′Ṽ Tx+ w + v (4.3.24)

where the disturbance terms are

w(t) = W̃T σ̂′V Tx+WTO(Ṽ Tx)2 + ε+ τd. (4.3.25)

200 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

It is important to note that the NN reconstruction error ε(x), the robot distur-
bances τd, and the higher-order terms in the Taylor series expansion of f(x) all have
exactly the same influence as disturbances in the error system. The next key bound
is required. Its importance is in allowing one to overbound w(t) at each time by a
known computable function; it follows from Lemmas 4.1.1-4.3.1 and some standard
norm inequalities.

Lemma 4.3.2 (Bounds on the Disturbance Term) : The disturbance term (4.3.25)
is bounded according to

‖w(t)‖ ≤ (εN + dB + c3ZB) + c6ZB‖Z̃‖F + c7ZB‖Z̃‖F ‖r‖

or

‖w(t)‖ ≤ C0 + C1‖Z̃‖F + C2‖Z̃‖F ‖r‖ (4.3.26)

with Ci known positive constants.

Observe that it is not possible to obtain such a bilinear bounding function for w1(t).
Also note that C0 becomes larger with increases in the NN estimation error ε and
the robot dynamics disturbances τd(t).

4.3.3 Weight Updates for Guaranteed Tracking Performance

We give here some NN weight tuning algorithms that guarantee the tracking stability
of the closed-loop system under various assumptions. It is required to demonstrate
that the tracking error r(t) is suitably small and that the NN weights V̂ , Ŵ remain
bounded, for then the control τ(t) is bounded. Three tuning algorithms are given:
(1) an unsupervised version of backpropagation that works for an ideal case, (2)
an improved version of backpropagation augmented by some extra terms, and (3) a
simplified Hebbian scheme for computational ease.

Initial Tracking Error Requirement. The next assumption specifies the region
of convergence of the two-layer NN controllers designed in this section.

Assumption 4.3.2 (Initial Condition Requirement) . Suppose the desired trajec-
tory qd, q̇d, q̈d is bounded by qB as in Assumption 4.1.1. Define known constants c0, c2
by Lemma 4.1.1. Let the NN approximation property (4.3.7) hold for the function f(x)
given in (4.3.6) with a given accuracy εN for all x inside the ball of radius bx > qB . Let
the initial tracking error satisfy ‖r(0)‖ < (bx − qB)/(c0 + c2).

See the remarks following Assumption 4.2.1 about this assumption. The follow-
ing are key points: The set Sr specifies the set of allowed initial tracking errors r(0),
which becomes larger as the number L of NN hidden-layer neurons increases. The
key role of the initial condition requirement is in showing the dependence of the al-
lowed initial condition set Sr on the design parameters. The constants qB , c0, c2, bx
need not be explicitly determined. The initial condition requirement is independent
of the NN initial weights.

4.3. TWO-LAYER NEURAL NETWORK CONTROLLER 201

Table 4.3.1: Two-Layer NN Controller for Ideal Case

Control Input:
τ = ŴTσ(V̂ Tx) +Kvr − v,

NN Weight/Threshold Tuning Algorithms:

˙̂
W = Fσ̂rT ,

˙̂
V = Gx(σ̂′T Ŵ r)T ,

Design parameters: F,G positive definite matrices.

4.3.3.1 Ideal Case- Unsupervised Backpropagation Tuning of Weights

The next result details the closed-loop behavior in a certain idealized case that de-
mands: (1) no net functional reconstruction error, (2) no unmodeled disturbances
in the robot arm dynamics, and (3) no higher-order Taylor series terms. These are
stringent assumptions; the last amounts to the assumption that f(x) is linear! In
this case the tuning rules are straightforward and familiar. The resulting controller
is given in Table 4.3.1.

Theorem 4.3.1 (Backprop Tuning for an Ideal Case) :
Let the desired trajectory qd(t) be bounded by qB as in Assumption 4.1.1 and the initial

tracking error r(0) satisfy Initial Condition Assumption 4.3.2. Suppose the disturbance
term w1(t) in (4.3.22) is equal to zero. Let the control input for (4.3.2) be given by (4.3.18)
with v(t) = 0 and weight tuning provided by

˙̂
W = F σ̂rT , (4.3.27)

˙̂
V = Gx(σ̂′T Ŵ r)T , (4.3.28)

with any constant positive definite design matrices F,G. Then the tracking error r(t) goes
to zero with t and the weight estimates V̂ , Ŵ , are bounded.

Proof:
Let the NN approximation property (4.3.7) hold for the function f(x) given in (4.3.6)

with a given accuracy εN for all x in the compact set Sx ≡ {x | ‖x‖ < bx} with bx > qB .
Define Sr ≡ {r | ‖r‖ < (bx − qB)/(c0 + c2)}. Let r(0) ∈ Sr. Then the approximation
property holds.

Define the Lyapunov function candidate

L(r, W̃ , Ṽ) =
1

2
rTM(q)r +

1

2
tr
{
W̃TF−1W̃

}
+

1

2
tr
{
Ṽ TG−1Ṽ

}
. (4.3.29)

Differentiating yields

L̇ = rTMṙ +
1

2
rT Ṁr + tr{W̃TF−1 ˙̃W}+ tr{Ṽ TG−1 ˙̃V } (4.3.30)

whence substitution from (4.3.22) (with w1 = 0, v = 0) yields

L̇ = −rTKvr+
1

2
rT (Ṁ − 2Vm)r+ tr{W̃T (F−1 ˙̃W + σ̂rT)}+ tr{Ṽ T (G−1 ˙̃V + xrT ŴT σ̂′)}.

(4.3.31)

202 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

The skew symmetry property makes the second term zero, and since Ŵ = W − W̃ with
W constant, so that dW̃/dt = −dŴ/dt (and similarly for V), the tuning rules yield

L̇ = −rTKvr. (4.3.32)

Since L > 0 and L̇ ≤ 0 this shows stability in the sense of Lyapunov so that r, Ṽ , and W̃
(and hence V̂ , Ŵ) are bounded.

LaSalle’s extension (Chapter 2) is now used to show that r(t) in fact goes to zero. Note
that ∫ ∞

0

−L̇dt < ∞. (4.3.33)

Boundedness of r guarantees the boundedness of e and ė, whence boundedness of the
desired trajectory shows q, q̇, x are bounded. Property P2 then shows boundedness of
Vm(q, q̇). Now, L̈ = −2rTKv ṙ, and the boundedness of M−1(q) and of all signals on the
right-hand side of (4.3.22) verify the boundedness of ṙ and hence L̈, and thus the uniform
continuity of L̇. This allows one to invoke Barbalat’s Lemma in connection with (4.3.33)
to conclude that L̇ goes to zero with t, and hence that r(t) vanishes. �

Weight Initialization and On-Line Tuning. There is in this scheme no pre-
liminary off-line learning required, and the problem of net weight initialization oc-
curring in other approaches in the literature does not arise. In fact, selecting the
initial weights Ŵ (0), V̂ (0) as zero takes the NN out of the circuit and leaves only
the outer PD tracking loop in Fig. 4.3.1. It is well known that the PD term Kvr
in (4.3.18) can then stabilize the plant on an interim basis until the NN begins to
learn. A formal proof reveals that Kv should be large enough and the initial filtered
error r(0) small enough. The exact value of Kv needed for initial stabilization is
given in (Dawson et al. 1990) though for practical purposes it is only necessary to
select Kv large. The NN weights are tuned on-line in real time; as the NN learns,
the tracking error decreases.

Unsupervised Backprop Through Time Tuning. Note next that (4.3.27)
and (4.3.28) are nothing but the continuous-time version of the backpropagation
algorithm. In the sigmoid case, for instance

σ′(z) = diag{σ(z)}(I − diag{σ(z)})

so that

σ̂′T Ŵ r = diag{σ(V̂ Tx)}[I − diag{σ(V̂ Tx)}]Ŵ r

which is the filtered error weighted by the current estimate Ŵ and multiplied by the
usual product involving the hidden-layer outputs. Compare this to the continuous-
time backprop algorithm given in Chapter 1.

It is important to note that the tuning algorithms in the theorem are an un-
supervised version of backpropagation through time; it is not necessary to know
the ‘ideal’ plant output, instead, the filtered error r(t) is the signal backpropagated.
Moreover, the required Jacobian σ̂′ is easily computed in terms of signals measured
in the closed-loop system. This should be contrasted to other backprop techniques
in the literature where direct evaluation of gradients requires the computation of
Jacobians of unknown system dynamics.

4.3. TWO-LAYER NEURAL NETWORK CONTROLLER 203

Table 4.3.2: Two-Layer NN Controller with Augmented Backprop Tuning

Control Input:
τ = ŴTσ(V̂ Tx) +Kvr − v,

Robustifying Signal:
v(t) = −Kz(‖Ẑ‖F + ZB)r

NN Weight/Threshold Tuning Algorithms:

˙̂
W = Fσ̂rT − Fσ̂′V̂ TxrT − κF‖r‖Ŵ
˙̂
V = Gx(σ̂′T Ŵ r)T − κG‖r‖V̂

Design parameters: F,G positive definite matrices, κ > 0 a small design
parameter.

Limitations of Backprop Tuning. Theorem 4.3.1 indicates when backprop alone
should suffice, namely, when the disturbance w1(t) is equal to zero. According to
(4.3.23), this requires no NN estimation errors ε, no robot arm disturbances τd(t),
and no higher-order Taylor series terms. These are serious restrictions that never
hold in practical situations.

4.3.3.2 Augmented Backprop Tuning for the General Case

This subsection contains the main result of this chapter. We have just seen that
backprop tuning can only be guaranteed to work in an unrealistic ideal case. To
confront the stability and tracking performance of a NN robot arm controller in the
thorny general case that allows NN estimation errors and system disturbances, we
shall require: (1) the modification of the weight tuning rules, and (2) the addition of
a robustifying term v(t). The problem in this case is that, though it is not difficult
to conclude that r(t) is bounded, it is impossible without these modifications to show
that the NN weights are bounded in general. Boundedness of the weights is needed
to verify that the control input τ(t) remains bounded. The resulting controller is
given in Table 4.3.2. In contrast to the ideal case, the tracking error does not go to
zero with time, but is bounded by a small enough value.

Theorem 4.3.2 (Augmented Backprop Weight Tuning) :
Let the desired trajectory qd(t) be bounded by qB as in Assumption 4.1.1 and the

initial tracking error r(0) satisfy Initial Condition Assumption 4.3.2. Let the ideal target
NN weights be bounded as in Assumption 4.3.1. Take the control input for the robot
dynamics (4.3.2) as (4.3.18) with PD gain satisfying

Kvmin >
(C0 + κC2

3/4)(c0 + c2)

bx − qB
, (4.3.34)

where C3 is defined in the proof and C0 and C2 are defined in (4.3.26). Let the robustifying
term be

v(t) = −Kz(‖Ẑ‖F + ZB)r (4.3.35)

204 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

with gain
Kz > C2. (4.3.36)

Let NN weight tuning be provided by

˙̂
W = F σ̂rT − F σ̂′V̂ TxrT − κF‖r‖Ŵ (4.3.37)

˙̂
V = Gx(σ̂′T Ŵ r)T − κG‖r‖V̂ (4.3.38)

with any constant matrices F = FT > 0, G = GT > 0, and κ > 0 a small scalar design
parameter. Then the filtered tracking error r(t) and NN weight estimates V̂ , Ŵ are UUB,
with the bounds given specifically by (4.3.40) and (4.3.41). Moreover, the tracking error
may be kept as small as desired by increasing the gains Kv in (4.3.18).

Proof:
Let the NN approximation property (4.3.7) hold for the function f(x) given in (4.3.6)

with a given accuracy εN for all x in the compact set Sx ≡ {x | ‖x‖ < bx} with bx > qB .
Define Sr ≡ {r | ‖r‖ < (bx − qB)/(c0 + c2)}. Let r(0) ∈ Sr. Then the approximation
property holds.

Selecting the Lyapunov function (4.3.29), differentiating, and substituting now from
the error system (4.3.24) yields

L̇ = −rTKvr +
1

2
rT (Ṁ − 2Vm)r + tr{W̃T (F−1 ˙̃W + σ̂rT − σ′V̂ TxrT)}

+tr{Ṽ T (G−1 ˙̃V + xrT ŴT σ̂′)} (4.3.39)

The tuning rules give

L̇ = −rTKvr + κ‖r‖tr{W̃T (W − W̃)}+ κ‖r‖tr{Ṽ T (V − Ṽ)}+ rT (w + v)

= −rTKvr + κ‖r‖tr{Z̃T (Z − Z̃)}+ rT (w + v).

Since
tr{Z̃T (Z − Z̃)} =< Z̃, Z > −‖Z̃‖2F ≤ ‖Z̃‖F ‖Z‖F − ‖Z̃‖2F ,

there results

L̇ ≤ −rTKvr + κ‖r‖ · ‖Z̃‖F (ZB − ‖Z̃‖F)−KZ(‖Ẑ‖F + ZB)‖r‖2 + ‖r‖ · ‖w‖
≤ −Kvmin‖r‖2 + κ‖r‖ · ‖Z̃‖F (ZB − ‖Z̃‖F)−KZ(‖Ẑ‖F + ZB)‖r‖2

+‖r‖
[
C0 + C1‖Z̃‖F + C2‖r‖ · ‖Z̃‖F

]
≤ −‖r‖

{
Kvmin‖r‖ − κ · ‖Z̃‖F (ZB − ‖Z̃‖F)− C0 − C1‖Z̃‖F

}
where Kvmin is the minimum singular value of Kv, Lemma 4.3.2 was used, and the last
inequality holds due to (4.3.36).

L̇ is negative as long as the term in braces is positive. Defining C3 = ZB + C1/κ and
completing the square yields

Kvmin‖r‖ − κ · ‖Z̃‖F (ZB − ‖Z̃‖F)− C0 − C1‖Z̃‖F
= κ(‖Z̃‖F − C3/2)

2 +Kvmin‖r‖ − C0 − κC2
3/4

which is guaranteed positive as long as either

‖r‖ >
C0 + κC2

3/4

Kvmin

≡ br (4.3.40)

or
‖Z̃‖F > C3/2 +

√
C0/κ+ C2

3/4 ≡ bZ . (4.3.41)

4.3. TWO-LAYER NEURAL NETWORK CONTROLLER 205

Thus, L̇ is negative outside a compact set. According to the LaSalle extension in Chapter
2, this demonstrates the UUB of both ‖r‖ and ‖Z̃‖F as long as the control remains valid
within this set. However, the PD gain condition (4.3.34) shows that the compact set defined
by ‖r‖ ≤ br is contained in Sr, so that the approximation property holds throughout. �

The comments following Theorems 4.2.1, 4.2.2, 4.2.3, and 4.3.1 all apply here.
The following remarks are particularly relevant.

Weight Initialization and On-Line Tuning. As usual the algorithms in this
book require no preliminary off-line learning phase. The NN weights are initialized
at zero. Weight training occurs on-line in real time.

Unsupervised Backpropagation Through Time with Extra Terms. The
first terms of (4.3.37) and (4.3.38) are modified versions of the standard backprop-
agation algorithm. The last terms correspond to the e-modification (Narendra and
Annaswamy 1987) in standard use in adaptive control to guarantee bounded param-
eter estimates; they form a special sort of forgetting term in the weight updates.
Their function is to add to L̇ a quadratic term in ‖Z̃‖F so it can be shown that
L̇ is negative outside a compact set in the (‖r‖, ‖Z̃‖F) plane. The second term
in (4.3.37) is very interesting and bears discussion. The standard backprop terms
can be thought of as backward propagating signals in a nonlinear ‘backprop’ network
(Chapter 1) that contains multipliers. The second term in (4.3.37) corresponds to
a forward traveling wave in the backprop net that provides a second-order correction
to the weight tuning for Ŵ .

Bounds on the Tracking Error and NN Weight Estimation Errors. The
right-hand side of (4.3.40) can be taken as a practical bound on the tracking error
in the sense that r(t) will never stray far above it. It is important to note from this
equation that the tracking error increases with the NN reconstruction error εN and
robot disturbances dB (both appear in C0), yet arbitrarily small tracking errors may
be achieved by selecting large gains Kv. On the other hand, (4.3.41) reveals that
the NN weight errors are fundamentally bounded by ZB (through C3). The tuning
parameter κ offers a design trade-off between the relative eventual magnitudes of
‖r‖ and ‖Z̃‖F .

Design Trade-off of NN Size Versus Tracking Accuracy. Note that there
is design freedom in the degree of complexity (e.g. size) of the NN. For a more
complex NN (e.g. more hidden units), the NN estimation error εN decreases, so
the bounding constant C0 will decrease, resulting in smaller tracking errors. On
the other hand, a simplified NN with fewer hidden units will result in larger error
bounds; this degradation can be compensated for by selecting a larger value for the
PD gain Kv.

4.3.3.3 Simplified Hebbian Tuning

The Hebbian NN weight tuning rule in Chapter 1 is based on classical condition-
ing experiments in psychology and associative memory paradigms. It is a simplified

206 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Table 4.3.3: Two-Layer NN Controller with Augmented Hebbian Tuning

Control Input:
τ = ŴTσ(V̂ Tx) +Kvr − v,

Robustifying Signal:
v(t) = −Kz(‖Ẑ‖F + ZB)r

NN Weight/Threshold Tuning Algorithms:

˙̂
W = Fσ̂rT − κF‖r‖Ŵ
˙̂
V = G‖r‖xσ̂T − κG‖r‖V̂

Design parameters: F,G positive definite matrices, κ > 0 a small design
parameter.

tuning rule that does not require the computation of Jacobians as needed for back-
propagation. Unfortunately, it has not been shown to converge in the literature so
its use has been questionable. In this subsection we derive a Hebbian tuning al-
gorithm for the two-layer NN controller in Fig. 4.3.1, proving closed-loop stability
and guaranteeing the tracking performance. It is seen that, to prove convergence, an
extra term must be added to the standard Hebbian algorithm. This controller is sim-
pler to implement than the NN controller in Table 4.3.2 and often gives comparable
performance.

The next theorem details the Hebbian tuning algorithm, which is summarized in
Table 4.3.3. In this derivation, the problem of nonlinearity in the tunable weights
V is overcome without using the Taylor series expansion of σ(V Tx) in (4.3.14)—
the proof relies on the error system (4.3.20).

Theorem 4.3.3 (Augmented Hebbian Weight Tuning) :
Let the desired trajectory qd(t) be bounded by qB as in Assumption 4.1.1 and the

initial tracking error r(0) satisfy Initial Condition Assumption 4.3.2. Let the ideal target
NN weights be bounded as in Assumption 4.3.1. Take the control input for the robot
dynamics (4.3.2) as (4.3.18) with PD gain satisfying

Kvmin >
D(c0 + c2)

bx − qB
, (4.3.42)

with D defined in the proof. Let the robustifying term be

v(t) = −Kz(‖Ẑ‖F + ZB)r, (4.3.43)

with gain
Kz > c2. (4.3.44)

Let NN weight tuning be provided by

˙̂
W = F σ̂rT − κF‖r‖Ŵ (4.3.45)

˙̂
V = G‖r‖xσ̂T − κG‖r‖V̂ (4.3.46)

4.3. TWO-LAYER NEURAL NETWORK CONTROLLER 207

with any constant matrices F = FT > 0, G = GT > 0, and κ > 0 a small scalar design
parameter. Then the filtered tracking error r(t) and NN weight estimates V̂ , Ŵ are UUB,
with the bounds given specifically by (4.3.49) and (4.3.50). Moreover, the tracking error
may be kept as small as desired by increasing the gains Kv in (4.3.18).

Proof:
Let the NN approximation property (4.3.7) hold for the function f(x) given in (4.3.6)

with a given accuracy εN for all x in the compact set Sx ≡ {x | ‖x‖ < bx} with bx > qB .
Define Sr ≡ {r | ‖r‖ < (bx − qB)/(c0 + c2)}. Let r(0) ∈ Sr. Then the approximation
property holds.

Let the Lyapunov function candidate be

L(r, W̃ , Ṽ) =
1

2
rTM(q)r +

1

2
tr
{
W̃TP−1W̃

}
+

1

2
tr
{
Ṽ TR−1Ṽ

}
. (4.3.47)

Differentiating with respect to time along the solution of the error system dynamics (4.3.20)
yields

L̇ = −rTKvr +
1
2
rT (Ṁ − 2Vm)r + tr

{
W̃T (P−1 ˙̃W + σ̂rT)

}
+tr

{
Ṽ TR−1 ˙̃V

}
+ rTWT σ̃ + rT v + rT (τd + ε).

Use the NN weight update laws and skew-symmetry to obtain

L̇ = −rTKvr + κ‖r‖tr{W̃T (W − W̃)}+ κ‖r‖tr{Ṽ T (V − Ṽ)}
+‖r‖tr{Ṽ Txσ̂T }+ rT v + rTWT σ̃ + rT (τd + ε)

= −rTKvr + κ‖r‖tr{Z̃T (Z − Z̃)}+ ‖r‖tr{Ṽ Txσ̂T }+ rT v + rTWT σ̃ + rT (τd + ε).

Since tr{ATB} =< A,B > ≤ ‖A‖F ‖B‖F and

tr{Z̃T (Z − Z̃)} =< Z̃, Z > − ‖Z̃‖2F ≤ ‖Z̃‖F ‖Z‖F − ‖Z̃‖2F ,
there results

L̇ ≤ −Kvmin‖r‖2 + κ‖r‖ · ‖Z̃‖F (ZB − ‖Z̃‖F) + ‖r‖ · ‖Ṽ ‖F · ‖xσ̂T ‖F + rT v

+‖r‖ · ‖W‖F · ‖σ̃‖+ ‖r‖(dB + εN)

where Kvmin is the minimum singular value of Kv. Using (4.3.43) yields

L̇ ≤ −‖r‖
{
Kvmin‖r‖ − κ‖Z̃‖F (ZB − ‖Z̃‖F)− ‖Z̃‖F (c1 + c2‖r‖)+

Kz(‖Ẑ‖F + ZB)‖r‖ − (
√
LZB + dB + εN)

}
.

Picking Kz ≥ c2 and completing the squares results in

L̇ ≤ −‖r‖
{
Kvmin‖r‖+ κ(‖Z̃‖F − C3)

2 −D
}

(4.3.48)

where

C3 =
ZB

2
+

c1
2κ

and
D = κC2

3 +
√
LZB + dB + εN .

Thus, whenever

‖r‖ >
D

Kvmin

≡ br (4.3.49)

or

‖Z̃‖ > C3 +

√
D

κ
≡ bZ (4.3.50)

208 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

L̇ becomes negative and L decreases. Therefore, outside the region defined by the constant
bounds (4.3.49) and (4.3.50) the tracking and parameter errors will decrease. Therefore,
one can conclude UUB of r(t) and Z̃(t) as long as the control remains valid within this set.
However, the PD gain condition (4.3.42) shows that the compact set defined by ‖r‖ ≤ br
is contained in Sr, so that the approximation property holds throughout. By Assumptions
4.1.1 and 4.3.1 one concludes that q(t) and Ẑ(t) are UUB. �

See the remarks at the end of Theorem 4.3.2. Note that the tuning rules are of
Hebbian form, with each layer of weights tuned using the outer product of its input
signal and its output signal. To prove convergence, the standard Hebbian rules must
be modified by adding the robustifying e-mod terms, and also by multiplying the first
term in (4.3.46) by ‖r‖.

4.3.4 Two-Layer NN Controller Design and Simulation Example

The two-layer controller is shown in Fig. 4.3.1. We want to illustrate this control
scheme using the augmented weight tuning laws given in Table 4.3.2. The design
ease of the two-layer NN controller will be evident; it requires no knowledge of the
system dynamics, not even their structure which is needed for adaptive control. Nor
does it require the selection of any basis set as for the FLNN controllers.

Example 4.3.1 (Two-Layer NN Control of Two-Link Robot Arm) :
The dynamics of the planar two-link revolute arm in Fig. 4.2.3 were given in Chapter

3. We took the arm parameters as a1 = a2 = 1 m, m1 = 0.8 kg, m2 = 2.3 kg. In
Example 4.2.1 we made several points: (1) The standard adaptive controller performs
satisfactorily when the regression matrix is exactly known. However, if there are any
unmodeled dynamics, it performs badly. (2) The FLNN controller performs well when
all the dynamics are unmodeled, but it requires the computation of a NN basis set of
activation functions. (3) A PD controller by itself does not perform well.

A MATLAB M file was written to simulate the two-layer NN controller. It is very
similar to the code given in the adaptive control example in Chapter 3. To implement
the NN controller in Table 4.3.2 we simply selected 10 hidden-layer neurons and sigmoid
activation functions. No basis set selection was required. We selected a desired trajectory
exponential in q1d(t) and sinusoidal in q2d(t). To test the ability of the NN controller
to handle discontinuous commands, the desired trajectory was turned on at 0.1 sec and
turned off at 0.9 sec.

The NN controller parameters were taken as Kv = diag{20, 20}, F = diag{50, 50},Λ =
diag{5, 5}, κ = 0.1. The response of the NN controller with the augmented backprop
weight tuning in Table 4.3.2 appears in Figs. 4.3.2-4.3.3. The tracking response is good
and the weights reach bounded values. No initial NN training or learning phase was
needed. The NN weights were simply initialized at zero in this simulation. �

4.4 PARTITIONED NN AND SIGNAL PREPROCESSING

In this section we show how NN controller implementation may be streamlined
by partitioning the NN into several smaller subnets to obtain more efficient com-
putation. Also discussed in this section is preprocessing of input signals for the
NN to improve efficiency and accuracy of the approximation. Some discussion is
given on determining a basis set of activation functions for the FLNN controller in
Section 4.2, though the NN controllers in section 4.3 would normally be used for
implementation— they do not require computation of a basis set.

4.4. PARTITIONED NN AND SIGNAL PREPROCESSING 209

Figure 4.3.2: Response of NN controller with improved weight tuning: actual and
desired joint angles.

Figure 4.3.3: Response of NN controller with improved weight tuning: representa-
tive weight estimates.

210 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

4.4.1 Partitioned NN

A major advantage of the NN approach is that it allows one to partition the con-
troller in terms of partitioned NN or neural subnets. This: (1) simplifies the design,
(2) gives added controller structure, and (3) makes for faster weight tuning algo-
rithms.

The nonlinear robot function (4.1.8) is

f(x) =M(q)ζ1(t) + Vm(q, q̇)ζ2(t) +G(q) + F (q̇), (4.4.1)

where

ζ1(t) ≡ q̈d + Λė

ζ2(t) ≡ q̇d + Λe.

Taking the four terms in f(x) one at a time, use separate NN to reconstruct each
term so that

M(q)ζ1(t) = WT
MσM (V T

MxM) + εM
Vm(q, q̇)ζ2(t) = WT

V σV (V
T
V xV) + εV

G(q) = WT
GσG(V

T
G xG) + εG

F (q̇) = WT
F σF (V

T
F xF) + εF .

(4.4.2)

This procedure results in four neural subnets, which we term a structured or parti-
tioned NN, as shown in Fig. 4.4.1. The nonlinear function is given by

f(x) = [WT
M WT

V WT
G WT

F]

⎡
⎢⎢⎣
σM
σV
σG
σF

⎤
⎥⎥⎦+ ε (4.4.3)

with overall estimation error ε = εM + εV + εG + εF .
It can be directly shown that the individual partitioned NNs can be separately

tuned, making for a faster weight update procedure. For instance, to implement the
two-layer controller of Table 4.3.2 one would use

˙̂
WM = FM σ̂Mr

T − FM σ̂
′
M V̂

T
MxMr

T − κMFM‖r‖ŴM

˙̂
VM = GMx(σ̂

′T
MŴMr)

T − κMGM‖r‖V̂M
˙̂
WV = FV σ̂V r

T − FV σ̂
′
V V̂

T
V xV r

T − κV FV ‖r‖ŴV

˙̂
V V = GV x(σ̂

′T
V ŴV r)

T − κVGV ‖r‖V̂V
˙̂
WG = FGσ̂Gr

T − FGσ̂
′
GV̂

T
G xGr

T − κGFG‖r‖ŴG

˙̂
V G = GGx(σ̂

′T
G ŴGr)

T − κGGG‖r‖V̂G
˙̂
WF = FF σ̂F r

T − FF σ̂
′
F V̂

T
F xF r

T − κFFF ‖r‖ŴF

˙̂
V F = GFx(σ̂

′T
F ŴF r)

T − κFGF ‖r‖V̂F (4.4.4)

An advantage of this structured NN is that if some terms in the robot dynamics
are well-known (e.g. inertia matrix M(q) and gravity G(q)), then their NNs can be
replaced by equations that compute them. NNs can be used to reconstruct only the
unknown terms or those too complicated to compute, which will probably include the
friction F (q̇) and the Coriolis/centripetal terms Vm(q, q̇).

4.4. PARTITIONED NN AND SIGNAL PREPROCESSING 211

Figure 4.4.1: Partitioned neural net.

4.4.2 Preprocessing of Neural Net Inputs

The selection of a suitable NN input vector x(t) for computation remains to be
addressed; some preprocessing of signals yields a more advantageous choice than
(4.1.9) since it can explicitly introduce some of the nonlinearities inherent to robot
arm dynamics. This reduces the burden of expectation on the NN and, in fact, also
reduces the functional reconstruction error ε.

Let an n-link robot have nr revolute joints with joint variable vector qr, and
np prismatic joints with joint variable qp, so that n = nr + np. Since the only
occurrences of the revolute joint variables are as sines and cosines, transform q =
[qTr qTp]

T by preprocessing to [cos(qr)
T sin(qr)

T qTp]
T to be used as arguments for

the basis functions. Then the vector x can be taken as

x =
[
ζT1 ζT2 cos(qr)

T sin(qr)
T qTp q̇T sgn(q̇)T

]T
, (4.4.5)

where the signum function is needed in the friction terms.

4.4.3 Selection of a Basis Set for the Functional-Link NN

The two-layer NN in section 4.3 automatically generate their own basis set by tuning
the first layer NN weights V . In practical applications, if there is enough computing
power one would use the two-layer NN controller. If computing power is limited,
however, the one-layer NN becomes attractive since the weight tuning algorithms
are less complex. In Section 4.2 was given a one-layer FLNN controller where it is
required to select a basis set of activation functions φ(x). This may be accomplished
by choosing random scaling and shift parameters for the functions φ(·), as in the
Random Vector Functional Link (RVFL) net (Chapter 1), or as follows.

212 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

The nonlinear function (4.4.1) can be expressed in terms of a FLNN on a com-
pact set as

f(x) =WTφ(x) + ε(x). (4.4.6)

Write f(x) in terms of partitioned NN so that

M(q)ζ1(t) = WT
MφM (xM) + εM

Vm(q, q̇)ζ2(t) = WT
V φV (xV) + εV

G(q) = WT
GφG(xG) + εG

F (q̇) = WT
F φF (xF) + εF .

(4.4.7)

Assume the columns mi(q) of M(q) can be expressed as

mi =WT
miφmi(q) + εmi,

with vector φmi(q) containing a basis set for the i-th column. Then, with ζ1i the
components of ζ1, there follows the decomposition

M(q)ζ1(t) =
n∑
1

WT
miφmi(q)ζ1i(t) + εM

which one may write as

M(q)ζ1(t) =
[
WT

m1 WT
m2 · · ·WT

mn

]
[ζ1(t)⊗ φm(q)] ≡WT

MφM (q) + εM (4.4.8)

where ⊗ denotes Kronecker product (Lewis, Abdallah, and Dawson 1993) and it has
been assumed that the same basis serves for each column so that φm1(q) = φm2(q) =
. . . = φmn(q) ≡ φm(q).

Similarly,

Vm(q, q̇)ζ2(t) =WT
V [ζ2(t)⊗ φv(q, q̇)] ≡WT

V φV (q, q̇) + εV (4.4.9)

with φv a basis for each column of Vm. It is direct to write

G(q) = WT
GφG(q) + εG (4.4.10)

F (q̇) = WT
F φF (q̇) + εF . (4.4.11)

This procedure involves separately determining basis functions for the four terms
in the robot dynamics, a much simplified problem. Then, the required basis functions
are given in terms of the basis functions for the individual terms as

φ(x) =

⎡
⎢⎢⎣

ζ1(t)⊗ φm(q)
ζ2(t)⊗ φv(q, q̇)

φG(q)
φF (q̇)

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎣
φM
φV
φG
φF

⎤
⎥⎥⎦ . (4.4.12)

Example 4.4.1 (Partitioned NN Controller Design) :
For the two link robot arm in Fig. 4.2.3 one proceeds as follows to determine the FLNN

basis used in Example 4.2.1.
From well-known properties of the dynamics of any two-link revolute robot, the robot

inertia matrix requires terms like sin(q), cos(q), and constant terms. Therefore, the neu-
ral subnet required to construct M(q)ζ1 appears in Fig. 4.4.2, where ⊗ denotes Kronecker
product. The Coriolis/centripetal matrix needs terms like sin(q), cos(q), multiplied gener-
ally in all possible combinations by q̇(t). Therefore, the neural subnet required to estimate
Vm(q, q̇)ζ2 appears in Fig. 4.4.3. Likewise, the sub NN required for the gravity and friction
terms appear respectively in Fig. 4.4.4 and Fig. 4.4.5. �

4.4. PARTITIONED NN AND SIGNAL PREPROCESSING 213

Figure 4.4.2: Neural subnet for estimating M(q)ζ1(t).

Figure 4.4.3: Neural subnet for estimating Vm(q, q̇)ζ2(t).

Figure 4.4.4: Neural subnet for estimating G(q).

214 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Figure 4.4.5: Neural subnet for estimating F (q̇).

4.5 PASSIVITY PROPERTIES OF NN CONTROLLERS

The NN used in this chapter are static feedforward nets, but since they are tuned
using differential equations, they are dynamical systems. In the feedback loop, they
become dynamic NN. Therefore, one can discuss the passivity of these NN. In gen-
eral a NN cannot be guaranteed to be passive. However, the NN controllers in this
chapter have some important passivity properties that result in robust closed-loop
performance. Passivity is important in a closed-loop system as it guarantees the
boundedness of signals, and hence suitable performance, even in the presence of
additional unforseen disturbances as long as they are bounded. In this section we
show that the weight tuning algorithms given in this chapter do in fact guarantee
desirable passivity properties of the NN, and hence of the closed-loop system.

Passivity was defined in Chapter 2. A continuous-time system with input u(t)
and output y(t) is said to be passive if it verifies an equality of the power form

L̇(t) = yTu− g(t) (4.5.1)

for some L(t) that is lower bounded and some g(t) ≥ 0. An important form of
passivity is the stronger notion of state strict passivity (SSP), where g(t) is a monic
quadratic function of ‖X‖ with bounded coefficients, where X(t) is the internal state
of the system. Then,∫ T

0

yT (τ)u(τ)dτ ≥
∫ T

0

(‖X‖2 + LOT
)
dτ − γ2 (4.5.2)

for all T ≥ 0 and some γ ≥ 0, where LOT denotes lower-order terms in ‖X‖.
Then, the L2 norm of the state is overbounded in terms of the L2 inner product of
output and input. This guarantees that the internal state is bounded in terms of the
power delivered to the system.

4.5.1 Passivity of the Tracking Error Dynamics

The error dynamics in this chapter all have the form

Mṙ = −(Kv + Vm)r + ξ0 (4.5.3)

4.5. PASSIVITY PROPERTIES OF NN CONTROLLERS 215

where r(t) is the filtered tracking error and ξ0(t) is defined differently for each type
of NN controller. This system satisfies the following strong passivity property which
was proven in Chapter 3.

Theorem 4.5.1 (SSP of Robot Error Dynamics) :

The dynamics (4.5.3) from ξ0(t) to r(t) are a state strict passive system. �

4.5.2 Passivity Properties of NN Controllers

Depending on how the function ξ0(t) is generated, the closed-loop system may or may
not be passive. For the controller structures in this chapter, the tuning algorithms
given do yield passivity.

4.5.2.1 Passivity Properties of Two-Layer NN Controller

Consider the two-layer NN controller with tuning given by Table 4.3.1 or Table
4.3.2. The backprop tuning in the former only works in an idealized case, while the
augmented tuning in the latter works for the general case. Let us see why.

The error dynamics for this controller are given by

Mṙ = −(Kv + Vm)r + W̃T σ̂ + ŴT σ̂′Ṽ Tx+ w1 + v (4.5.4)

with disturbance

w1(t) = W̃T σ̂′Ṽ Tx+WTO(Ṽ Tx)2 + ε+ τd (4.5.5)

or, equivalently,

Mṙ = −(Kv + Vm)r + W̃T (σ̂ − σ̂′V̂ Tx) + ŴT σ̂′Ṽ Tx+ w + v (4.5.6)

with disturbance

w(t) = W̃T σ̂′V Tx+WTO(Ṽ Tx)2 + ε+ τd. (4.5.7)

The former equation was used to derive the controller in Table 4.3.1 and the latter
the controller in Table 4.3.2.

The closed-loop error system appears in Fig. 4.5.1, with the signal ξ1 defined as

ξ1(t) = −W̃T σ̂, for error system (4.5.4)

ξ1(t) = −W̃T (σ̂ − σ̂′V̂ Tx), for error system (4.5.6).
(4.5.8)

(In the former case, signal w(t) should be replaced by w1(t) in the figure.) Note the
role of the NN in the error dynamics, which is decomposed into two effective blocks
appearing in a typical feedback configuration, in contrast to the role of the NN in
the controller in Fig. 4.3.1.

We now reveal the passivity properties engendered by the two tuning algorithms.
The first result is with regard to the backprop tuning algorithm in Table 4.3.1 which
is based on error system (4.5.4).

216 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Figure 4.5.1: Two-layer neural net closed-loop error system.

Theorem 4.5.2 (Passivity of Backprop NN Tuning Algorithm) :

The backprop weight tuning algorithm in Table 4.3.1 makes the map from r(t) to
−W̃T σ̂ , and the map from r(t) to −ŴT σ̂′Ṽ Tx, both passive maps.

Proof:

The dynamics with respect to W̃ , Ṽ are

˙̃W = −F σ̂rT (4.5.9)

˙̃V = −Gx(σ̂′T Ŵ r)T (4.5.10)

1. Selecting the non-negative function

L =
1

2
tr{W̃TF−1W̃}

and evaluating L̇ along the trajectories of (4.5.9) yields

L̇ = tr{W̃TF−1 ˙̃W} = −tr{W̃T σ̂rT } = rT (−W̃T σ̂),

which is in power form (4.5.1).

2. Selecting the non-negative function

L =
1

2
tr{Ṽ TG−1Ṽ }

and evaluating L̇ along the trajectories of (4.5.10) yields

L̇ = tr{Ṽ TG−1 ˙̃V } = −tr{Ṽ Tx(σ̂′T Ŵ r)T } = rT (−ŴT σ̂′Ṽ Tx).

which is in power form. �

4.5. PASSIVITY PROPERTIES OF NN CONTROLLERS 217

Thus, the robot error system in Fig. 4.5.1 is state strict passive (SSP) and
the weight error blocks are passive; this guarantees the passivity of the closed-loop
system. Using the passivity theorem (Slotine and Li 1991) one may now conclude
that the input/output signals of each block are bounded as long as the external inputs
are bounded.

Unfortunately, though passive, the closed-loop system is not SSP so, when dis-
turbance w1(t) is nonzero, this does not yield boundedness of the internal states of
the weight blocks (i.e. W̃ , Ṽ) unless those blocks are observable, that is persistently
exciting (PE). Unfortunately, this does not yield a convenient method for defining
PE in a two-layer NN, as the two weight tuning blocks are coupled, forming in fact
a bilinear system. By contrast, PE conditions for the one-layer FLNN case are easy
to deduce.

The next result shows why a PE condition is not needed with the modified weight
update algorithm of Table 4.3.2; it is in the context of error system (4.5.6).

Theorem 4.5.3 (SSP of Augmented Backprop NN Tuning Algorithm) :
The modified weight tuning algorithms in Table 4.3.2 make the map from r(t) to

−W̃T (σ̂ − σ̂′V̂ Tx), and the map from r(t) to −ŴT σ̂′Ṽ Tx, both state strict passive
(SSP) maps.

Proof:
The revised dynamics relative to W̃ , Ṽ are given by

˙̃W = −F σ̂rT + F σ̂′V̂ TxrT + κF‖r‖Ŵ
˙̃V = −Gx(σ̂′T Ŵ r)T + κG‖r‖V̂ .

1. Selecting the non-negative function

L =
1

2
tr{W̃TF−1W̃}

and evaluating L̇ yields

L̇ = tr{W̃TF−1 ˙̃W} = tr
{[

−W̃T (σ̂ − σ̂′T V̂ Tx)
]
rT + κ‖r‖W̃T Ŵ

}
Since

tr{W̃T (W − W̃) =< W̃ , W >F −‖W̃‖2F ≤ ‖W̃ ‖F · ‖W‖F − ‖W̃‖2F ,
there results

L̇ ≤ rT
[
−W̃T (σ̂ − σ̂′V̂ Tx)

]
− κ‖r‖ · (‖W̃‖2F − ‖W̃‖F ‖W‖F)

≤ rT
[
−W̃T (σ̂ − σ̂′V̂ Tx)

]
− κ‖r‖ · (‖W̃‖2F −WB‖W̃‖F)

which is in power form with the last function quadratic in ‖W̃‖F .

2. Selecting the non-negative function

L =
1

2
tr{Ṽ TG−1Ṽ }

and evaluating L̇ yields

L̇ = tr{Ṽ TG−1 ˙̃V } = rT (−ŴT σ̂′Ṽ Tx)− κ‖r‖(‖Ṽ ‖2F− < Ṽ , V >F)

≤ rT (−ŴT σ̂′Ṽ Tx)− κ‖r‖(‖Ṽ ‖2F − VB‖Ṽ ‖)
which is in power form with the last function quadratic in ‖Ṽ ‖F . �

218 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

It is exactly the special forms of L̇ that allow one to show the boundedness of W̃
and Ṽ when the first terms (power input) are bounded, as in the proof of Theorem
4.3.2.

The SSP of both the robot dynamics and the weight tuning blocks does guarantee
SSP of the closed-loop system, so that the norms of the internal states are bounded
in terms of the power delivered to each block. Then, boundedness of input/output
signals assures state boundedness without any sort of observability or PE require-
ment.

4.5.2.2 Passivity Properties of One-Layer NN Controller

In a similar fashion, it is shown that the FLNN controller tuning algorithm in
Table 4.2.1 makes the system passive, so that an additional PE condition is needed
to verify internal stability of the NN weights. On the other hand, the augmented
tuning algorithm in Table 4.2.2 yields SSP, so that no PE is needed.

4.5.2.3 Definition of Passive and Robust NN

We define a dynamically tuned NN as passive if, in the error formulation, the tun-
ing guarantees the passivity of the weight tuning subsystems. Then, an extra PE
condition is needed to guarantee boundedness of the weights. We define a dynam-
ically tuned NN as robust if, in the error formulation, the tuning guarantees the
SSP of the weight tuning subsystem. Then, no extra PE condition is needed for
boundedness of the weights. Note that (1) SSP of the open-loop plant error system
is needed in addition for tracking stability, and (2) the NN passivity properties are
dependent on the weight tuning algorithm used.

4.6 CONCLUSIONS

In this chapter we have introduced several sorts of biologically motivated control algo-
rithms that can afford improved control of robot manipulators. These NN controllers
allow accurate and dynamic following of prescribed trajectories, not simply control
using ‘via’ points specified by a teach pendant. They can significantly improve the
capabilities of commercial robot controllers for modern-day speed and accuracy re-
quirements by retaining the basic PD/PID loop, but adding an inner adaptive loop
that allows the controller to learn unknown parameters such as friction coefficients
and payload masses, thereby improving tracking accuracy.

Two sorts of NN controller were given. The one-layer linear-in-the-parameters
NN controllers are simpler to implement as the weight tuning algorithms are less
complex. However, a basis set must be selected for the activation functions. The
two-layer NN controllers are more general but are nonlinear in the tunable weights.
Thus, a fundamental limitation in standard adaptive control techniques had to be
overcome to allow confrontation of this thorny problem. The two-layer NN con-
trollers should be used in practical situations if computing power permits. Some
advanced notions were introduced, including partitioned NN and passivity proper-
ties of NN controllers.

4.7. REFERENCES 219

In the next chapter we show how to design NN controllers for more complex
industrial applications including force control and control of robots with vibratory
and flexible modes.

4.7 REFERENCES

Barron, A.R., “Universal approximation bounds for superpositions of a sigmoidal
function,” IEEE Trans. Info. Theory, vol. 39, no. 3, pp. 930-945, May 1993.

Chen, F.-C., and H.K. Khalil, “Adaptive control of nonlinear systems using neural
networks,” Int. J. Control, vol. 55, no. 6, pp. 1299-1317, 1992.

Chen, F.-C., and C.-C. Liu, “Adaptively controlling nonlinear continuous-time
systems using multilayer neural networks,” IEEE Trans. Automat. Control, vol.
39, no. 6, pp. 1306-1310, June 1994.

Colbaugh, R., H. Seraji, and K. Glass, “A new class of adaptive controllers for
robot trajectory tracking,” J. Robotic Systems, vol. 11, no. 8, pp. 761-772, 1994.

Colbaugh, R., K. Glass, and H. Seraji, “Performance-based adaptive tracking con-
trol of robot manipulators,” J. Robotic Systems, vol. 12, no. 8, pp. 517-530, 1995.

Commuri, S., and F.L. Lewis, “CMAC neural networks for control of nonlinear
dynamical systems: structure, stability and passivity,” Proc. IEEE Int. Symposium
on Intelligent Control, pp. 123-129, Monterey, Aug. 1995.

Dawson, D.M., Z. Qu, F.L. Lewis, and J.F. Dorsey, “Robust control for the track-
ing of robot motion,” Int. J. Control, vol. 52, no. 3, pp. 581-595, 1990.

Craig, J., Adaptive Control of Mechanical Manipulators, Addison-Wesley, Read-
ing, MA, 1985.

Cybenko, G., “Approximation by superpositions of a sigmoidal function,” Mathe-
matics of Control. Signals and Systems, vol. 2, no. 4, pp. 303-314, 1989.

Hornik, K., M. Stinchombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, pp. 359-366, 1989.

Ioannou, P.A., and P.V. Kokotovic, “Instability analysis and improvement of ro-
bustness of adaptive control,” Automatica, vol. 20, no. 5, pp. 583-594, 1984.

Kim, Y.H., and F.L. Lewis, “Output feedback control of rigid robots using dynamic
neural networks,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 1923-1928,
Minneapolis, April 1996.

Kreisselmeier, G., and B. Anderson, “Robust model reference adaptive control,”
IEEE Trans. Automat. Control, vol. AC-31, no. 2, pp. 127-133, Feb. 1986.

Landau, Y.D., Adaptive Control: The Model Reference Approach, Marcel Dekker,
Inc., Basel, 1979.

Lewis, F.L., C.T. Abdallah, and D.M. Dawson, Control of Robot Manipulators,
Macmillan, New York, 1993.

220 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Lewis, F.L., K. Liu, and A. Yeşildirek, “Neural net robot controller with guaranteed
tracking performance,” IEEE Trans. Neural Networks, vol. 6, no. 3, pp. 703-715,
1995.

Lewis, F.L., A. Yeşildirek, and K. Liu, “Neural net robot controller: structure and
stability proofs,” J. Intelligent and Robotic Sys., vol. 12, pp. 277-299, 1995.

Lewis, F.L., A. Yeşildirek, and K. Liu, “Multilayer neural net robot controller:
structure and stability proofs,” IEEE Trans. Neural Networks, vol. 7, no. 2, pp.
1-12, Mar. 1996.

Lewis, F.L., “Neural network control of robot manipulators”, IEEE Expert special
track on “Intelligent Control” pp. 64-75, ed. K. Passino and Ü. Özgüner, Jun
1996.

MATLAB version 4.2, July 1994, The Mathworks, Inc., 24 Prime Park Way,
Natick, MA 01760, USA.

Miller, W.T., R.S. Sutton, P.J. Werbos, ed., Neural Networks for Control, MIT
Press, Cambridge, 1991.

Miyamoto, H., M. Kawato, T. Setoyama, and R. Suzuki, “Feedback-error-learning
neural network for trajectory control of a robotic manipulator,” Neural Networks,
vol. 1, pp. 251-265, 1988.

Narendra, K.S., “Adaptive control using neural networks,” in Neural Networks for
Control, pp 115-142, ed. W.T. Miller, R.S. Sutton, P.J. Werbos, Cambridge: MIT
Press, 1991.

Narendra, K.S., “Adaptive control of dynamical systems using neural networks,”
in Handbook of Intelligent Control, pp. 141-183, ed. D.A. White and D.A. Sofge,
New York: Van Nostrand Reinhold, 1992.

Narendra, K.S., and A.M. Annaswamy, “A new adaptive law for robust adaptation
without persistent excitation,” IEEE Trans. Automat. Control, vol. AC-32, no. 2,
pp. 134-145, Feb. 1987.

Narendra, K.S., and A.M. Annaswamy, “Stable Adaptive Systems, Prentice-Hall,
New Jersey, 1989.

Narendra, K.S., and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27,
Mar. 1990.

Narendra, K.S., and K. Parthasarathy, “Gradient methods for the optimization
of dynamical systems containing neural networks,” IEEE Trans. Neural Networks,
vol. 2, no. 2, pp. 252-262, Mar. 1991.

Peterson, B.B., and K.S. Narendra, “Bounded error adaptive control,” IEEE
Trans. Automat. Control, vol. 27, pp. 1161-1168, Dec. 1982.

4.8. PROBLEMS 221

Polycarpou, M.M., and P.A. Ioannou, “Identification and control using neural
network models: design and stability analysis,” Tech. Report 91-09-01, Dept. Elect.
Eng. Sys., Univ. S. Cal., Sept. 1991.

Rovithakis, G.A., and M.A. Christodoulou, “Adaptive control of unknown plants
using dynamical neural networks,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 24, no. 3, pp. 400-412, 1994.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning internal representa-
tions by error propagation,” in Parallel Distributed Processing, ed. D.E. Rumelhart
and J.L. McClelland, Cambridge, MA: MIT Press, 1986.

Sadegh, N., “A perceptron network for functional identification and control of non-
linear systems,” IEEE Trans. Neural Networks, vol. 4, no. 6, pp. 982-988, Nov.
1993.

Sanner, R.M., and J.-J.E. Slotine, “Stable adaptive control and recursive identifi-
cation using radial gaussian networks,” Proc. IEEE Conf. Decision and Control,
Brighton, 1991.

Sastry, S., and M. Bodson, Adaptive Control, Prentice-Hall, New Jersey, 1989.

Slotine, J.-J.E., and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey,
1991.

Werbos, P.J., Beyond Regression: New Tools for Prediction and Analysis in the
Behavior Sciences, Ph.D. Thesis, Committee on Appl. Math. Harvard Univ., 1974.

Werbos, P.J., “Back propagation: past and future,” Proc. 1988 Int. Conf. Neural
Nets, vol. 1, pp. I343-I353, 1989.

White, D.A., and D.A. Sofge, ed. Handbook of Intelligent Control, Van Nostrand
Reinhold, New York, 1992.

Yeşildirek, A., Nonlinear Systems Control Using Neural Networks, Ph.D. Thesis,
Dept. of Electrical Engineering, The University of Texas at Arlington, Arlington,
Texas 76019, USA, 1994.

Zbikowski, R., and K.J. Hunt, Neural Adaptive Control Technology, World Scien-
tific, Singapore, 1996.

4.8 PROBLEMS

Section 4.2

Problem 4.2-1 : Observability Properties and Bounds on the State. Prove
Lemma 4.2.1. Begin by writing the solution x(t) of the system (0, B(t), C(t)). Note
that the state transition matrix is the identity matrix. Now use integral bounds to
obtain a bound on the state in terms of ‖y‖ and ‖u‖.
Problem 4.2-2 : Simulation of FLNN Controller. Write a MATLAB M file
to simulate the FLNN controller. Perform the simulations in Example 4.2.1. Add
friction to the robot model and see how the performance of the FLNN controller is
affected.

222 CHAPTER 4. NEURAL NETWORK ROBOT CONTROL

Section 4.3

Problem 4.3-1 : Taylor Series and Disturbance Bounds. Prove the bounding
Lemmas 4.3.1 and 4.3.2.

Problem 4.3-2 : Simulation of Two-Layer NN Controller. Write a MAT-
LAB M file to simulate the two-layer NN controller. Perform the simulations in
Example 4.3.1. Add friction to the robot model and see how the performance of the
NN controller is affected.

Section 4.5

Problem 4.5-1 : Proof of SSP Bound. Verify the SSP inequality (4.5.2).

Problem 4.5-2 : Passivity of FLNN Controller. Shown that the FLNN con-
troller tuning algorithm in Table 4.2.1 makes the system passive while the augmented
tuning algorithm in Table 4.2.2 yields SSP, so that no PE is needed.

Problem 4.5-3 : Passivity of Hebbian Controller. Investigate the passivity
of the Hebbian controller tuning algorithm in Table 4.3.3.

Chapter 5

Neural Network Robot
Control: Applications and
Extensions

So far in the book we have focused on control of rigid-link robot arms, which have
dynamics of the form

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ (5.0.1)

or
M(q)q̈ +N(q, q̇) + τd = τ, (5.0.2)

where
N(q, q̇) ≡ Vm(q, q̇)q̇ + F (q̇) +G(q) (5.0.3)

is the vector of the nonlinear terms. In these dynamics, M(q) is the inertia matrix,
Vm(q, q̇) is the Coriolis/centripetal matrix, F (q̇) are the friction terms, G(q) is the
gravity vector, and τd(t) represents disturbances. The rigid robot dynamics enjoy
the properties in Chapter 3, which are reproduced here in Table 5.0.1.

We have so far considered the selection of the control torques τ(t) so that the
robot joint variables q(t) follow a prescribed desired position trajectory qd(t). In
Chapter 4 we showed how to design neural network (NN) controllers for rigid robot
arms. In this chapter we shall first extend our results to force control. Then, we
shall consider the control of more complex robotic systems with practical relevance,
including flexible-link arms, and systems with actuator dynamics including joint
flexibility (e.g. compliant coupling shaft or gearing) and motor electrical dynamics.
These systems are characterized by the fact that they have more degrees of freedom
than control inputs. We shall see that the NN controllers can be extended to such
systems with reduced control effectiveness by two basic approaches: singular pertur-
bations and backstepping. The result in every case is a NN controller of the same
basic structure as those in Chapter 4, but with additional feedback loops to handle
the more complex dynamics.

All of the controller designs in this book assume full state feedback, that is, all
internal states of the plants being controlled are measurable. If there is reduced

223

224 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Table 5.0.1: Properties of Robot Arm Dynamics

P1 The inertia matrix M(q) is symmetric, positive definite, and bounded so that μ1I ≤
M(q) ≤ μ2I for all q(t). For revolute joints, the only occurrences of the joint
variables qi are as sin(qi), cos(qi). For arms with no prismatic joints, the bounds
μ1, μ2 are constants.

P2 The Coriolis/centripetal vector Vm(q, q̇)q̇ is quadratic in q̇. Vm is bounded so that
‖Vm‖ ≤ vB‖q̇‖, or equivalently ‖Vmq̇‖ ≤ vB‖q̇‖2.

P3 The Coriolis/centripetal matrix can always be selected so that the matrix S(q, q̇) ≡
Ṁ(q)− 2Vm(q, q̇) is skew symmetric. Therefore, xTSx = 0 for all vectors x. This is
a statement of the fact that the fictitious forces in the robot system do no work.

P4 The friction terms have the approximate form

F (q̇) = Fv q̇ + Fd(q̇),

with Fv a diagonal matrix of constant coefficients representing the viscous friction,
and Fd(·) a vector with entries like Kdisgn(q̇i), with sgn(·) the signum function and
Kdi the coefficients of dynamic friction. These friction terms are bounded so that
‖F (q̇)‖ ≤ fB‖q̇‖+ kB for constants fB , kB .

P5 The gravity vector is bounded so that ‖G(q)‖ ≤ gB . For revolute joints, the only
occurrences of the joint variables qi are as sin(qi), cos(qi). For revolute joint arms
the bound gB is a constant.

P6 The disturbances are bounded so that ‖τd(t)‖ ≤ dB .

measurement information so that some states are not directly measurable, then ad-
ditional complications arise in feedback controls design. In this case of output feed-
back control, one may add a dynamic neural net to reconstruct the missing states.
This may be accomplished as detailed by Kim (1997).

5.1 FORCE CONTROL USING NEURAL NETWORKS

In many industrial applications it is desired for the robot to exert a prescribed force
normal to a given surface while following a prescribed motion trajectory tangential
to the surface. This is the case in surface finishing, grinding, polishing, etc. A
hybrid position/force controller can be designed by extension of the neural network
design principles in Chapter 4. This section represents the work of Dr. Chiman
Kwan (see references).

The force control problem is discussed in McClamroch and Wang (1988), Spong
and Vidyasagar (1989), and Lewis, Abdallah, and Dawson (1993). The robot dy-
namics with environmental contact on a prescribed surface can be described by

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ + JT (q)λ, (5.1.1)

where q(t) ∈ �n, J(q) is a Jacobian matrix associated with the contact surface
geometry, and λ (the so-called ‘Lagrange multiplier’) is a vector of contact forces

5.1 FORCE CONTROL USING NEURAL NETWORKS 225

exerted normal to the surface, described in coordinates relative to the surface. Vector
τd(t) represents disturbances. In looking at this equation one should recall the force
transformation from Chapter 3,

τf = JT (q)λ, (5.1.2)

where J(q) is a Jacobian matrix and τf (t) is the force in joint coordinates corre-
sponding to λ(t).

5.1.1 Force Constrained Motion and Error Dynamics

The hybrid position/force control problem is to follow a prescribed motion trajectory
tangential to the surface while exerting a prescribed contact force normal to the
surface. To solve this problem it is necessary to understand end-effector motion
constrained to a prescribed surface and then derive the associated error dynamics.

5.1.1.1 Constrained Motion on a Surface

Let

y = h(q) (5.1.3)

be the Cartesian position of the end of the arm, with h(q) the kinematics transfor-
mation (Chapter 3). Then the prescribed surface can be described by the geometric
holonomic constraint equation

φ(y) = 0, (5.1.4)

where φ(·) : �n → �m. The constraint Jacobian matrix

J(q) ≡ ∂(φ(h(q)))

∂q
(5.1.5)

describes the joint velocities when the arm moves on the surface; in fact, the normal
velocity is J(q)q̇ = 0.

The constraint equation reduces the number of degrees of freedom to

n1 ≡ n−m. (5.1.6)

Let the motion in the plane of the surface be described by the reduced position
variable q1(t) ∈ �n1 . Then, according to the implicit function theorem, on the
surface φ(q) = 0 one may find a function γ(·) such that

q2 = γ(q1), (5.1.7)

where q2(t) ∈ �m represents dependent variables. Note that q = [qT1 qT2]
T .

The robot, constrained for motion along the surface, satisfies a reduced-order
dynamics in terms of q1(t) ∈ �n1 . To find these dynamics, define the extended
Jacobian

L(q1) ≡
[
In1
∂γ
∂q1

]
, (5.1.8)

226 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

where In1
is the n1×n1 identity matrix. Then the relation of the tangential velocity

q̇1 to the full joint velocity q̇ is given via

q̇ = L(q1)q̇1, (5.1.9)

and one also has
q̈ = L(q1)q̈1 + L̇(q1)q̇1. (5.1.10)

Substituting these expressions into (5.1.1) yields the reduced-order dynamics on the
surface given by

M(q1)L(q1)q̈1 + V1(q1, q̇1)q̇1 + F (q̇1) +G(q1) + τd = τ + JT (q1)λ, (5.1.11)

where V1 = VmL+ML̇ and one has implicitly used (5.1.7) to compute q(t) in terms
of q1(t), so that the functional dependence is shown in terms of q1(t).

Premultiplying this equation by LT yields

M̄ q̈1 + V̄1q̇1 + F̄ + ḡ + τ̄d = LT τ, (5.1.12)

where M̄ = LTML, V̄1 = LTV1 = LT (VmL+ML̇), F̄ = LTF, Ḡ = LTG, τ̄d = LT τd.
One has used the fact that

J(q1)L(q1) = 0. (5.1.13)

This dynamics describes motion in the plane of the constraint surface, with force
information removed. It is not difficult (see Problems section) to show that (5.1.12)
satisfies the properties in Table 5.0.1, specifically that M̄ is positive definite sym-

metric and bounded above and below, and ˙̄M−2V̄1 is skew symmetric. This equation
may profitably be compared to the Cartesian dynamics in Chapter 3.

5.1.1.2 Filtered Error Dynamics

The hybrid position/force control problem is to follow a prescribed motion trajec-
tory q1d(t) ∈ �n1 tangential to the surface while exerting a prescribed contact force
λd(t) ∈ �m normal to the surface. To design a position/force controller we may
follow the basic filtered error approximation-based approach laid out in Chapter 3.
Thus, define the motion error in the plane of the surface

em = q1d − q1 (5.1.14)

and the filtered motion error
r = ėm + Λem, (5.1.15)

where Λ is a positive diagonal design matrix. Define the force error as

λ̃ = λd − λ, (5.1.16)

where λ(t) is the normal force measured in a coordinate frame attached to the sur-
face.

Now, differentiate the filtered tracking error r(t) and substitute from (5.1.12) to
see that the constrained dynamics may be written in terms of r(t) as

M̄ ṙ = −V̄1r + LT f(x) + LT τd − LT τ (5.1.17)

5.1 FORCE CONTROL USING NEURAL NETWORKS 227

where the nonlinear robot function is

f(x) =M(q1)L(q1)(q̈1d + Λėm) + V1(q1, q̇1)(q̇1d + Λem) + F (q̇1) +G(q1). (5.1.18)

This is the sought form of the error dynamics. Equation (5.1.7) has implicitly been
used to compute q(t) in terms of q1(t), so that the functional dependence is shown
in terms of q1(t). Vector x contains all the time signals needed to compute f(·), and
may be defined for instance as x ≡ [eTm ėTm qT1d q̇T1d q̈T1d]

T . It is important to note
that f(x) contains all the potentially unknown robot arm parameters, except for the
V̄1r term in (5.1.17), which cancels out in controller stability Lyapunov proofs.

The constrained error dynamics is given by (5.1.17). To prove that the force
error is small using the proposed control scheme, it will be necessary to work also
with (5.1.11), which contains force information. Therefore, differentiate the filtered
tracking error r(t) and substitute from (5.1.11) to see that this equation may be
written in terms of r(t) as

MLṙ = −V1r + f(x) + τd − τ − JTλ. (5.1.19)

5.1.2 Neural Network Hybrid Position/Force Controller

A hybrid position/force controller has the structure

τ = f̂ +KvL(q1)r − JT [λd +Kf λ̃]− v, (5.1.20)

where the position gain Kv and the force gain Kf are positive definite matrices. The

nonlinear function estimate f̂ and the robustifying term v(t) can be selected using
any of the techniques mentioned in Chapters 3 and 4, including adaptive control,
robust control, neural network control, and so on. A simplified controller that may
work in some applications is obtained by setting f̂ = 0, v = 0, and increasing the
PD motion gain Kv and force gain Kf .

A neural network (NN) controller is obtained if the functional estimate is manu-
factured using a NN. Here, we shall use the two-layer NN shown in Fig. 5.1.1, which
has first-layer weight matrix V and second-layer weight matrix W . The thresholds
are included in the weight matrices by augmenting the input signals to the NN layers
by the entry ‘1’, as described in Chapter 1. This NN is nonlinear in the tunable NN
weights V . Since the unknown nonlinear function (5.1.18) is smooth, according to
the NN universal aproximation property in Chapter 1 there exist ideal (target) NN
weights V,W such that f(x) is given on a compact set S by

f(x) =WTσ(V Tx) + ε, (5.1.21)

where the functional estimation error ε is bounded by

‖ε‖ ≤ εN (5.1.22)

for x ∈ S, with εN a known positive constant. We call εN the NN approxima-
tion inaccuracy. This NN approximation property replaces the usual linear-in-the-
parameters (LIP) assumptions required in adaptive control, and means that no re-
gression matrix need be computed. As the number of hidden-layer neurons increases,
the approximation accuracy increases and εN decreases.

228 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.1.1: Two-layer neural net.

The NN controller is given by

τ = ŴTσ(V̂ Tx) +KvL(q1)r − JT [λd +Kf λ̃]− v, (5.1.23)

where V̂ , Ŵ are the current weights in the actual NN as provided by the weight
tuning algorithms. The tuning algorithms and the robustifying term v(t) must be
derived to guarantee system stability. The NN controller is shown in Fig. 5.1.2; it
has the basic structure of the NN controllers in Chapter 4, but with an additional
inner force control loop.

5.1.2.1 Closed-Loop Error Dynamics Using NN Controller

The closed-loop error dynamics using this control algorithm are found by substitution
of (5.1.23) into (5.1.17), and subsequent use of (5.1.13), to be

M̄ ṙ = −LTKvLr− V̄1r+LT [WTσ(V Tx)− ŴTσ(V̂ Tx)] +LT [τd + ε+ v]. (5.1.24)

Now the manipulations closely follow those in Chapter 4. By expanding σ(V Tx)
in a Taylor series about σ(V̂ Tx) and some other manipulations one expresses the
closed-loop error dynamics (see Problems section) as

M̄ ṙ = −LTKvLr − V̄1r + LT [W̃T (σ̂ − σ̂′V̂ Tx) + ŴT σ̂′Ṽ Tx] + LT [w + v] (5.1.25)

where the disturbance term is

w(t) = W̃T σ̂′V Tx+WTO(Ṽ Tx)2 + τd + ε. (5.1.26)

The expression O(z)2 denotes terms of order two in z. In these expressions, the
NN weight estimation errors are given by

Ṽ = V − V̂ W̃ =W − Ŵ (5.1.27)

5.1 FORCE CONTROL USING NEURAL NETWORKS 229

Figure 5.1.2: Neural net hybrid position/force controller.

and

σ̂ ≡ σ(V̂ Tx) (5.1.28)

σ̂′ ≡ ∂σ(z)

∂z

∣∣∣∣
z=V̂ T x

. (5.1.29)

To bound the disturbance term w(t), it is now assumed that various bounding
assumptions hold. In particular, the bounds in Table 5.0.1 are needed along with
the next assumptions, which hold in practical situations. Recall the definition of the
Frobenius norm ‖ · ‖F from Chapter 2.

Assumption 5.1.1 (Desired Trajectory and NN Target Weight Bounds) :

a. The desired motion trajectory is bounded so that∥∥∥∥∥
q1d(t)
q̇1d(t)
q̈1d(t)

∥∥∥∥∥ ≤ qB , (5.1.30)

with qB a known scalar bound.

b. Define the matrix of ideal target NN weights as

Z ≡
[

W 0
0 V

]
. (5.1.31)

Then, the ideal NN weights are constant and bounded so that

‖Z‖F ≤ ZB (5.1.32)

with ZB a known bound. �

230 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Table 5.1.1: NN Force/Position Controller.

Control Input:

τ = ŴTσ(V̂ Tx) +Kv(Lr)− JT (λd +Kf λ̃)− v

NN Weight/Threshold Tuning Algorithms:

˙̂
W = Fσ(V̂ Tx)(Lr)T − Fσ̂′V̂ Tx(Lr)T − κF‖(Lr)‖Ŵ
˙̂
V = Gx

(
σ̂′T Ŵ (Lr)

)T
− κG‖(Lr)‖V̂

Design parameters: F,G positive definite matrices and κ > 0 a small pa-
rameter.

Robustifying signal:
v(t) = −Kz(‖Ẑ‖F + ZB)r

Define also the overall NN weight estimate and error matrices

Ẑ ≡
[
Ŵ 0

0 V̂

]
. Z̃ ≡

[
W̃ 0

0 Ṽ

]
. (5.1.33)

Now, it can be shown that the disturbance term w(t) is bounded by

‖w(t)‖ ≤ C0 + C1‖Z̃‖F + C2‖Z̃‖F · ‖r‖, (5.1.34)

with C0, C1, C2 computable constants expressed in terms of various bounds. For
instance, one can compute that

C0 = εN + dB + c0ZB . (5.1.35)

This interesting expression shows that the disturbances w(t) driving the error system
increase as the disturbance torque τd(t) increases, or as the NN functional estima-
tion error ε(t) increases (which occurs, for instance, if the number of hidden-layer
neurons is decreased, e.g. to save in computations).

5.1.2.2 NN Weight Tuning Algorithms for Guaranteed Stability

Based on the machinery just developed it is now possible to complete the design
of the hybrid position/force controller in Fig. 5.1.2 by providing NN weight tuning
algorithms for Ŵ , V̂ and also a selection for the robustifying signal v(t) such that
tracking performance and internal stability are both guaranteed. The next theorem
provides the details; the NN controller it describes is given in Table 5.1.1. The
complete proof of the theorem is given in Kwan and Lewis (1994).

5.1 FORCE CONTROL USING NEURAL NETWORKS 231

Theorem 5.1.1 (NN Hybrid Position/Force Controller) :
Given the dynamics (5.1.1) for a robot exerting a force normal to a prescribed surface,

let Assumption 5.1.1 hold so that the desired trajectory qd(t) is bounded and the target
NN approximating weights are constant and bounded. Take the control input as (5.1.23)
with the robustifying term

v(t) = −Kz(‖Ẑ‖F + ZB)r (5.1.36)

and the NN weight tuning algorithms

˙̂
W = Fσ(V̂ Tx)(Lr)T − F σ̂′V̂ Tx(Lr)T − κF‖(Lr)‖Ŵ (5.1.37)

˙̂
V = Gx

(
σ̂′T Ŵ (Lr)

)T − κG‖(Lr)‖V̂ (5.1.38)

with F,G positive definite matrices and κ > 0. Then the position tracking error ‖Lr(t)‖
is bounded to the neighborhood of

Br ≡ κ(ZB + C1/κ)
2/4 + C0

Kv
, (5.1.39)

the force tracking error λ̃(t) is bounded, and the NN weight estimates Ŵ , V̂ are bounded.
Moreover, the position tracking error can be made as small as desired by increasing the
gain Kv, and the force tracking error can be made as small as desired by increasing the
gain Kf .

Outline of Proof:
The proof is similar to the proofs that are detailed in Chapter 4.

a. Boundedness of position error and NN weights.
Define a Lyapunov function candidate

L =
1

2
rT M̄r +

1

2
tr(W̃TF−1W̃) +

1

2
tr(Ṽ TG−1Ṽ)

with tr(·) the matrix trace and F,G symmetric positive definite matrices. Differentiate,
substitute from the error dynamics (5.1.25), and use skew-symmetry to obtain

L̇ = − rTLTKvLr + tr
(
W̃T [F−1 ˙̃W + (σ̂ − σ̂′V̂ Tx)(Lr)T]

)
+ tr

(
Ṽ T [G−1 ˙̃V + x(σ̂′T Ŵ (Lr))T]

)
+ rTLT [w + v].

Using the proposed tuning algorithms, recalling (5.1.27), and employing the assumption
that V̇ = 0, Ẇ = 0 yields

L̇ = −rTLTKvLr + κ‖Lr‖
(
tr[W̃T (W − W̃)] + tr[Ṽ T (V − Ṽ)]

)
+ rTLT [w + v].

At this point one uses various norm inequalities and the bounds (5.1.34), in similar
fashion to the proofs detailed in Chapter 4, to obtain the fact that L̇ ≤ 0 if either

‖Lr‖ > Br

or
‖Z̃‖F > BZ

where BZ is a bound given in Kwan and Lewis (1994). This proves boundedness of the
position error and the NN weights.
b. Boundedness of the force error.

To show boundedness of the force tracking error λ̃(t) we use an approach that can be
compared to Barbalat’s extension in Chapter 2. Thus, note first that in part a. of the

232 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

proof we have shown that all quantities on the right-hand side of (5.1.25) are bounded.
Therefore, from the invertibility of M̄ it follows that ṙ is bounded. Now, substitute the
control (5.1.23) into the error dynamics (5.1.19) to obtain

MLṙ = −V1r + f + τd − JTλ− ŴTσ(V̂ Tx)−KvLr + JT [λd +Kf λ̃] + v

MLṙ = −KvLr − V1r + W̃T (σ̂ − σ̂′V̂ Tx) + ŴT σ̂′Ṽ Tx+ JT [I +Kf]λ̃+ (w + v).

This may be written as

JT [I+Kf]λ̃ = MLṙ+KvLr+V1r− W̃T (σ̂− σ̂′V̂ Tx)− ŴT σ̂′Ṽ Tx− (w+ v) ≡ B(ṙ, x, Z̃).

where all quantities on the right-hand side are bounded. Therefore, premultiply by J to
derive

JJT [I +Kf]λ̃ = JB(ṙ, x, Z̃)

λ̃ = [I +Kf]
−1(JJT)−1JB(ṙ, x, Z̃),

where we have used the fact that JJT is nonsingular. This expression shows that the force
tracking error λ̃(t) is bounded and can be made as small as desired by increasing the force
tracking gain Kf . �

This proof has shown that the Lyapunov derivative is negative if ‖r‖ or ‖Z̃‖F are
above some bounds, namely Br in (5.1.39) and BZ respectively. Thus, Br, BZ may
be interpreted as practical bounds for the filtered position tracking error and the NN
weights. The form of the bounds shows that Br may be made as small as desired by
increasing the position feedback gains Kv. Note that the dependence of Br on C0 in
(5.1.35) shows that the tracking errors increase if either the robot arm disturbance
torque τd(t) increases, or the NN approximation inaccuracy εN increases. The latter
occurs, for instance, if a smaller NN is used to avoid computations. However, these
effects may be offset by increasing Kv.

As in Chapter 4, a complete analysis shows that this controller is local in the
sense that the initial tracking errors must be in a certain set of allowable initial
conditions. This initial condition set depends on the speed of the desired trajectory
and the size of the compact set over which the approximation property (5.1.21)
holds. Approximation accuracy generally increases with the number of hidden-layer
neurons in the NN. Technically, this leads also to a minimum requirement on the
PD gain (see Chapter 4).

Some remarks about the NN hybrid position/force controller in Table 5.1.1 are
in order. First, the NN weights can be initialized at zero, so that in Fig. 5.1.2 the
PD loop initially stabilizes the system until the NN begins to learn. Therefore, no
off-line training phase is needed for this NN controller.

Next, note that the NN controller is very much like those in Chapter 4, but
using Lr instead of r for position tracking. The first terms in tuning algorithms
(5.1.37)-(5.1.38) are backpropagation-through-time, with the modified filtered error
Lr(t) the signal being backpropagated. The Jacobian required, namely σ̂′ is very
easily computed in terms of signals measurable in the feedback system. The last
terms in the tuning algorithms correspond to Narendra’s e-mod (Narendra and An-
naswamy 1987), which is well known to be effective in standard adaptive control
algorithms to provide robustness and avoid the need for persistence of excitation.
The middle term in the tuning algorithm for Ŵ is new. It is required due to the
nonlinear dependence of f̂ on the first-layer NN weights V̂ .

5.1 FORCE CONTROL USING NEURAL NETWORKS 233

Figure 5.1.3: Closed-loop position error system.

Note finally that boundedness of the tracking position error, the force error, and
the NN weights guarantees that the proposed control input (5.1.23) is bounded. More
discussion on NN controllers of this form is provided in Chapter 4.

5.1.2.3 Passivity of the NN Hybrid Position/Force Controller

The NN hybrid position/force controller has the same passivity properties as the NN
controllers in Chapter 4. The closed-loop error system (5.1.25) has the structure
shown in Fig. 5.1.3, where all blocks are interconnected in a feedback configuration
and

ζW ≡ W̃T (σ̂ − σ̂′V̂ Tx) (5.1.40)

ζV ≡ ŴT σ̂′Ṽ Tx. (5.1.41)

Passivity and state-strict passivity (SSP) were defined in Chapter 2. It was shown
in Chapter 3 that the filtered error dynamics are a state-strict passive system; it is
easily shown that the constrained filtered position error system in the top block in
the figure is also state-strict passive. The next result details the passivity properties
of the position/force controller. The proof is given in Kwan and Lewis (1994) and
follows closely similar proofs in Chapter 4.

Theorem 5.1.2 (Passivity Properties of NN Force Controller) :

Under the hypotheses of Theorem 5.1.1, the NN weight tuning algorithms in Table
5.1.1 make the maps from Lr(t) to ζW and from Lr(t) to ζV both SSP maps. �

Since both the filtered error dynamics and the tuning algorithms are SSP, it fol-
lows that the overall closed-loop system is SSP. Therefore, all signals and internal
states (e.g. the NN weights) are bounded. The SSP property explains why no per-
sistence of excitation (PE) is needed for this controller, as SSP guarantees weight
boundedness without an observability-like condition.

It should be noted that if one uses only backpropagation weight tuning, which
basically amounts to using only the first terms in the tuning algorithms in Table
5.1.1, the closed-loop system is not SSP, but only passive. Therefore, an additional
PE condition is needed for the controller to perform correctly.

234 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.1.4: Two-link planar elbow arm with circle constraint.

5.1.3 Design Example for NN Hybrid Position/Force Controller

Example 5.1.1 (NN Hybrid Position/Force Controller) :
The two-link planar manipulator in Fig. 5.1.4 has dynamics (see Chapter 3) given by

M(q) =

[
α+ β + 2η cos q2 β + η cos q2

β + η cos q2 β

]
, Vm(q, q̇) =

[
−ηq̇2 sin q2 −η(q̇1 + q̇2) sin q2
ηq̇1 sin q2 0

]
,

G(q) =

[
αe1 cos q1 + ηe1 cos(q1 + q2)

ηe1 cos(q1 + q2)

]
.

where α = (m1 + m2)a
2
1, β = m2a

2
2, η = m2a1a2, e1 = g/a1. The specific arm considered

in this example has α = 0.8, β = 0.32, η = 0.4, a1 = 1, a2 = 0.8. Friction is not included in
this example.

a. Constraint Surface and Jacobians. The constraint surface is the circle in
Cartesian space (y1, y2) shown in Fig. 5.1.4, which can be expressed as

φ(y) = y2
1 + y2

2 − r2 = 0

where y ≡ [y1 y2]
T . The transformation from joint space to Cartesian space is given by

y = h(q) =

[
a1 cos q1 + a2 cos(q1 + q2)
a1 sin q1 + a2 sin(q1 + q2)

]
.

Therefore, in joint space the constraint is expressed as

φ(h(q)) = a2
1 + a2

2 + 2a1a2 cos q2 − r2 = 0,

which has a unique constant solution for q2 given by

q2 = cos−1

(
r2 − a2

1 − a2
2

2a1a2

)
≡ γ(q1).

The Jacobian J(q) is

J(q) =
∂(φ(h(q))

∂q
= [0 − 2a1a2 sin q2]

5.2 LINK FLEXIBILITY, MOTOR DYNAMICS, AND JOINT FLEXIBILITY 235

and the extended Jacobian is

L(q1) =

[
1
0

]
.

Using these constructions, the constrained dynamics (5.1.11) are expressed as[
α+ β + 2η cos q2

β + η cos q2

]
q̈1 +

[
−ηq̇2 sin q2
ηq̇1 sin q2

]
q̇1 +

[
αe1 cos q1 + ηe1 cos(q1 + q2)

ηe1 cos(q1 + q2)

]

= τ +

[
0

−2a1a2 sin q2

]
λ.

b. Simulation. Let the desired motion trajectory be

q1d =

{
−90 + 52.5(1− cos 1.26t)m, t ≤ 2.5sec
15m, t > 2.5sec

and the desired force be
λd = 10 nt.

Take the initial conditions as q1(0) = −70 deg, q2(0) = 80 deg, q̇1(0) = 0, q̇2(0) = 0.
The controller parameters are selected as Λ = 20,Kv = 100,Kf = 20, F = 10, G =

10, κ = 1,Kz = 1, ZB = 4. A simulation was performed with MATLAB using the tech-
niques in previous chapters. The motion trajectory q1(t) is shown in Fig. 5.1.5a and the
force λ(t) exerted in Fig. 5.1.5b. In both cases, after a short initial transient, the desired
performance is achieved. �

5.2 ROBOT MANIPULATORS WITH LINK FLEXIBILITY, MOTOR
DYNAMICS, AND JOINT FLEXIBILITY

Some classes of practical robotic systems cannot be controlled using the techniques
discussed in Chapters 3 and 4, which were appropriate for rigid-link arms. In this
section we introduce some of these systems, including robots with link flexibility (e.g.
vibratory modes), and robots with drive train dynamics including motor dynamics
and compliant coupling shafts (e.g. joint flexibility). These systems are charac-
terized by the fact that they have more degrees of freedom that control inputs. In
subsequent sections we shall show two approaches for controlling such systems with
reduced control effectiveness, namely singular perturbations and backstepping.

5.2.1 Flexible-Link Robot Arms

Flexible-link robotic systems comprise an important class of systems that include
lightweight arms for assembly, civil infrastructure bridge/vehicle systems, military
tank gun barrel applications, and large-scale space structures. Their key feature is
the presence of vibratory modes that tend to disturb or even destabilize the mo-
tion. They are described as infinite-dimensional dynamical systems using partial
differential equations (PDE); some assumptions make them tractable by allowing
one to describe them using an ordinary differential equation (ODE), which is finite-
dimensional. Yet, this ODE has a form that is unlike the rigid-arm dynamics (5.0.1)
since there are more degrees of freedom than control inputs (i.e. the dimension of

236 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.1.5: NN force/position controller simulation results. (a) Desired and actual
motion trajectories q1d(t) and q1(t). (b) Force trajectory λ(t).

5.2 LINK FLEXIBILITY, MOTOR DYNAMICS, AND JOINT FLEXIBILITY 237

q(t) is greater than the dimension of τ(t)), so that special techniques must be used
for control systems design. The controller design problem for flexible-link systems
is to cause the rigid modes to follow prescribed trajectories while quickly suppressing
the vibrations. References for flexible-link dynamics include Asada et al. (1990),
Lin and Lewis (1993). References for the control of flexible-link robots include
Çetinkunt and Book (1990), Kwon and Book (1990), Madhavan and Singh (1991),
Qian and Ma (1992), Siciliano and Book (1988), Spong (1989), Vandegrift et al.
(1994), Wang and Vidyasagar (1991), Zhu et al. (1994).

5.2.1.1 Derivation of Flexible-Link Robot Dynamics

The elastic deformation w(x, t) of a flexible beam can be described by the Bernoulli-
Euler equation

−∂
2w(x, t)

∂2t
=
EI

ρA

∂4w(x, t)

∂4x
(5.2.1)

where x is the position along the beam, EI is its flexural rigidity, ρ its mass density,
and A the cross section.

The assumed-mode-shapes method allows one to derive an ODE describing the
motion by expressing the deflection as

w(x, t) =
N∑

k=1

ϕk(x)ξk(t) (5.2.2)

with ξk(t) the mode amplitudes and ϕk(x) the eigenfunctions for mode k. The
eigenfunctions depend on the boundary conditions, and one may assume pinned-
pinned modes, clamped-free modes, and so on. The clamped-free modes are said to
yield the best approximation for a given value of N , the number of flexible modes
retained. The importance of (5.2.2) is that the two-dimensional function w(x, t) is
decomposed into separate time-dependent parts ξk(t) and position-dependent parts
ϕk(x).

Now, (5.2.2) is substituted into the Bernoulli-Euler PDE, separation of variables
is used to solve the PDE, and the eigenfunctions ϕk(x) corresponding to the selected
boundary conditions are determined. Finally, Lagrange’s equation is used for a robot
arm with nr flexible links, combining the rigid motion and the flexible motion. Since
each link is flexible, one expansion (5.2.2) is used for each link. The result is an
ODE in the form

M(q)q̈ + Vm(q, q̇)q̇ +Kq + F (q̇) +G(q) + τd = B(q)τ (5.2.3)

where q(t) ∈ �n consists of all rigid and flexible mode variables and can be written
as

q =

[
qr
qf

]
, qf =

⎡
⎢⎢⎢⎣

qf1
qf2
...

qfnr

⎤
⎥⎥⎥⎦ , (5.2.4)

where qr ∈ �nr is the vector of rigid variables, which could be joint angles and
extensions exactly as for the rigid-link robot. Vector qf ∈ �nf is the vector of

238 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

flexible mode amplitudes qfi , and n = nr+nf . The deflection vector qfi for link i is
in �Ni , where Ni is the number of modes retained for the i-th link in the assumed-
mode-shapes expansion (5.2.2). One could write qfi = [ξ1 ξ2 . . . ξN]Ti for link i,
where subscript i denotes that all quantities in the vector should have an additional
subscript. One has nf = N1+N2+ . . .+Nnr

. The link flexibility stiffness matrix is
K. The exact form of all matrices depends on the boundary conditions (e.g. pinned-
pinned, pinned-free, clamped-free) chosen by the designer. Vector τd(t) represents
disturbances.

5.2.1.2 Properties, Structure, and Non-Minimum Phase Nature of the Flexible-
Link Robot Dynamics

The major difference between (5.2.3) and the rigid robot equation (5.0.1) for controls
purposes is that the matrix B(q) has more rows than columns, so that flexible-link
arms have reduced control effectiveness and none of the techniques yet discussed
can be directly applied. An ameliorating factor is that, like the rigid-link case, it
is possible to select the Coriolis/centripetal matrix Vm(q, q̇) so that Ṁ − 2Vm is
skew-symmetric, a property that has been seen to be very useful for controls design.
Thus, the flexible-link dynamics satisfy the properties in Table 5.0.1.

One may partition the dynamics (5.2.3) according to the rigid and flexible modes
as [

Mrr Mrf

Mfr Mff

] [
q̈r
q̈f

]
+

[
Vrr Vrf
Vfr Vff

] [
q̇r
q̇f

]
+

[
0 0
0 Kff

] [
qr
qf

]

+

[
Fr

0

]
+

[
Gr

0

]
=

[
Br

Bf

]
τ. (5.2.5)

Note that gravity and friction only act on the rigid modes, while the flexibility effects
in K only effect the flexible modes. The control matrix Br is nonsingular regard-
less of the boundary conditions used in the assumed mode shapes expansion. This
equation may also be written as

Mrr q̈r +Mrf q̈f + Vrr q̇r + Vrf q̇f + Fr(q̇r) +Gr(qr) = Brτ
Mfr q̈r +Mff q̈f + Vfr q̇r + Vff q̇f +Kffqf = Bfτ

. (5.2.6)

In these equations, the flexible-mode matrices have the form

Vff =

⎡
⎢⎢⎢⎢⎢⎣

2ζ1ω1 0 0 · · · 0
0 2ζ2ω2 0 · · · 0
0 0 2ζ3ω3 · · · 0

...
...

0 0 0 · · · 2ζnr
ωnr

⎤
⎥⎥⎥⎥⎥⎦ , Kff =

⎡
⎢⎢⎢⎢⎢⎣

ω2
1 0 0 · · · 0
0 ω2

2 0 · · · 0
0 0 ω2

3 · · · 0
...

...
0 0 0 · · · ω2

nr

⎤
⎥⎥⎥⎥⎥⎦ .

(5.2.7)
where ζi, ωi are matrices describing the damping ratios and natural frequencies of
the flexible modes for link i. If Ni modes were retained in modeling link i, then
ωi, ζi are diagonal Ni ×Ni matrices.

To write a state equation, define[
Hrr Hrf

Hfr Hff

]
=

[
Mrr Mrf

Mfr Mff

]−1

, (5.2.8)

5.2 LINK FLEXIBILITY, MOTOR DYNAMICS, AND JOINT FLEXIBILITY 239

multiply (5.2.5) by (5.2.8) from the left, rearrange terms, and write

q̈r = −V 1
rr q̇r − V 1

rf q̇f −K1
rfqf − F 1

r −G1
r +B1

rτ (5.2.9)

q̈f = −V 1
fr q̇r − V 1

ff q̇f −K1
ffqf − F 1

f −G1
f +B1

fτ (5.2.10)

with:
V 1
rr ≡ HrrVrr +HrfVfr, V 1

fr ≡ HfrVrr +HffVfr,

V 1
rf ≡ HrrVrf +HrfVff V 1

ff ≡ HfrVrf +HffVff
K1

rf ≡ HrfKff , K1
ff ≡ HffKff

F 1
r ≡ HrrFr, F 1

f ≡ HfrFr

G1
r ≡ HrrGr, G1

f ≡ HfrGr

B1
r ≡ HrrBr +HrfBf , B1

f ≡ HfrBr +HffBf .

Now, equations (5.2.9)-(5.2.10) can be placed into the state-space form ẋ = f(x, u)
by defining the state, for instance, as x = [q q̇]T = [qr qf q̇r q̇f]

T .

Control Difficulties and Non-Minimum Phase Zero Dynamics. One im-
mediately sees the major problem in controlling the flexible-link arm. The objective
is basically to force the rigid mode variable qr(t) to follow a desired trajectory. There
are nr links, so that qr(t) ∈ �nr . The control input available is τ ∈ �nr , since there
is one actuator per link. However, the extra state qf introduces nf additional vibra-
tory degrees of freedom that require control to suppress the vibrations. Therefore, the
number of inputs is less than the number of degrees of freedom and there is reduced
control effectiveness. This is reflected in the fact that the matrix B(q) in (5.2.3)
has more rows than columns. Thus, the techniques so far discussed in Chapters 3
and 4 will not work here.

The situation is even worse than that, for it turns out that by selecting the control
input τ(t) to achieve practical tracking performance of the rigid variable qr(t), one
actually destabilizes the flexible modes qf (t). This is due to the non-minimum phase
nature of the zero dynamics of flexible-link robot arms (Madhavan and Singh 1991,
Wang and Vidyasagar 1991, Vandegrift et al. 1994). (Zero dynamics and internal
dynamics were defined in Chapter 2 under the feedback linearization discussion.)

Two techniques for confronting these problems are given in the next two sections
of this chapter. Both these techniques afford approaches for increasing the control
effectiveness, and capitalize on the fact that the rigid-mode control matrix Br is
nonsingular.

Example 5.2.1 (Open-Loop Behavior of Flexible-Link Robot Arm) :

The model for a one-link robot arm with pinned-pinned boundary conditions and two
retained modes is given by (5.2.3) with

M =

[
2.2024 0.0517 0.0410
0.0517 0.0026 0.0036
0.0410 0.0036 0.0080

]
, Vm =

[
0.0200 0.0013 0.0027
0.0013 0.0001 0.0002
0.0027 0.0002 0.0004

]

K =

[
0 0 0
0 14.0733 0
0 0 225.1734

]
, G = 0, B =

[
1.0000
0.0668
0.1337

]
.

240 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.2.1: Acceleration/deceleration torque profile τ(t).

This single-link beam could model, for instance, a tank gun barrel with two vibratory
modes. Note that the single-link robot is linear; multi-link flexible arms have nonlinear
effects.

Using MATLAB, we find the open-loop poles to be

s =

⎛
⎜⎝

0
−0.01

−0.0002± 89.97i
−0.0000± 342.01i

⎞
⎟⎠ .

Note that there are two poles near s = 0 corresponding to the Newton’s law-type motion
F = ma of the rigid mode, which is the joint angle qr. There are two complex pole
pairs, almost completely undamped, one corresponding to the first mode with frequency
89.97 rad/sec= 14.32 Hz and one corresponding to the second mode with frequency 342.01
rad/sec= 54.43 Hz.

We simulated the open-loop motion using MATLAB routine ode23 on the state-space
form derived from (5.2.9)-(5.2.10), where the state is x = [qr qf1 qf2 q̇r q̇f1 q̇f2]

T . The input
τ(t) was selected as the test acceleration/deceleration profile given in Fig. 5.2.1. The open-
loop rigid mode position and velocity responses qr(t), q̇r(t) are shown in Fig. 5.2.2. Note
that in the absence of vibrations one should have a linear velocity profile and a quadratic
position profile. The first and second modes qf1(t), qf2(t) are shown in Fig. 5.2.3 and show
no detectable attenuation over time. The result, apparent in Fig. 5.2.2, is the significant
residual oscillation in the joint velocity q̇r(t). �

5.2.2 Robots with Actuators and Compliant Drive Train Coupling

Robot manipulators are driven by actuators which may be electric, hydraulic, pneu-
matic, and so on. The actuators are coupled to the links through coupling mecha-
nisms which may contain gears. Particularly in the case of high-speed performance
requirements, the coupling shafts may exhibit appreciable compliance that cannot be
disregarded. This effect is known as joint flexibility. Joint flexibility and link flex-
ibility, discussed in the previous subsection, represent two cases of high-frequency

5.2 LINK FLEXIBILITY, MOTOR DYNAMICS, AND JOINT FLEXIBILITY 241

Figure 5.2.2: Open-loop response of flexible arm: tip position qr(t) (solid) and
velocity (dashed).

Figure 5.2.3: Open-loop response of flexible arm: flexible modes qf1(t), qf2(t).

242 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

dynamical disturbances in robotic systems— they have different sources and require
distinct control design philosophies.

The robot arm has dynamics given by

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = τ (5.2.11)

where q(t) ∈ �n and τd(t) a disturbance. The electric motors (one per joint),
exemplifying a typical actuatation system, have dynamics given by

JM q̈M +BM q̇M + FM +Rτ = KMv (5.2.12)

qM (t) ∈ �n, where matrix JM contains the motor inertias, BM is given by the rotor
damping constants and back emf, and matrix R has diagonal elements containing the
gear ratios of the n motor/joint couplings. The control input is the motor voltage
v(t) ∈ �n, with KM the diagonal matrix of motor torque constants. See Lewis,
Abdallah, and Dawson (1993).

The overall dynamics of the coupled robot arm/actuator depends on the compli-
ance of the coupling shaft and gearing. Two cases will be considered— rigid coupling
shaft and flexible coupling shaft.

5.2.2.1 Rigid Actuator/Arm Coupling

If the coupling has no flexibility effects, then one may simply use the equation for a
rigid gear train with no slippage, where q = RqM with R = diag{ri}, and ‖ri‖ ≤ 1
the gear ratio of link i. The torque scales conversely, as τ = τM/R, which effect is
already included in (5.2.12).

Using these relations it is easy to show that the dynamics of the arm plus actu-
ators can be written as

(JM +R2M)q̈ + (BM +R2Vm)q̇ + (RFM +R2F) +R2G = RKMv, (5.2.13)

as described in Chapter 3. These composite dynamics have the same form as the
robot arm dynamics (5.2.11) and satisfy the properties in Table 5.0.1. Therefore, all
the control methods derived for the rigid robot arm can be used when the actuators
are included.

5.2.2.2 Dynamics of Flexible-Joint Robot Arm

In the case of flexible coupling shafts, the torque is transmitted through the n shafts,
one per link, according to

τ = Bs(q̇M − q̇) +Ks(qM − q), (5.2.14)

with diagonal matrices Bs,Ks the damping and stiffness of the coupling shafts.
Using this in (5.2.11)-(5.2.12) yields the composite flexible joint robot arm dynamics

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd +Bs(q̇ − q̇M) + Ks(q − qM)

= 0 (5.2.15)

JM q̈M +BM q̇M + FM +RBs(q̇M − q̇) + RKs(qM − q)

= KMv (5.2.16)

5.2 LINK FLEXIBILITY, MOTOR DYNAMICS, AND JOINT FLEXIBILITY 243

Figure 5.2.4: Two canonical control problems with high-frequency modes. (a)
Flexible-link robot arm. (b) Flexible-joint robot arm.

One sees that coupling flexibility has resulted in a higher-order dynamics. This has
the form of (5.2.3), with B(q) = [0 KT

M]T having more rows than columns, so that
the control effectiveness is reduced and modified control techniques must be invoked,
as described in the next two sections.

The control objective for the flexible-joint robot arm is to control the arm joint
variable q(t) in the face of the additional dynamics of the variable qM (t), the motor
angle. This is similar to the situation for the flexible-link arm in Section 5.2.1,
where one must control the arm variable in the face of the additional dynamics of
qf (t), the link flexible modes. However, controls design for these two problems must
be approached by different philosophies. The flexible-link and flexible-joint dynamics
are represented in Fig. 5.2.4. From the figure it is evident that the flexible-link arm
is fundamentally a disturbance rejection problem, while for the flexible-joint arm
one is faced with manipulating an intermediate variable qM (t) that has subsequent
influence on the variable of interest q(t). The structure of the systems means that the
flexible-link robot, for instance, has internal dynamics (see Chapter 2); in fact unless
care is taken the zero dynamics are unstable. In the next section are introduced two
schemes for confronting these design problems by extending the effectiveness of the
control input— singular perturbations and backstepping.

The next example shows the very interesting fact that, although the flexible-joint
robot may be difficult to control, it can have faster response than the robot arm with
rigid coupling shaft. This is due to the ‘whipping effect’ of a flexible shaft.

Example 5.2.2 (DC Motor with Flexible Coupling Shaft) :

To focus on the effects of joint flexibility let us examine a single armature-controlled
DC motor coupled to a load through a shaft that has significant flexibility. The electrical
and mechanical subsystems are shown in Fig. 5.2.5. The motor electrical equation is

Li̇ = −Ri− k′
mθ̇m + u

with i(t), u(t) the armature current and voltage respectively. The back emf is vb = k′
mθ̇m.

244 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.2.5: DC motor with shaft compliance. (a) Electrical subsystem. (b)
Mechanical subsystem.

5.2 LINK FLEXIBILITY, MOTOR DYNAMICS, AND JOINT FLEXIBILITY 245

The interaction force exerted by the flexible shaft is given by f = b(θ̇m − θ̇L)+ k(θm −
θL), where the shaft damping and spring constants are denoted by b and k. Thus, with a
gear ratio of one, the mechanical equations of motion may be written down as

Jmθ̈m + bmθ̇m + b(θ̇m − θ̇L) + k(θm − θL) = kmi

JLθ̈L + b(θ̇L − θ̇m) + k(θL − θm) = 0,

with subscripts m and L referring respectively to motor parameters and load parameters.
The load inertia JL is assumed constant. The definitions of the remaining symbols may
be inferred from the foregoing text.

To place these equations into state-space form, define the state as

x = [i θm ωm θL ωL]
T ,

with ωm = θ̇m and ωL = θ̇L the motor and load angular velocities. Then,

ẋ =

⎡
⎢⎢⎢⎢⎣

−R
L

0 − k′
m
L

0 0
0 0 1 0 0
km
Jm

− k
Jm

− (b+bm)
Jm

k
Jm

b
Jm

0 0 0 0 1
0 k

JL

b
JL

− k
JL

− b
JL

⎤
⎥⎥⎥⎥⎦x+

⎡
⎢⎢⎢⎣

1
L

0
0
0
0

⎤
⎥⎥⎥⎦u.

a. Rigid Coupling Shaft. If there is no compliance in the coupling shaft, ωm =
ωL ≡ ω and the state equations reduce to (see Problems section)

ẋ =

[
−R

L
− k′

m
L

km
J

− bm
J

]
x+

[
1
L

0

]
u ≡ Ax+Bu,

where x = [i ω]T , J = Jm + JL. Defining the output as the motor speed gives

y = [0 1]xCx.

The transfer function is computed to be

H(s) = C(sI −A)−1B =
km

(Ls+R)(Js+ bm) + kmk′
m
.

Using parameter values of Jm = JL = 0.1 kg−m2, km = k′
m = 1 V −s, L = 0.5 H, bm =

0.2 N−m/rad/s, and R = 5 Ω yields

H(s) =
10

(s+ 2.3)(s+ 8.7)

so that there are two real poles at s = −2.3, s = −8.7. Using MATLAB to perform a
simulation yields the step response for ω(t) shown in Fig. 5.2.6.

b. Very Flexible Coupling Shaft. Coupling shaft parameters of k = 2 N−m/rad
and b = 0.2 N−m/rad/s correspond to a very flexible shaft. Using these values, MATLAB
can be employed to obtain the two transfer functions

ωm

u
=

20s[(s+ 1)2 + 4.362]

s(s+ 3.05)(s+ 6.14)[(s+ 3.4)2 + 5.62]

ωL

u
=

40s(s+ 10)

s(s+ 3.05)(s+ 6.14)[(s+ 3.4)2 + 5.62]
.

246 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.2.6: Step response of DC motor with no shaft flexibility. Motor speed in
rad/s.

The shaft flexible mode has the poles s = −3.4 ± j5.6, and so has a damping ratio of
ζ = 0.52 and a natural frequency of ωN = 6.55 rad/s. Note that the system is marginally
stable, with a pole at s = 0. It is BIBO stable due to pole/zero cancellation.

MATLAB yielded the step response shown in Fig. 5.2.7. Several points are worthy of
note. Initially the motor speed ωm rises more quickly than in Fig. 5.2.6 since the shaft
flexibility means that only the rotor moment of inertia Jm initially affects the speed. Then,
as the load JL is coupled back to the motor through the shaft, the rate of increase of ωm

slows. Note also that the load speed ωL exhibits a delay of approximately 0.1 sec due to
the flexibility in the shaft.

Is is extremely interesting to note that the shaft flexibility has the effect of speeding
up the slowest real pole (compare the poles), so that ωL approaches its steady-state value
more quickly than in the rigid shaft case. This is due to the ‘whipping’ action of the
flexible shaft. The shaft dynamics make the control of θL, which corresponds in a robot
arm to the joint angle q, very difficult without some sort of specially designed controller.
�

5.2.3 Rigid-Link Electrically-Driven (RLED) Robot Arms

Electrical motors have both electrical and mechanical dynamics. If the motor elec-
trical time constants are fast enough, it is adequate to ignore the electrical dynamics
and use equations such as those in Subsection 5.2.2. If the electrical dynamics are
not negligible, then one must use include them. The dynamics of an n-link rigid
robot arm with no actuator shaft compliance and non-negligible motor electrical dy-
namics are given by

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = KT i (5.2.17)

Li̇+R(i, q̇) + τe = ue (5.2.18)

5.3. SINGULAR PERTURBATION DESIGN 247

Figure 5.2.7: Step response of DC motor with very flexible shaft.

with q(t) ∈ �n the joint variable, i(t) ∈ �n the motor armature currents, KT a
diagonal electro-mechanical conversion matrix, L a matrix of electrical inductances,
R(i, q̇) representing both electrical resistance and back emf, τd(t) and τe(t) the me-
chanical and electrical disturbances, and motor terminal voltage vector ue(t) ∈ �n

the control input.

The rigid-link electrically-driven (RLED) equations represent dynamics similar
to those of the flexible-joint equations (5.2.15)-(5.2.16), as depicted in Fig. 5.2.4b.
The electrical time constants produce high-frequency dynamics that must be con-
fronted in controller design. The approach used in Chapter 4 cannot be used to
design neural network controllers, but the techniques in the next section may be
used to extend the control effectiveness and solve this problem.

If one desires to include both the motor electrical and mechanical dynamics and
there is no shaft compliance, then (5.2.13) should be used instead of (5.2.17). If the
robot arm has both joint flexibility and non-negligible actuator electrical dynamics,
then the electrical equation (5.2.18) must be appended to (5.2.15)-(5.2.16), as in
Example 5.2.2.

5.3 SINGULAR PERTURBATION DESIGN

We have seen that some practical robotic systems cannot be controlled using the rigid
robot arm techniques described in Chapter 4, including robots with link vibration,
joint compliance, and actuators having fast dynamics (e.g. electrical dynamics).
Such systems have high-frequency dynamics, resulting in more degrees of freedom
than control inputs. Two techniques are now introduced to deal with this problem by
extending the control effectiveness of the system. They are singular perturbation
design and backstepping design. The former is covered in this section, the latter in

248 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

the next section.

5.3.1 Two-Time-Scale Controller Design

The method of singular perturbations (Kokotovic 1984) recognizes the fact that a
large class of systems have slow dynamics and fast dynamics which operate on
very different time-scales and are essentially independent. The control input can
therefore be decomposed into a fast portion and a slow portion, which has the effect
of doubling the number of control inputs. This is accomplished by a time-scale
separation that allows one to split the dynamics into a slow subsystem and a fast
subsystem.

5.3.1.1 Singular Perturbations for Nonlinear Systems

A large class of nonlinear systems can be described by the equations

ẋ1 = f1(x, u) (5.3.1)

εẋ2 = f21(x1) + f22(x1)x2 + g2(x1)u (5.3.2)

where the state x = [xT1 xT2]
T is decomposed into two portions. The left-hand side

of the second equation is premultipled by ε� 1, indicating that the dynamics of x2
are much faster than those of x1. In fact, the variable x1 develops on the standard
time-scale t, while d

dT x2 = εẋ2 with

T =
t

ε
, (5.3.3)

so that the natural time-scale for x2 is a faster one defined by T .
The control variable u(t) is required to manipulate both x1 and x2. Using the

technique of singular perturbations, its effectivenesss can be increased under certain
conditions as follows. This allows simplified controller design.

Slow/Fast Subsystem Decomposition. The system may be decomposed into
a slow subsystem and a fast subsystem to increase the control effectiveness. To
accomplish this, define all variables to consist of a slow part, denoted by overbar,
and a fast part, denoted by tilde. Thus,

x1 = x̄1 + x̃1, x2 = x̄2 + x̃2, u = ū+ ũ. (5.3.4)

To derive the slow dynamics, set ε = 0 and replace all variables by their slow
portions. From (5.3.2) one obtains

0 = f21(x̄1) + f22(x̄1)x̄2 + g2(x̄1)ū,

which may be solved to obtain

x̄2 = −f−1
22 (x̄1)[f21(x̄1) + g2(x̄1)ū], (5.3.5)

under the condition that f22(x1) is invertible. This is known as the slow manifold
equation, and reveals that the slow portion of x2 is dependent completely on the slow
portion of x1 and the slow portion of the control input.

5.3. SINGULAR PERTURBATION DESIGN 249

Now one obtains from (5.3.1) the slow subsystem equation

˙̄x1 = f1(x̄1, x̄2, u) (5.3.6)

with x̄2 given by the slow manifold equation. This slow dynamics is completely
dependent on x̄1(t), ū(t) under the condition that f22(x1) is invertible. Therefore, it
is of reduced order. It corresponds to the dominant modes in classical linear system
theory (see next subsection).

To study the fast dynamics, one works in the time scale T , assuming that the
slow variables vary negligibly in this time scale. From (5.3.1) one has

ẋ1 =
d

dt
x1 =

1

ε

d

dT
x1 = f1(x, u)

d

dT
x1 =

d

dT
(x̄1 + x̃1) =

d

dT
x̃1 = εf1(x, u) ≈ 0,

since one assumes that d
dT x̄1 = 0, so that the fast portion x̃1 of x1 is approximately

equal to zero. Now, one may write from (5.3.2)

ε
d

dt
x2 =

d

dT
(x̄2 + x̃2) = f21(x̄1) + f22(x̄1)(x̄2 + x̃2) + g2(x̄1)(ū+ ũ),

whence substitution from (5.3.5) and the assumption that d
dT x̄2 = 0 yields

d

dT
x̃2 = f22(x̄1)x̃2 + g2(x̄1)ũ. (5.3.7)

This is a fast subsystem, which is linear since x̄1 is constant in the T time scale.

Composite Controls Design and Tikhonov’s Theorem. The singular per-
turbation slow/fast decomposition suggests the following controls design technique.
Design a slow control ū for the slow subsystem (5.3.6) using any method. Design
a fast control ũ for the fast subsystem (5.3.7) using any method. Then, apply the
composite control

u = ū+ ũ. (5.3.8)

Using this technique, one performs two control designs, and effectively obtains two
independent control input components that are simply added to produce u(t). This
independent design of two control inputs practically increases the control effective-
ness.

The composite control approach works due to an extension of Tikhonov’s The-
orem, which also relates the slow/fast decomposition (5.3.6)-(5.3.7) to the origi-
nal system description (5.3.1)-(5.3.2). It states that if f22(x1) is invertible and
the linear system (5.3.7) is stabilizable considering x̄1 as slowly time-varying (i.e.
practically constant), then one has

x1 = x̄1 +O(ε) (5.3.9)

x2 = x̄2 + x̃2 +O(ε), (5.3.10)

where O(ε) denotes terms of order ε.
From these notions one obtains the concept of x̃2 as a boundary-layer correction

term due to the fast dynamics, and of ũ as a boundary-layer correction control term
that manages the high-frequency (fast) motion.

250 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

5.3.1.2 Singular Perturbations for Linear Systems

In the linear case, the singular perturbations technique simplifies so that one can
obtain more insight. Therefore, consider the linear system

ẋ1 = A11x1 +A12x2 +B1u (5.3.11)

εẋ2 = A21x1 +A22x2 +B2u (5.3.12)

y = C1x1 + C2x2 (5.3.13)

with A22 invertible. Define slow and fast portions of the variables as in (5.3.4) and

y = ȳ + ỹ. (5.3.14)

The slow dynamics are obtained using ε = 0 and slow variables, so that from
(5.3.12) one obtains the slow manifold equation

0 = εẋ2 = A21x̄1 +A22x̄2 +B2ū

x̄2 = −A−1
22 [A21x̄1 +B2ū], (5.3.15)

whence substitution into (5.3.11) yields the slow subsystem

˙̄x1 = (A11 −A12A
−1
22 A21)x̄1 + (B1 −A12A

−1
22 B2)ū. (5.3.16)

The slow subsystem output equation is found by substituting (5.3.15) into (5.3.13)
to be

ȳ = (C1 − C2A
−1
22 A21)x̄1 − C2A

−1
22 B2ū. (5.3.17)

Note that there is now a direct feed term from the input to the output.
The fast dynamics are obtained by working in the fast time scale T = t

ε , starting
from (5.3.11) to write

d

dT
x1 = εẋ1 = ε(A11x1 +A12x2 +B1u) ≈ 0,

so that x̃1 ≈ 0. Thus, one may write from (5.3.12) that

ε
d

dt
x2 =

d

dT
(x̄2 + x̃2) = A21x̄1 +A22(x̄2 + x̃2) +B2(ū+ ũ),

so that substitution from (5.3.15) and the assumption that d
dT x̄2 = 0 yields

d

dT
x̃2 = A22x̃2 +B2ũ. (5.3.18)

The fast subsystem output is given as

ỹ = C2x̃2. (5.3.19)

The slow subsystem (5.3.16) has poles corresponding to the dominant modes in
classical controls analysis, namely, the modes when the fast dynamics are neglected.

To design a controller and apply Tikhonov’s theorem to guarantee the closed-loop
performance, it is necessary that the pair (A22, B2) be stabilizable.

5.3. SINGULAR PERTURBATION DESIGN 251

5.3.2 NN Controller for Flexible-Link Robot Using Singular Perturba-
tions

Singular perturbations can be used to design controllers for flexible-link arms (Si-
ciliano and Book 1988), flexible-joint arms (Spong 1989), and electrically-driven
arms where the electrical time constants are faster than the mechanical ones. In
this subsection we show how to use the singular perturbations approach to design a
neural network (NN) controller for the flexible-link robot arm discussed in Section
5.2.1 (Yeşildirek et al. 1996), thereby extending the results of Chapter 4 to systems
with vibratory high-frequency dynamics in the links.

Exploiting the natural time-scale separation between the faster flexible mode dy-
namics and the slower rigid mode dynamics, we use singular perturbation theory to
formulate a boundary-layer correction that stabilizes the non-minimum phase inter-
nal dynamics of the flexible-link arm. First, singular perturbation theory is applied
to decompose the flexible robot into a slow subsystem and a fast subsystem; this is
a streamlined version of the development in Siciliano and Book (1988). Next, a
modified practical tracking problem is defined. Finally, the NN tracking controller
is presented.

5.3.2.1 Time-Scale Decomposition of Flexible-Link Robot Arm

We start from the flexible-link dynamics in the form (5.2.9)-(5.2.10). Introduce a
small scale factor ε and define ξ and K̃ff by

ε2ξ = qf , K̃ff ≡ ε2Kff (5.3.20)

where 1/ε2 is equal to the smallest stiffness in Kff . In most practical vibratory
systems the parameter ε is small, that is, the link stiffness is large. Substitution of
(5.3.20) into (5.2.9) and (5.2.10) gives the system in the form,

q̈r = −V 1
rr(qr, q̇r, ε

2ξ, ε2ξ̇)q̇r − V 1
rf (qr, q̇r, ε

2ξ, ε2ξ̇)ε2ξ̇

−(1/ε2)Hrf K̃ff (qr, ε
2ξ)ε2ξ − F 1

r (qr, ε
2ξ)

−G1
r(qr, ε

2ξ) +B1
r (qr, ε

2ξ)τ (5.3.21)

ε2ξ̈ = −V 1
fr(qr, q̇r, ε

2ξ, ε2ξ̇)q̇r − V 1
ff (qr, q̇r, ε

2ξ, ε2ξ̇)ε2ξ̇

−(1/ε2)Hff K̃ff (qr, ε
2ξ)ε2ξ − F 1

f (qr, ε
2ξ)

−G1
f (qr, ε

2ξ) +B1
f (qr, ε

2ξ)τ (5.3.22)

where Kff is invertible because it is diagonal.
Define now the control

τ = τ̄ + τF (5.3.23)

with τ̄ the slow control component and τF a fast component.
Setting ε = 0 yields the slow equation

¨̄qr = −V̄ 1
rr
˙̄qr − H̄rf K̃ff ξ̄ − F̄ 1

r − Ḡ1
r + B̄1

r τ̄ (5.3.24)

and an algebraic relation in ˙̄qr, ξ̄, and, τ̄

0 = −V̄ 1
fr

˙̄qr − H̄ff K̃ff ξ̄ − F̄ 1
f − Ḡ1

f + B̄1
f τ̄ (5.3.25)

252 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Note that we use an overbar to denote evaluation of nonlinear functions with ε = 0.
The slow manifold is found by solving for ξ̄ using (5.3.25), to be

ξ̄ = K̃−1
ff H̄

−1
ff (−V̄ 1

fr
˙̄qr − F̄ 1

f − Ḡ1
f + B̄1

f τ̄). (5.3.26)

One formally acquires the slow subsystem, which is the rigid model, by substituting
(5.3.26) into (5.3.24) to obtain (see Problems section)

¨̄qr = (H̄rr − H̄rf H̄
−1
ff H̄fr)

[−V̄rr ˙̄qr − F̄r − Ḡr + B̄r τ̄
]

= M̄−1
rr

[−V̄rr ˙̄qr − F̄r − Ḡr + B̄r τ̄
]
.

(5.3.27)

To derive the fast subsystem, we now select states ς1 ≡ ξ − ξ̄, ς2 ≡ εξ̇ and write
(5.3.22) as

ες̇1 = ς2
ες̇2 = −V̄ 1

fr
˙̄qr − V 1

ffες2 − H̄ff K̃ff (ς1 + ξ̄)− F̄ 1
f − Ḡ1

f + B̄1
fτ,

(5.3.28)

whence a time-scale change of T = t/ε results in

dς1
dT

= ς2

dς2
dT

= −V̄ 1
fr

˙̄qr − V 1
ffες2 − H̄ff K̃ff (ς1 + ξ̄)− F̄ 1

f − Ḡ1
f + B̄1

f (τ̄ + τF)

since dξ̄/dT ≈ 0. Setting now ε = 0 and substituting for ξ̄ from (5.3.26) gives the
fast dynamics

dς1
dT = ς2
dς2
dT = −H̄ff (q̄r, 0)K̃ff ς1 + B̄1

fτF .
(5.3.29)

It is important to note that this is a linear system, with the slow variables as pa-
rameters, that describes the vibratory modes. The stiffness matrix has the form
(5.2.7).

In summary, we have obtained the description of the full-order model given by
the slow subsystem

M̄rr¨̄qr + V̄rr ˙̄qr + F̄r + Ḡr = B̄r τ̄ (5.3.30)

and the fast subsystem

d

dT

[
ς1
ς2

]
=

[
0 I

−H̄ff K̃ff 0

] [
ς1
ς2

]
+

[
0
B̄1

f

]
τF (5.3.31)

which we write as
dς

dT
= AF ς +BF τF . (5.3.32)

It is important to realize at this point that the slow subsystem, describing the rigid
motion of the robot arm, is in the standard form of robot dynamics, and satisfies
the properties in Table 5.0.1.

5.3. SINGULAR PERTURBATION DESIGN 253

5.3.2.2 A Modified Tracking Problem

According to a theorem of Tikhonov, the net result is that the flexible-link robot
(5.2.9)-(5.2.10) can be described to order ε using (5.3.30)-(5.3.32). In fact, as long
as we apply the control

τ = τ̄ + τF , (5.3.33)

the trajectories in the original system are given by

qr = q̄r +O(ε), (5.3.34)

qf = ε2(ξ̄ + ς1) +O(ε), (5.3.35)

(5.3.36)

with ξ̄(t) given by (5.3.26) and O(ε) denoting terms of order ε. The fast control τF
is a boundary-layer correction that suppresses the vibrations.

We now formulate a tracking problem to allow selection of the slow control τ̄ and
the fast, vibration suppression, control τF . The main objective of our control design
is to cause the rigid variable qr(t) to track a desired trajectory qd(t). In view of this
objective, one could select the output of the system as y = [qTr q̇Tr]

T . Unfortunately,
this is not a suitable choice, as it has been shown that it leads to unstable zero
dynamics (Madhavan and Singh 1991, Wang and Vidyasagar 1991, Vandegrift et
al. 1994). (Internal dynamics were defined in Chapter 2 in the discussion on
feedback linearization.)

The non-minimum phase internal dynamics problems of vibratory systems are
not difficult to solve. The key point is to relax the tracking requirement so that the
slow part, q̄r(t) and ˙̄qr(t), of the link positions and velocities track qd(t) and q̇d(t).
Define, therefore, the output as

y =

[
q̄r
˙̄qr

]
. (5.3.37)

This modified tracking output corresponds to a practically useful performance objec-
tive, allowing the actual link-tip motions qr(t), q̇r(t) to track the desired trajectories
within order ε.

The reason this tracking output is a good one is that the internal dynamics
relative to y(t) are given by the fast system (5.3.32). Thus, τF (t) can be chosen to
give stable internal dynamics if the pair (AF , BF) is stabilizable. This is generally
the case for flexible-link arms. Under this assumption there are many approaches
in robust linear systems theory that yield a stabilizing control τF (t), including the
linear quadratic regulator, H∞ design, and techniques that avoid the measurement
of the strain rates q̇f (t) (Zhu et al. 1994). The fast control is of the form

τF = −[KpF KdF]

[
ς1
ς2

]
= −KpF

ε2
qf − KdF

ε
q̇f +KpF ξ̄ (5.3.38)

with ξ̄ given by (5.3.26). Note that this requires measurements or computation of
the slow manifold variable ξ̄.

254 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.3.1: Neural net controller for flexible-link robot arm.

5.3.2.3 Neural Network Controller

We have just seen how to select a fast control input τF to stabilize the vibratory
modes. In this subsection it is shown that a NN controller like those in Chapter
4 can be used to design the slow control component τ̄(t) to achieve tracking of the
desired motion qd(t), q̇d(t) by the output y(t) in (5.3.37). The entire composite
controller is shown in Fig. 5.3.1. This figure is like the rigid robot NN controllers
in Chapter 4, but it has an additional inner fast control loop to suppress vibrations.
Compare it to the force controller in Fig. 5.1.2.

Tracking and Error System Dynamics. The following developments parallel
those in Chapter 4. The slow dynamics (5.3.30) is

M̄rr¨̄qr + V̄rr ˙̄qr + F̄r + Ḡr = B̄r τ̄ (5.3.39)

which is exactly the Lagrange form of the dynamics of an n-link rigid robot arm with
q̄r(t) ∈ �nr the slow joint variable vector, M̄rr(q̄r) the inertia matrix, V̄rr(q̄r, ˙̄qr) the
Coriolis/centripetal matrix, Ḡr(q̄r) the gravity vector, and F̄r(˙̄qr) the friction. The
control input torque is τ̄(t). These dynamics satisfy the standard robot properties

in Table 5.0.1, including boundedness of M̄rr and skew symmetry (i.e. ˙̄Mrr − 2V̄rr
is skew symmetric).

A neural net (NN) controller was designed for rigid robot arms in Chapter 4.
This puts us in position to design by the same technique a NN tracking controller
for the slow dynamics of the flexible arm without knowledge of friction, gravity, or
Coriolis/centripetal terms. Thus, given a desired trajectory qd(t) ∈ �nr for the slow
part of the flexible-link dynamics, define the tracking error

e(t) = qd − q̄r (5.3.40)

and the filtered tracking error
r = ė+ Λe (5.3.41)

5.3. SINGULAR PERTURBATION DESIGN 255

where Λ = ΛT > 0 is a design parameter matrix, usually selected diagonal. Differ-
entiating r(t) and using (5.3.39), the arm dynamics may be written in terms of the
filtered tracking error as

M̄rr ṙ = −V̄rrr − B̄r τ̄ + f, (5.3.42)

where the unknown nonlinear robot function is

f(X) = M̄rr(q̄r)(q̈d + Λė) + V̄rr(q̄r, ˙̄qr)(q̇d + Λe) + F̄r(˙̄qr) + Ḡr(q̄r) (5.3.43)

and, for instance, one may select

X =

⎡
⎢⎢⎢⎢⎣

e
ė
qd
q̇d
q̈d

⎤
⎥⎥⎥⎥⎦ .

Stable NN Controller. As in Chapter 4, define a control input torque for the
slow subsystem as

τ̄ = B̄−1
r [f̂ +Kvr − v] (5.3.44)

with f̂(X) an estimate of f(X), a gain matrix Kv = KT
v > 0, and v(t) a function

to be detailed subsequently that provides robustness. The closed-loop system for the
rigid dynamics can now be written as

M̄rr ṙ = −(Kv + V̄rr)r + f̃ + v

where the functional estimation error is given by

f̃ = f − f̂ .

Since the nonlinear robot function f(X) is continuous, it can be approximated by

a NN (Chapter 1). Therefore, let the estimate f̂(X) required in (5.3.44) be provided
by a NN so that

f̂(X) = ŴTσ(V̂ TX),

with V̂ , Ŵ the current estimated values of the ideal NN weights V,W as provided
by the tuning algorithm. Then, the control signal becomes

τ̄ = B̄−1
r [ŴTσ(V̂ TX) +Kvr − v]. (5.3.45)

The NN control structure is shown in Fig. 5.3.1, which shows the NN loops as well
as the inner fast loop (5.3.38) needed to stabilize the flexible (internal) dynamics.

We make the following reasonable assumption which holds in all practical situ-
ations.

Assumption 5.3.1 (Desired Trajectory and NN Target Weight Bounds) :

a. The desired motion trajectory is bounded so that∥∥∥∥∥
qd(t)
q̇d(t)
q̈d(t)

∥∥∥∥∥ ≤ qB , (5.3.46)

with qB a known scalar bound.

256 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

b. Define the matrix of ideal target NN weights as

Z ≡
[

W 0
0 V

]
. (5.3.47)

Then, the ideal NN weights are constant and bounded so that

‖Z‖F ≤ ZB (5.3.48)

with ZB a known bound. �

Now, exactly as in Chapter 4, one may derive NN weight tuning algorithms
that guarantee stable tracking. The resulting complete controller for the flexible-link
robot arm is given in Table 5.3.1. It can be shown as in Chapter 4 that using this
controller, the rigid motion tracking error r(t) is bounded by a small value that
decreases as the gain Kv increases. See the discussion about the advantages and
properties of this sort of NN controller in Chapter 4 or towards the end of Section
5.1.2.

As in Chapter 4, this controller is local in the sense that the initial tracking
errors must be in a certain set of allowable initial conditions. This initial condition
set depends on the speed of the desired trajectory and the size of the compact set over
which the NN can suitably approximate the unknown nonlinearity (5.3.43). Approx-
imation accuracy generally increases with the number of hidden-layer neurons in the
NN.

There is an extra caveat in singular perturbation control— the fast modes must
be significantly faster than the slow modes, reflected in a small value of ε, otherwise
the Tikhonov’s Theorem extension does not hold and stability is not guaranteed.

Example 5.3.1 (Flexible-Link NN Controller Design Example) :
The NN control strategy in Table 5.3.1 was tested by means of a simulation of the

one-link flexible-arm with pinned-pinned boundary conditions from Example 5.2.1. We
choose the trapezoidal velocity profile in Fig. 5.3.2 as the desired trajectory qd(t). The
open-loop behavior is detailed in Example 5.2.1 and is unacceptable. In this example the
NN controller presented in Table 5.3.1 and shown in Fig. 5.3.1 is used to provide tracking.

Slow and Fast Subsystems. According to the matrices in Example 5.2.1, the slow
subsystem for qr is

M̄rr¨̄qr + V̄rr ˙̄qr + F̄r + Ḡr = B̄r τ̄

2.2024¨̄qr + 0.02 ˙̄qr = τ̄ .

To write down the fast subsystem corresponding to the flexible modes qf1 , qf2 one
inverts M(q) to find that

Hff =

[
2352.5 −857.4
−857.4 450.7

]
and notes that

Kff =

[
14.0733 0

0 225.1734

]
.

One may now compute that the fast subsystem (5.3.31) is given by

d

dT

[
ς1
ς2

]
=

[
0 I

−H̄ff K̃ff 0

][
ς1
ς2

]
+

[
0
B̄1

f

]
τF

5.3. SINGULAR PERTURBATION DESIGN 257

Table 5.3.1: NN Controller for Flexible-Link Robot Arm

Control Input:
τ = B̄−1

r [ŴTσ(V̂ TX) +Kvr − v] + τF

Fast Control:

τF = −KpF

ε2
qf − KdF

ε
q̇f +KpF ξ̄

NN Weight/Threshold Tuning Algorithms:

˙̂
W = Fσ(V̂ TX)rT − Fσ̂′V̂ TXrT − κF‖r‖Ŵ
˙̂
V = GX

(
σ̂′T Ŵ r

)T
− κG‖r‖V̂

Design parameters: F,G positive definite matrices and κ > 0 a small pa-
rameter.

Slow Tracking Error:

e(t) = qd − q̄r, r = ė+ Λe, Λ > 0

Robustifying signal:
v(t) = −Kz(‖Ẑ‖+ ZB)r

Slow Manifold Equation:

ξ̄ = K̃−1
ff H̄

−1
ff (−V̄ 1

fr
˙̄qr − F̄ 1

f − Ḡ1
f + B̄1

f τ̄).

d

dT

[
ς1
ς2

]
=

⎡
⎢⎣

0 0 1 0
0 0 0 1

−33, 108ε2 193, 067ε2 0 0
12, 067ε2 −101, 482ε2 0 0

⎤
⎥⎦[ς1

ς2

]
+

⎡
⎢⎣

0
0
4.25
15.72

⎤
⎥⎦ τF

where ε is the selected value of the time-scaling parameter. In this subsystem, the states
are

ς1 = ξ − ξ̄ =
qf
ε2

− q̄f
ε2

ς2 = εξ̇ =
q̇f
ε
.

To study the open-loop flexible modes, setting ε = 1 one finds the poles of the fast
subsystem to be

s =

(
0.0± 90.26i
0.0± 355.59i

)

which should be compared with the exact open-loop poles in Example 5.2.1.

258 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.3.2: Response of flexible arm with NN and boundary layer correction.
Actual and desired tip positions and velocities, ε = 0.26.

Figure 5.3.3: Response of flexible arm with NN and boundary layer correction.
Flexible modes, ε = 0.26.

5.3. SINGULAR PERTURBATION DESIGN 259

Figure 5.3.4: Response of flexible arm with NN and boundary layer correction.
Actual and desired tip positions and velocities, ε = 0.1.

Fast Controls Design. An LQR design was performed via MATLAB on the fast
system to select the PD gains in the fast boundary-layer correction control

τF = −KpF ς1 −KdF ς2. (5.3.49)

We used Q = diag(1, 10, 1, 10) and R = 100 for two different values of ε. First, ε was
selected to be equal to the square root of the reciprocal of the smallest stiffness constant
14.0733. This value of ε = 0.26 yields a gain of

KF = [KpF KdF] = [−0.1696 1.0229 0.0479 0.4726].

A smaller value of ε = 0.1 gives a gain of

KF = [−0.1674 1.0197 0.0485 0.4721].

Note that the boundary-layer correction control must be implemented using

τF = −KpF

ε2
qf − KdF

ε
q̇f +KpF ξ̄

so that the slow manifold variable ξ̄ must be computed.

Neural Net Controller and Simulation. The NN design parameters in Table
5.3.1 were selected as Kv = 20,Λ = 5, F = G = 20, κ = 1,Kz = 20, ZB = 50. The
controller was first simulated using the fast subsystem gains for ε = 0.26. In Fig. 5.3.2
the closed-loop performance for position and velocity can be seen. The flexible modes are
shown in Fig. 5.3.3.

Next, we used the fast gains corresponding to ε = 0.1. In Fig. 5.3.4 we see that the
tracking performance is considerably improved. The flexible modes shown in Fig. 5.3.5
are also improved. Therefore, the proposed NN-based controller has excellent performance
that improves as ε decreases. This is in spite of the fact that the controller requires no
knowledge of the actual arm matrices; the controller learns the dynamics by automatically
tuning the NN weights on-line.

It should be realized that if ε is taken too small, the result will be control chattering
and deteriorated performance. �

260 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.3.5: Response of flexible arm with NN and boundary layer correction.
Flexible modes, ε = 0.1.

5.4 BACKSTEPPING DESIGN

We have seen that some practical robotic systems cannot be controlled using the rigid
robot arm techniques described in Chapter 4, including robots with link vibration,
joint compliance, and actuators having fast dynamics (e.g. electrical dynamics). In
the previous section, singular perturbation theory was used to extend the control ef-
fectiveness in the system to deal with this problem. Here, we introduce the technique
of backstepping to increase the control effectiveness.

5.4.1 Backstepping Design

Backstepping design (Kanellakopoulos et al. 1991, Kokotovic 1992) is a method
for extending various controller design techniques to a wider class of systems than
originally possible using that technique. It is conveniently studied using Lyapunov
proof techniques. Also relevant are the notions of feedback linearization and zero
dynamics. These concepts were discussed in Chapter 2.

Consider the class of systems of the form

ẋ1 = f1(x) = f1(x1, x2) (5.4.1)

ẋ2 = f2(x) + g2(x)u (5.4.2)

with state x = [xT1 xT2]
T and control input u(t). Note that this system is of the

form in Fig. 5.2.4a if the output is selected as x2(t), and of the form in Fig. 5.2.4b
if the output is selected as x1(t).

If x2(t) is selected as the output, then the zero dynamics are defined as the
dynamics when u(t) is chosen to make x2(t) = 0. Thus, the zero dynamics are
given by

ẋ1 = f1(x1, 0). (5.4.3)

If these dynamics are unstable, the system is of non-minimum phase. Backstepping
notions can be applied to control such systems as long as the internal dynamics

5.4. BACKSTEPPING DESIGN 261

Figure 5.4.1: Backstepping controller.

are stabilizable considering x2(t) as the input (Slotine and Li 1991). This class
of systems includes the flexible-link arms, which were stabilized using a different
technique in the previous section.

In traditional backstepping, the output is selected as x1(t), which might be re-
quired to follow a prescribed trajectory x1d(t). This corresponds to the cascaded
dynamics in Fig. 5.2.4b of the sort representing the flexible-joint robot and RLED
robot. In the upcoming presentation we take this point of view.

To select the control input, let us proceed in two steps. First, select a desirable
value of x2, possibly a function of x1, denoted x2d(x1, t), such that in the ideal
system

ẋ1 = f1(x1, x2d) (5.4.4)

one has stable tracking by x1(t) of x1d(t). Then, in a second step, select the control
input u(t) so that the actual value of x2(t) becomes x2d . This two-step design
procedure is known as backstepping, since one starts at the desired output, and
backsteps through the system selecting desirable values of the state components until
the actual control input u(t) is reached. Under conditions discussed below, a stable
tracking controller can be designed in this manner. The result of this two-step
design procedure is the two-loop controller shown in Fig. 5.4.1, which is subsequently
derived in more detail. When it works, the technique extends to more than two
systems in cascade.

To formalize this technique, one requires

Assumption 5.4.1 (Stabilizability Assumption) : Let (5.4.1) be stabilizable consid-
ering x2(t) as the control input. Let (5.4.2) be stabilizable using input u(t). �

Suppose for simplicity that the desired output x1d is equal to zero. (The extension
to x1d(t) �= 0 is discussed in the Problems section). Then, under the assumption
one is able to select in the first design step a desired value x2d so that (5.4.4) is
stable. If one is talking about asymptotic stability (AS) and (5.4.4) is autonomous
(not an explicit function of time), this assumption implies there exists a Lyapunov
function L1(x1) such that

L1 > 0 (5.4.5)

262 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

L̇1 =
∂L1

∂x1
ẋ1 =

∂L1

∂x1
f1(x1, x2d) < 0. (5.4.6)

A special case is

L1 =
1

2
xT1 Px1 (5.4.7)

L̇1 = −1

2
xT1Qx1 (5.4.8)

for positive definite symmetric matrices P,Q.
Equation (5.4.4) is an idealized system. Note, however, that one can write the

actual subsystem (5.4.1) as (Esfandiari and Khalil 1991)

ẋ1 = f1(x1, x2d) + f1(x1, x2)− f1(x1, x2d)

or
ẋ1 = f1(x1, x2d)− f̃1 (5.4.9)

which is the ideal system driven by a mismatch error term f̃1 ≡ f1(x1, x2d) −
f1(x1, x2).

Now, define a new error signal as

x̃2 = x2d − x2 (5.4.10)

and find the dynamics

˙̃x2 = ẋ2d − ẋ2
˙̃x2 = ẋ2d − f2(x)− g2(x)u. (5.4.11)

The complete dynamics (5.4.1)-(5.4.2) can therefore be represented as (5.4.9),(5.4.11).
For the second design step, one must select the input u(t) in (5.4.11) to stabilize

(5.4.9)/(5.4.11), which is possible under Assumption 5.4.1. To accomplish this,
define the overall Lyapunov function

L = L1 +
1

2
x̃T2 x̃2. (5.4.12)

Differentiating, and using the actual dynamics (5.4.9)/(5.4.11) one obtains

L̇ = L̇1 + x̃T2 ˙̃x2

=
∂L1

∂x1
[f1(x1, x2d)− f̃] + x̃T2 [ẋ2d − f2(x)− g2(x)u].

Assume for simplicity that (5.4.8) holds (this is not required for the technique to
work, but brings out some intuition in this development). Then,

L̇ = −1

2
xT1Qx1 −

∂L1

∂x1
f̃ + x̃T2 [ẋ2d − f2(x)− g2(x)u].

To proceed, one needs some more structure in the term ∂L1

∂x1
f̃ . Suppose, for

instance, that one has the following

5.4. BACKSTEPPING DESIGN 263

Assumption 5.4.2 (Linearity Assumption) : Let

∂L1

∂x1
f̃ = hT (x1)x̃2 (5.4.13)

for some function h(x1). �

A special case of this is when f̃ = f1(x1, x2d) − f1(x1, x2) itself is linear in x̃2 =
x2d − x2. Under this assumption one may write

L̇ = −1

2
xT1Qx1 + x̃T2 [ẋ2d − f2(x)− h(x1)− g2(x)u].

Selecting now the control input as

u =
1

g2
[ẋ2d − f2(x)− h(x1) +Kx̃2] (5.4.14)

yields

L̇ = −1

2
xT1Qx1 − x̃T2Kx̃2 < 0, (5.4.15)

so the overall system is stable. For success using this control strategy one must make

Assumption 5.4.3 (Bounded Below Assumption) : Let g2(x) be positive and bounded
below so that

γB < g2(x) (5.4.16)

for all x and some bound γB . �

Note that then 1
g2(x)

< 1
γB

for all x, which is finite so that the control is well-defined.

The closed-loop system designed using backstepping is depicted in Fig. 5.4.1.
Note that the selection of x2d(t) produces a first control loop, and the selection of
u(t) produces a second loop generating the final control input.

One notes that the linearity assumption 5.4.2 is not required. A milder assump-
tion is the following.

Assumption 5.4.4 (Lipschitz-Like Assumption) : Let

‖∂L1

∂x1
f̃‖ ≤ h(x1)‖x̃2‖ (5.4.17)

for some function h(x1). �

Using this assumption one may also select a stabilizing control u(t). See Esfandiari
and Khalil (1991) and the Problem section.

Example 5.4.1 (Backstepping Control Design) :

This example is motivated by some examples in Slotine and Li (1991). Let the system
be

ẋ1 = x2
1x2

ẋ2 = x2 − x2
1 + u.

264 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Step 1. To stabilize the first subsystem, one may select x2d = −x1, for then the ideal
system (5.4.4) is

ẋ1 = x2
1x2d = −x3

1

which has a Lyapunov function given by

L1 ≡ 1

2
x2
1

for
L̇1 = x1ẋ1 = −x4

1.

Step 2. The actual x1 subsystem is

ẋ1 = x2
1x2 = x2

1x2d − x2
1(x2d − x2)

= −x3
1 − x2

1x̃2

with
x̃2 ≡ x2d − x2 = −x1 − x2.

The dynamics of x̃2 are given by

˙̃x2 = −ẋ1 − ẋ2

= −x2
1x2 − x2 + x2

1 − u.

An overall Lyapunov function candidate is

L = L1 +
1

2
x̃2
2 =

1

2
x2
1 +

1

2
x̃2
2.

Evaluating along the actual system trajectories one has

L̇ = L̇1 + x̃2
˙̃x2 = x1ẋ1 + x̃2

˙̃x2

= x1(−x3
1 − x2

1x̃2 + x̃2(−x2
1x2 − x2 + x2

1 − u)

= −x4
1 + x̃2(−x2

1x2 − x2 + x2
1 − x3

1 − u).

Selecting now the control input

u = −x2
1x2 − x2 + x2

1 − x3
1 + kx̃2

yields the negative definite function

L̇ = −x4
1 − kx̃2

2.

One notes that the function of the control input u(t) is to stabilize the second subsystem
about x2d = −x1. It has some components from the dynamics of the second subsystem
(e.g. −x2

1x2−x2+x2
1+kx̃2) and some components from the dynamics of the first subsystem

(e.g. −x3
1). �

5.4.2 NN Controller for Rigid-Link Electrically-Driven Robot Using
Backstepping

In the previous subsection we introduced backstepping design for the case where all
the system dynamics are fully known. When the parameters are not completely
known, backstepping can be applied in conjunction with techniques such as adap-
tive control (Kokotovic 1992) or robust control. A disadvantage of standard adap-
tive control backstepping is that a stringent linear-in-the-parameters assumption is

5.4. BACKSTEPPING DESIGN 265

needed on all nonlinearities (stronger than Assumption 5.4.2), so that the form of
the nonlinearities must be known. This leads to requirements to determine two re-
gression matrices (basically one for f1 and one for f2), and to differentiate the first
of them. This can be very tedious.

In this subsection we apply backstepping design to the rigid-link electrically-
driven (RLED) manipulator introduced in Subsection 5.2.3. It is shown that back-
stepping can be applied in conjunction with the neural net control techniques of
Chapter 4, so that no regression matrices are needed and no linearity-in-the-parameters
assumptions are needed. The key to this is the NN universal approximation property
which is not an assumption, but holds for all smooth functions. Two NN will be
required in this controller, one basically to estimate the nonlinearities f1 and an-
other basically for f2. This is the work of C. Kwan (see References), who has also
applied backstepping to NN control of flexible-joint robot arms, induction motors,
and a large class of nonlinear systems.

The dynamics of the RLED robot are

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) +G(q) + τd = KT i (5.4.18)

Li̇+R(i, q̇) + τe = ue (5.4.19)

with q(t) ∈ �n the joint variable, i(t) ∈ �n the motor armature currents, and
ue(t) ∈ �n the control input voltage.

5.4.2.1 Trajectory Tracking and Backstepping Error Dynamics

This derivation combines some techniques in Chapter 4 with backstepping tech-
niques. Define the tracking error

e = qd − q, (5.4.20)

with qd(t) the desired robot arm trajectory, and the filtered tracking error

r = ė+ Λe (5.4.21)

with Λ > 0 a diagonal design matrix. Differentiating r(t) and using (5.4.18) one
finds the dynamics in terms of r(t) as

M(q)ṙ = −Vmr + F1 + τd −KT i (5.4.22)

where the unknown nonlinear robot function is

F1(X1) =M(q)(q̈d + Λė) + Vm(q, q̇)(q̇d + Λe) + F (q̇) +G(q) (5.4.23)

and, for instance, one may select

X1 =

⎡
⎢⎢⎢⎢⎣

e
ė
qd
q̇d
q̈d

⎤
⎥⎥⎥⎥⎦ .

266 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

The dynamics (5.4.22)/(5.4.19) are of the form (5.4.1)/(5.4.2) with x1 = r and
x2 = i, and satisfy the assumptions in the previous subsection.

Now let id(t) be a value of i(t) that stabilizes the dynamics (5.4.22) written in
the form

Mṙ = −Vmr + F1 + τd −KT id +KT η, (5.4.24)

with
η ≡ id − i (5.4.25)

an error term. Signal id(t) will be selected later. To find the complete error dynam-
ics, differentiate Lη and substitute from (5.4.19) to find

Lη̇ = F2(X2) + τe − ue (5.4.26)

where the unknown nonlinear motor function is

F2(X2) = Li̇d +R(i, q̇), (5.4.27)

with R(i, q̇) the motor electrical resistance and back emf. Since id(t) will turn out
to be a complex function of F1(X1) and r(t), the function F2(X2) is complicated.
Note moreover that F2 requires the derivative of id(t). For X2, one may select, for
instance,

X2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

i
e
ė
qd
q̇d
q̈d

⎤
⎥⎥⎥⎥⎥⎥⎦
.

5.4.2.2 Neural Network Backstepping Controller

The system dynamics has now been written in terms of the error subsystems (5.4.24)
and (5.4.26). Here we shall show how to select id(t) and ue(t) so that these dynamics
are stable, yielding tracking of the desired robot arm trajectory qd(t). The resulting
NN controller is shown in Fig. 5.4.2. This figure is similar to the NN controllers
in Chapter 4, but has an additional feedback loop as required for backstepping from
id to ue.

Note that matrix KT is unknown. Assume that

KB1 < ‖KT ‖ < KB2 (5.4.28)

with KB1,KB2 known scalar bounds.
Assume next that there exists two networks that can approximate the unknown

nonlinear functions F1 and F2 on a compact set. Thus,

F1(X1) = WT
1 φ1(X1) + ε1 (5.4.29)

F2(X2) = WT
2 φ2(X2) + ε2, (5.4.30)

with Wi the tunable NN weights, φi(·) the activation functions, and εi the NN
functional reconstruction errors that are assumed bounded so that

‖εi‖ < εiN (5.4.31)

5.4. BACKSTEPPING DESIGN 267

Figure 5.4.2: Backstepping neural network controller.

with ε1N , ε2N known bounds. For simplicity, we are using one-layer functional-link
neural networks (FLNN— see Chapter 4), although two-layer NN could be used. In
the case of one-layer NN the functions φi(·) must be selected to provide a basis.
One could use radial basis functions, or the CMAC neural net (Commuri and Lewis
1995).

Estimates for F1, F2 are given by

F̂1(X1) = ŴT
1 φ1(X1) (5.4.32)

F̂2(X2) = ŴT
2 φ2(X2), (5.4.33)

with Ŵi the current values of the NN weights as provided by the tuning algorithms.
Now select the desirable value of armature current as

id =
1

KB1
(F̂1 +Krr + vi) (5.4.34)

=
1

KB1
(ŴT

1 φ1 +Krr + vi) (5.4.35)

with Kr > 0 a gain matrix and vi a robustifing term to be defined. This is a
feedback-linearization motivated design based on (5.4.24). Select the control input
as

ue = F̂2 +Kηη (5.4.36)

= ŴT
2 φ2 +Kηη. (5.4.37)

with Kη > 0 a gain matrix. This is a feedback-linearization motivated design based
on (5.4.26).

Now, using techniques very much like those in Chapter 4, one may show that
the NN backstepping control given in its entirety in Table 5.4.1 gives stable tracking
performance. The NN backstepping controller is depicted in Fig. 5.4.2. The stability

268 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Table 5.4.1: NN Backstepping Controller for RLED Robot Arm

Control Input:
ue = ŴT

2 φ2 +Kηη

Auxiliary Signal:

id(t) =
1

KB1
(ŴT

1 φ1 +Krr + vi)

NN Weight/Threshold Tuning Algorithms:

˙̂
W 1 = Γ1φ1r

T − κ1Γ1‖ξ‖Ŵ1

˙̂
W 2 = Γ2φ2r

T − κ2Γ2‖ξ‖Ŵ2

where ξ = [rT ηT]T .

Design parameters: Γ1,Γ2 positive definite matrices and κ1, κ2 > 0 small
parameters.

Tracking Error:

e(t) = qd − q

r(t) = ė+ Λe, Λ > 0

η(t) = id(t)− i(t)

Robustifying signal:

vi(t) =
rρ2

‖r‖ρ+ εv
, ρ = ‖ŴT

1 φ1‖, εv > 0 and small.

proof hinges on using the Lyapunov function

L =
1

2
ξTPξ +

1

2
Z̃TΓ−1Z̃ (5.4.38)

where ξ = [rT ηT]T , Z = diag{W1,W2},Γ = diag{Γ1,Γ2} > 0, P > 0. This
Lyapunov function weights both the tracking errors and the NN weight estimation
errors. The details are given in Kwan and Lewis (July 1995). It can be shown that
the tracking error r(t) (and η(t)) can be made arbitrarily small by increasing the
gains Kr,Kη.

The NN backstepping controller enjoys the properties and advantages discussed
in Chapter 4 and towards the end of Section 5.1.2. Included are fast on-line weight
tuning with no preliminary off-line learning, no persistence of excitation, and no
need to compute any regression matrices. One notes that the nonlinear function F2

depends on i̇d; however, id(t) is a function of F̂1. In backstepping using standard
adaptive control techniques, one must determine a regression matrix for F1, and

5.4. BACKSTEPPING DESIGN 269

then differentiate it to find a regression matrix for F2. All this is unnecessary using
the NN approach.

Initialization of the NN weights at zero amounts to setting F̂1 = 0, F̂2 = 0 in
Fig. 5.4.2. The reason this works is that, setting F̂1 = 0, F̂2 = 0 in the expressions
for ue(t) and id(t) in Table 5.4.1 gives

ue = Kη(id − i) = Kη[
1

KB1

(Krr + vi)− i]

=
KηKr

KB1

r +
Kη

KB1

vi −Kηi, (5.4.39)

which is a PD tracking controller plus extra terms in the robust term vi(t) and the
armature current i(t). This holds the system in stable tracking until the NN begin
to learn, improving the closed-loop performance.

As detailed in Chapter 4, this controller is local in the sense that the initial
tracking errors must be in a certain set of allowable initial conditions. This initial
condition set depends on the speed of the desired trajectory and the size of the
compact sets over which the approximation properties (5.4.30) hold. Approximation
accuracy generally increases with the number of hidden-layer neurons in the NN.

Example 5.4.2 (RLED Backstepping NN Controller Design Example) :
The backstepping NN controller in Table 5.4.1 was applied to control the two-link

planar elbow arm in Example 5.1.1. The arm parameters were selected as a1 = a2 =
1m,m1 = 0.8 kg, m2 = 2.3 kg, g = 9.8m/sec2, which yields α = 3.1, β = 2.3, η = 2.3. The
two actuator motors were taken as permanent magnet DC motors with Li = 0.01H,KTi =
2 N−m/A, back emf constant of one, and armature resistance Rai = 1 Ω, for i = 1, 2,
which gives dynamics (5.4.19) of[

0.01 0
0 0.01

]
i̇+ i+ q̇ = ue.

with variables in �2. The EM conversion matrix is KT = 2I, with I the identity matrix.
We selected the lower bound KB1 = 1.

The desired trajectories were qd1(t) = sin t, qd2(t) = cos t. The inputs to both NN were
taken as

X1 = X2 = [ζT1 ζT2 cos(q)T sin(q)T q̇T iT 1]T

with ζ1 = q̈d + Λė, ζ2 = q̇d + Λe. We selected Λ = 20I. This choice of X1, X2 contains
preprocessing of signals to give the NN more information and improve its performance,
as discussed in Chapter 4. We selected the controller gains as Kr = 20I,Kη = 50I. In
each NN we used ten hidden-layer neurons. The weight tuning parameters were selected
as Γ1 = Γ2 = 20I, κ1 = κ2 = 0.5.

First, only PD control was used, which amounts to setting all the NN weights to zero;
this disables the two nonlinear feedback loops in Fig. 5.4.2 and gives the PD controller
(5.4.39). In this simulation, we also left out the terms there in vi(t) and i(t) so that
ue = (KηKr/KB1)r. The result is shown in Fig. 5.4.3. The tracking error is bounded, but
does not decrease with time. By increasing the gains one can make r(t) smaller, but at
the expense of increased control magnitude.

Next, we enabled the two NN loops to provide estimates F̂1, F̂2. The resulting perfor-
mance shown in Fig. 5.4.4 is excellent. Note that the NN controller does not require any
of the parameters of the robot arm or motor dynamics. It learns all this information on
line by NN weight tuning. �

270 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Figure 5.4.3: Response of RLED controller with only PD control. (a) Actual and
desired joint angle q1(t). (b) Actual and desired joint angle q2(t). (c) Tracking
errors e1(t), e2(t). (d) Control torques KT i(t).

5.4. BACKSTEPPING DESIGN 271

Figure 5.4.4: Response of RLED backstepping NN controller. (a) Actual and desired
joint angle q1(t). (b) Actual and desired joint angle q2(t). (c) Tracking errors
e1(t), e2(t). (d) Control torques KT i(t).

272 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

5.5 CONCLUSIONS

In this chapter we explored some extensions of the basic neural network control tech-
niques developed in Chapter 4. We discussed some practical industrial applications
such as force control, systems with vibratory and flexible modes, and systems with
drive train and actuator high-frequency dynamics. It was shown how to use singular
perturbations and backstepping techniques to extend the class of systems amenable
to our NN design approach. The controllers in this chapter contained the basic PD
loop and NN inner feedback loop of Chapter 4, but also some extra feedback loops
to deal with the more complex structures of systems dealt with here.

5.6 REFERENCES

Asada, H., Z.-D. Ma, and H. Tokumaru, “Inverse dynamics of flexible robot arms:
modeling and computation for trajectory control,” J. Dynam. Systems, Measure-
ment, and Control, vol. 112, pp. 177-185, June 1990.

Çetinkunt, S., and W.J. Book, “Flexibility effects on the control system perfor-
mance of large-scale robotic manipulators,” J.Astronautical Sci., vol. 38, no. 4,
pp. 531-556, Oct.-Dec. 1990.

Commuri, S., and F.L. Lewis, “CMAC neural networks for control of nonlinear
dynamical systems: structure, stability and passivity,” Proc. IEEE Int. Symposium
on Intelligent Control, pp. 123-129, Monterey, Aug. 1995.

Esfandiari, F., and H.K. Khalil, “Stability analysis of a continuous implementation
of a variable structure control,” IEEE Trans. Automat. Control, vol. 36, no. 5, pp.
616-620, May 1991.

Kanellakopoulos, I., P.V. Kokotovic, and A.S. Morse, “Systematic design of adap-
tive controllers for feedback linearizable systems,” IEEE Trans. Automat. Control,
vol. 36, pp. 1241-1253, 1991.

Kim, Y., Dynamic and High-Level Neural Networks for Control, Ph.D. Thesis,
School of Electrical Engineering, Univ. Texas at Arlington, Arlington, TX, July
1997.

Kokotovic, P.V., “Applications of singular perturbation techniques to control prob-
lems,” SIAM Review, vol. 26, no. 4, pp. 501-550, Oct. 1984.

Kokotovic, P.V., “Bode lecture: the joy of feedback,” IEEE Control Systems Mag-
azine, no. 3, pp. 7-17, June 1992.

Kwan, C.-M., A. Yeşildirek, and F.L. Lewis, “Robust force/motion control of con-
strained robots using neural network,” Proc. IEEE Conf. Decision and Control,
pp. 1862-1867, Dec. 1994.

Kwan, C.-M., A. Yeşildirek, and F.L. Lewis, “Robust force/motion control of
flexible-joint robots using neural networks,” Proc. American Control Conf., pp.
4460-4465, Seattle, June 1995.

5.6. REFERENCES 273

Kwan, C.M., and F.L. Lewis, “Robust backstepping control of induction motors
using neural networks,” Proc. IEEE Mediterranean Symp. on New Directions in
Control and Automation, pp. 323-330, Cyprus, July 1995.

Kwan, C.M., F.L. Lewis, and D.M. Dawson, “Robust neural network control of
rigid-link electrically-driven robots,” Proc. IEEE Int. Symposium on Intelligent
Control, pp. 117-122, Monterey, Aug. 1995.

Kwan, C.M., and F.L. Lewis, “Robust backstepping control of nonlinear systems
using neural networks,” Proc. European Control Conf., pp. 2772-2777, Rome, Sept
1995.

Kwan, C.M., D.M. Dawson, and F.L. Lewis, “Robust adaptive control of robots
using neural networks: global tracking stability,” Proc. IEEE Conf. Decision and
Control, pp. 1846-1851, New Orleans, Dec. 1995.

Kwan, C.M., F.L. Lewis, and Y.H. Kim, “Robust neural network control of
flexible-joint robots,” Proc. IEEE Conf. Decision and Control, pp. 1296-1301, New
Orleans, Dec. 1995.

Kokotovic, P.V., “Applications of singular perturbation techniques to control prob-
lems,” SIAM Review, vol. 26, no. 4, pp. 501-550, Oct. 1984.

Kwon, D.-S., and W.J. Book, “An inverse dynamic method yielding flexible ma-
nipulator state trajectories,” Proc. American Control Conf., pp., 186-193, 1990.

Lewis, F.L., C.T. Abdallah, and D.M. Dawson, Control of Robot Manipulators,
Macmillan, New York, 1993.

Lewis, F.L., “Robotics”, in CRC Handbook of Mechanical Engineering, chap. 14,
ed. F. Kreith, CRC Press, 1998.

Lin, J., and F.L. Lewis, “Dynamic equations of a manipulator with rigid and flex-
ible links: derivation and symbolic computation,” Proc. American Control Conf.,
pp. 2868-2872, June 1993.

Madhavan, S.K., and S.N. Singh, “Inverse trajectory control and zero dynamics
sensitivity of an elastic manipulator,” International Journal of Robotics and Au-
tomation, vol. 6, no. 4, p. 179, 1991.

MATLAB version 4.2, July 1994, The Mathworks, Inc., 24 Prime Park Way,
Natick, MA 01760, USA.

McClamroch, N.H., and D. Wang, “Feedback stabilization and tracking of con-
strained robots,” IEEE Trans. Automat. Control, vol. 33, p. 419-426, 1988.

Narendra, K.S., and A.M. Annaswamy, “A new adaptive law for robust adaptation
without persistent excitation,” IEEE Trans. Automat. Control, vol. AC-32, no. 2,
pp. 134-145, Feb. 1987.

Qian, W.T., and C.C.H. Ma, “A new controller design for a flexible one-link
manipulator,” IEEE Trans. Automat. Control, vol. 37, no. 1., pp. 132-137, Jan.
1992.

274 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Siciliano, B., and W. Book, “A singular perturbation approach to control of
lightweight manipulators,” Int. J. Robotics Research, vol. 7, no. 4, pp. 79-90, Aug.
1988.

Slotine, J.-J.E., and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey,
1991.

Spong, M.W., “Adaptive control of flexible joint manipulators,” Systems and Con-
trol Letters, vol. 13, pp. 15-21, 1989.

Spong, M.W., and M. Vidyasagar, Robot Dynamics and Control, Wiley, New York,
1989.

Vandegrift, M., F.L. Lewis, and S. Zhu, “Flexible-link robot arm control by a
feedback linearization/singular perturbation approach,” J. Robotic Systems, vol.
11, no. 7, pp. 591-603, 1994.

Wang, D., and M. Vidyasagar, “Transfer functions for a single link flexible link,”
Int. J. Robotics Research, vol. 10, no. 5, Oct. 1991.

Wang, D., and M. Vidyasagar, “Control of a class of manipulators with a single
flexible link - Part I: feedback linearization,” Trans. ASME, J. Dynam. Sys., Meas.,
and Control, vol. 113, pp. 655-661, Dec. 1991.

Yeşildirek, A., M.W. Vandegrift, and F.L. Lewis, “A neural net controller for
flexible-link robots,” J. Intelligent and Robotic Systems, vol. 17, pp. 327-349, 1996.

Zhu, S.Q., F.L. Lewis, and L.R. Hunt, “Robust stabilization of the internal dy-
namics of flexible robots without measuring the velocity of the deflection,” Proc.
IEEE Conf. Decision and Control, pp. 1811-1816, Dec. 1994.

5.7 PROBLEMS

Section 5.1

Problem 5.1-1 : Reduced-Order Dynamics on Constraint Surface. Derive
the reduced-order dynamics (5.1.12) and show that it satisfies the properties in Table
5.0.1.

Problem 5.1-2 : Constraint Surface Jacobian Multiplication Property.
Prove the Jacobian multiplication property (5.1.13).

Problem 5.1-3 : Closed-Loop Error Dynamics. (a) Derive the closed-loop
error dynamics (5.1.17) and function f(x). (b) Derive the form of the closed-loop
error dynamics given in (5.1.25).

Problem 5.1-4 : Simulation of NN Hybrid Position/Force Controller.
Perform the simulation of Example 5.1.1 using MATLAB. Simulation is discussed
in Chapter 3. Include friction terms of the form given in Chapter 3.

Problem 5.1-5 : Constraint Formulation. One notes from Example 5.1.1
that, technically, the constrained motion variable q1(t) is not tangential to the sur-
face φ(y) = 0. Reformulate the constraint dynamics in Section 5.1.1 so that q1(t)

5.7. PROBLEMS 275

describes true motion tangential to the surface. You will need to introduce an addi-
tional transformation q1 = ψ(q) that transforms to the tangent plane. Redo Example
5.1.1 using the new formulation.

276 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Section 5.2

Problem 5.2-1 : Simulation of Flexible-Link Arm. Perform the MATLAB
simulation in Example 5.2.1.

Problem 5.2-2 : Rigid Joint Actuator/Arm Dynamics. Derive the dynamics
in equation (5.2.13).

Problem 5.2-3 : Simulation of DC Motor with Flexible Coupling Shaft.
Perform the MATLAB simulation in Example 5.2.2.

Problem 5.2-4 : Dynamics of Robot Arm with Electrical and Mechan-
ical Actuator Dynamics and Joint Flexibility. Derive the full dynamics of
a robot arm including electrical and mechanical actuator dynamics as well as joint
flexibility. Draw a block diagram like the one in Fig. 5.2.4.

Problem 5.2-5 : Dynamics of Robot Arm with Both Link and Joint
Flexibility. (a) Derive the dynamics of a robot arm having both link flexibility
and joint flexibility. Draw a block diagram like the one in Fig. 5.2.4. (b) Perform
a MATLAB simulation of the system. Use parameters taken from Examples 5.2.1
and 5.2.2.

Section 5.3

Problem 5.3-1 : Linear System Singular Perturbation Control. The lon-
gitudinal dynamics of an F-16 aircraft in straight and level flight at 502 ft/sec are
given by

ẋ = Ax+Bu =

⎡
⎢⎢⎣

−2.0244E−2 7.8761 −3.2169E + 1 −6.502E−1
−2.5373E−4 −1.0189 0 9.0484E−1

0 0 0 1
7.9472E−11 −2.498 0 −1.3861

⎤
⎥⎥⎦x

+

⎡
⎢⎢⎣

−1.E−2
−2.09E−3

0
−1.99E−1

⎤
⎥⎥⎦u.

The state is x = [vT α θ q]T , with vT the forward velocity, α the angle of attack, θ
the pitch angle, and q the pitch rate. The control input u(t) is the elevator deflection
δe. (a) Find the open-loop poles. The slow pole pair is known as the phugoid mode
and the fast pair as the short period mode. (b) Select slow variables vT , θ and fast
variables α, q and determine the slow/fast decomposition (5.3.16)-(5.3.18). What
is a good value for ε? Find the poles of the slow and fast subsystems. (c) Plot the
response of the open-loop system to initial conditions of x0 = [0 0.1 0 1]T (note–
the angular units are in radians). (d) Try MATLAB function lqr to perform two
linear quadratic regulator designs, one for the slow subsystem and one for the fast
subsystem. Use Q = I, R = 0.1. Simulate the closed-loop response for x0 using
composite control. Use two values of ε, one significantly smaller than the other.

Problem 5.3-2 : Derivation of Flexible-Link Slow Dynamics. Derive the
slow dynamics (5.3.27).

5.7. PROBLEMS 277

Problem 5.3-3 : Simulation of Flexible-Link NN Controller. Perform the
simulation in Example 5.3.1. Add friction. Compare the performance using ε values
of 0.26, 0.1, and 0.01.

Problem 5.3-4 : Singular Perturbations Design for Flexible-Joint Robot.
Perform a singular perturbations control design for the flexible-joint robot (5.2.15)-
(5.2.16). Define the fast variable as ξ = q − qM and assume that the coupling
stiffness matrix Ks is large.

Problem 5.3-5 : Singular Perturbations Design for Electrically-Driven
Manipulator. Perform a singular perturbations control design for the flexible-joint
robot (5.2.17)-(5.2.18). Define the fast variable as the armature constant i.

Section 5.4

Problem 5.4-1 : Backstepping Tracker Design for Flexible-Joint Type
Systems. Derive the backstepping controller in Subsection 5.4.1 if x1(t) is required
not to be zero, but to track a desired trajectory x1d(t).
Problem 5.4-2 : Backstepping Tracker Design for Flexible-Link Type
Systems. Now suppose that the output is selected as x2(t) in (5.4.1)-(5.4.2), and
that it is required to follow a desired trajectory x2d(t). Can you derive a backstepping
controller that stabilizes the internal dynamics x1(t) and ensures tracking by x2(t)?

Problem 5.4-3 : Relaxation of Linear-in-x̃2 Assumption. Instead of As-
sumption 5.4.2, derive a backstepping control u(t) using the milder Assumption
5.4.4. You will need some robust control derivation techniques using norms (See
the discussion on uniform ultimate boundedness Chapter 2 and that on robust con-
trol in Chapter 3).

Problem 5.4-4 : Backstepping Design Examples. Use backstepping to stabi-
lize the following systems.

a.
ẋ1 = cosx1 + (2 + sinx1)x2

ẋ2 = sinx1 + cos2 x2 + (2 + sinx1)u

b.
ẍ1 + ẋ1 = 5x2

ẋ2 = x1x2 + (1 + x21)u

c.

ẋ1 = x21 + x2

ẋ2 = x1x2 + x3

ẋ3 = x1x2 + (1 + x21)u

Problem 5.4-5 : Backstepping Tracker Design. Use backstepping to stabilize
the systems in the previous example with tracking of x1d = 2 sin(2π/T).

Problem 5.4-6 : Backstepping Design for Flexible-Joint Robots. Use
backstepping to stabilize the flexible-joint robot arm of equations (5.2.15)-(5.2.16).
You will effectively be doing two rigid-robot designs in steps one and two.

278 CHAPTER 5. NEURAL NET ROBOT CONTROL: EXTENSIONS

Chapter 6

Neural Network Control of
Nonlinear Systems

In Chapter 4 were given several techniques for the design of neural network (NN)
controllers for rigid-link robotic systems. In Chapter 5 were given NN controllers
for complex practical robotic systems including force control, flexible-link robots,
flexible-joint systems, and systems with high-frequency actuator dynamics. The NN
controllers relied on a filtered-error approximation-based approach, and the weight
tuning algorithms included a simple backpropagation-type method that works in an
ideal case, and modified tuning algorithms that work in general cases that include
disturbances. Two sorts of NN were considered— functional-link NN (FLNN) that
are linear in the tunable weights, and two-layer NN that are nonlinear in the first-
layer weights V . It was shown how to overcome the linear-in-the-parameters (LIP)
restriction of standard adaptive control approaches.

In this chapter are designed NN controllers for a large class of nonlinear systems
that include robot arms and other sorts of dynamical systems, namely, those in
the Brunovsky canonical form described in Chapter 2. Robot arms have special
properties including passivity, skew-symmetry, and bounded nonlinearities that make
them convenient to analyze. In this chapter we show how to design intelligent
controllers for the larger class of Brunovsky form systems.

The work in this chapter was done in Yeşildirek (1994) and Yeşildirek and Lewis
(1985). The approach is based on feedback linearization, discussed in Chapter 2.
Feedback linearization techniques require the system to be controllable, and the non-
linearities must satisfy some conditions to guarantee that a solution to the closed-
loop system exists. Feedback linearization is focused around geometric techniques.
However applicability of these approaches to feedback control of actual systems is
quite limited because they rely on exact knowledge of system nonlinearities. In or-
der to relax some of the exact model-matching restrictions, several adaptive schemes
have been introduced that tolerate some linear parametric uncertainties (Campion
and Bastin 1990, Nam and Arapostathis 1988, Taylor et al. 1989, Teel et al. 1991).
In this chapter linearity in the system parameters is not required as NN are used to
learn the unknown nonlinearities based on the universal approximation property.

Even if the closed-loop system is stable, it must be shown that all inputs, outputs,

279

280 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

and states remain bounded. For example, if the controller is given in the form

of u = N(x)
D(x) then D(x) must be non-zero for all time— we will call this type of

controller a well-defined controller. Unfortunately, for feedback linearization this
type of controller structure is usually needed. If an adaptive scheme is employed
to approximate the denominator part of the controller using D̂(x) an estimate for
D(x), then extra precautions are required to guarantee that D̂ �= 0 for all time.
This problem is far from trivial and because of it existing solutions are usually
given locally and/or assume additional prior knowledge about the system, such as
LIP. As expected, the same difficulties appear in NN control systems, which can be
categorized as nonlinear-in-the-parameter adaptive systems. We confront the full
problem of feedback linearization for a class of nonlinear systems in Section 6.3.
First, we solve a simpler design problem in Section 6.2 to provide insight.

In this chapter we assume all the system states are measurable. If only some
states are measurable, corresponding to the case of output feedback, then an addi-
tional dynamical NN is required to estimate the unmeasured states (Kim and Lewis
1996).

6.1 SYSTEM AND TRACKING ERROR DYNAMICS

Consider any state-feedback linearizable system having a state-space representation
in the Brunovsky canonical form (BCF)

ẋ1 = x2
ẋ2 = x3

...
ẋn = f(x) + g(x)u+ d
y = x1

(6.1.1)

with state x(t) = [x1 x2 . . . xn]
T , d(t) an unknown disturbance, and f, g : Rn → R

unknown smooth functions. The following assumption is made.

Assumption 6.1.1 (Bounds on Disturbance and Unknown Function g(x)) :
a. There is a known upper bound bd so that

‖d(t)‖ ≤ bd, for all t. (6.1.2)

b. The unknown function g(x) is bounded away from zero so that

|g(x)| ≥ g > 0, ∀x, (6.1.3)

with g a known lower bound.

The assumption (6.1.3) on the smooth function g implies that g is strictly either
positive or negative for all x(t). Thus, the sign of g(x) must be known. Note
that at this point there is no general approach to analyze this class of unknown
nonlinear systems. Adaptive control, for instance, needs an additional linear-in-
the-parameters assumption.

Although we treat only single-input-single-output (SISO) systems here, the ap-
proach in this chapter extends to the multivariable case. The multivariable BCF

6.1. SYSTEM AND TRACKING ERROR DYNAMICS 281

was discussed in Chapter 2. According to the discussion on state-space forms for
robot arms in Chapter 3, N -link rigid robots are in this class of systems, with the
exception that scalar xi is replaced by vector xi ∈ RN , and g(x) is an invertible
matrix for all x. Subsequent developments easily accommodate this extension.

In this chapter we show how to develop NN controllers for systems in Brunovsky
form. General nonlinear systems occur in the form

ẋ = F (x, u)
y = H(x, u).

(6.1.4)

To transform this to the Brunovsky form, the system can be feedback linearized if
it satisfies a reachability condition and an involutivity condition (Slotine and Li
1991, Isidori 1989). If these conditions are satisfied, then there exist a state-space
transformation that puts the system in Brunovsky form. It is not always easy to
find this transformation. In recent work by Zhang et al. (1998) it is shown how to
use the NN approximation properties to effectively estimate this transformation, so
that NN controllers can be designed for a large class of nonlinear systems that are
more general than Brunovsky form.

The reachability condition is usually satisfied for practical systems, but some
classes of systems fail to be involutive. If the involutivity condition fails to hold,
then it is still possible to perform partial feedback linearization, or input-output
feedback linearization. In this case, there may exist some zero dynamics that must
be dealt with (Chapter 2). A certain pathological condition may also hold with regard
to the relative degree of the system. In this ‘ill-defined relative degree’ situation,
even greater care is needed and ‘almost’ feedback linearization techniques are needed
(Hauser et al. 1992).

6.1.1 Tracking Controller and Error Dynamics

Feedback linearization will be used to perform output tracking, whose objective can
be described as the following: given a desired output, yd(t), find a control action,
u(t), so that y(t) = x1(t) follows the desired trajectory with an acceptable accuracy
(i.e. bounded-error tracking) while all the states and controls remain bounded. To
design a tracking controller we will make some mild assumptions which are widely
used. Define the desired trajectory vector as

xd(t) ≡
[
yd ẏd . . . y

(n−1)
d

]T
. (6.1.5)

Assumption 6.1.2 (Bounded Desired Trajectory) : The desired trajectory vector
xd(t) is continuous, available for measurement, and

‖xd(t)‖ ≤ Q (6.1.6)

with Q a known bound.

Define a state error vector as

e = x− xd (6.1.7)

and a filtered tracking error as
r = ΛT e (6.1.8)

282 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

where Λ = [λ1 λ2 · · ·λn−1 1]T is an appropriately chosen coefficient vector so that
e → 0 exponentially as r → 0, (i.e. sn−1 + λn−1s

n−2 + · · · + λ1 is asymptotically
stable). Note that the tracking error is defined differently than in previous chapters
where it was equal to e(t) = qd(t) − q(t). This makes for some sign changes in
subsequent work as compared to previous chapters.

The time derivative of the filtered error can be written as

ṙ = f(x) + g(x)u+ d+ Yd (6.1.9)

where

Yd ≡ −x(n)d +

n−1∑
i=1

λiei+1 = −x(n)d + [0 Λ̄T]e (6.1.10)

is a known signal. We have defined ei+1 = y(i) − y
(i)
d for i = 1, 2, · · · , n − 1 and

Λ̄ = [λ1 λ2 · · ·λn−1]
T .

We will use the dynamics in the form of (6.1.9) to construct a controller using
NN that keeps r(t) bounded. Then, since (6.1.8) is a stable system, e(t) is bounded,
thus, our tracking performance is achieved.

If we knew the exact form of the nonlinear functions then the feedback lineariza-
tion control action

uexact =
1

g(x)
[−f(x)−Kvr − Yd] (6.1.11)

would be appropriate for any positive Kv. Since we assume that f(x) and g(x) are
not exactly known we will define a control action

uc =
1

ĝ(Θ̂g,x)

[
−f̂(Θ̂f ,x) + v

]
(6.1.12)

where the estimates f̂(Θ̂f ,x) and ĝ(Θ̂g,x) will be constructed by two neural networks
with respective weights Θf ,Θg, and the auxiliary term is

v = −Kvr − Yd. (6.1.13)

It is well known, even in adaptive control of linear systems, that guaranteeing bound-
edness of ĝ away from zero becomes an important issue in this type of controller, as
discussed subsequently.

To find the closed-loop error dynamics, add zero to (6.1.9) to get

ṙ = f + gu+ d+ Yd + ĝuc − ĝuc + guc − guc

ṙ = f + d+ Yd − f̂ −Kvr − Yd + (g − ĝ)uc + g(u− uc)

ṙ = −Kvr + (f − f̂) + (g − ĝ)uc + d+ gud

ṙ = −Kvr + f̃ + g̃uc + d+ gud (6.1.14)

where ud ≡ u− uc and the functional approximation errors are

f̃ = f − f̂ g̃ = g − ĝ. (6.1.15)

6.2. CASE OF KNOWN FUNCTION G(X) 283

6.1.2 Well-Defined Control Problem

In general, boundedness of x, Θ̂f , and Θ̂g does not indicate the stability of the

closed-loop system, because control law (6.1.12) is not well-defined when ĝ(Θ̂g,x) =
0. Therefore some attention must be taken to guarantee the boundedness of the
controller as well. There are some techniques in the literature which assure local
stability or global stability in the presence of additional knowledge. First, if the
bounds on g are known then ĝ may be set to a constant and a robust-adaptive
controller bypasses the ĝ = 0 problem. This is not an accurate approximation and
may not give controllers that perform well.

If g is reconstructed by an adaptive scheme, most of which require linearity-in-
the-parameters, then a local solution to this problem can be given by assuming that
initial estimates are close to the actual values and they do not leave a feasible invari-
ant set in which ĝ �= 0 (Liu and Chen 1993), or they lie inside a region of attraction
of a stable equilibrium point which forms a feasible set as well (Kanellakopoulos et
al. 1991). Unfortunately, even with very good knowledge of the system it is not easy
to pick initial weights so that the NN approximates the nonlinearity g(·).

Another way to keep ĝ(Θ̂g,x) away from zero is to project Θ̂g inside an estimated
feasible region through the weight adaptation law (Polycarpou and Ioannou 1991).
Assume that there exists an open set Bθ such that ĝ(Θ̂g,x) �= 0 for all Θ̂g ∈ Bθ,
x ∈ Rn. In addition, it is known that the actual target weights Θg (that yield
good approximation of g(·)) belong to Bθ. Then a global solution may be found as
follows. Whenever Θ̂g is on the boundary of Bθ, if it is projected inside the set by
changing the adaptation rule then we obtain a well-defined control action. Since the
number of parameters of NN may be big, the difficulty of finding such an estimate
region becomes obvious. A candidate set for this reason is shown in Polycarpou

and Ioannou (1991) as Bθ =
{
Θ̂g : θ̂ij > 0, ∀i, j

}
with gaussian or sigmoid type

activation function. This results in a feasible region in which ĝ �= 0. A shortcoming
of this estimate region is that the actual Θg does not necessarily belong to such a
set, i.e. this is a suboptimal solution, in general.

In this chapter we will suggest a new controller structure which takes into ac-
count this problem without such tight assumptions and allows a simple method of
initializing the NN weights.

6.2 CASE OF KNOWN FUNCTION g(x)

In this section we assume that f(x) is unknown and g(x) is known and design a
tracking controller; things are considerably simplified when g(x) is known. The main
result of this chapter appears in Section 6.3 where we present a tracking controller
for the case of unknown g(x) and f(x). In this section one neural net is required for
approximation of the unknown function f(x). In Section 6.3 two NN are required–
for approximation of the unknown functions f(x) and g(x).

284 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

6.2.1 Proposed NN Controller

6.2.1.1 Neural Network for Approximating f

Let a neural network be used to approximate the unknown continuous function f(·).
Therefore, on a compact set of �n there exist ideal target weights so that

f(x) =WTσ(V Tx) + ε (6.2.1)

where the functional estimation error is bounded so that

‖ε‖ < εN (6.2.2)

for a known constant εN . Define the weight matrix

Θ =

[
V 0
0 W

]
. (6.2.3)

The ideal weights are unknown and possibly nonunique, but they satisfy the following
assumption.

Assumption 6.2.1 (Bounded NN Target Weights) : The ideal NN weights for the
continuous functions f(x) are bounded in any compact subset of �n according to

‖Θ‖ ≤ Θm (6.2.4)

with θm known.

Estimates for the nonlinear function f(x) are now given by the NN as

f̂(x) = ŴTσ(V̂ Tx) (6.2.5)

with ‘hat’ denoting the actual values of the NN weights as provided by the tuning
algorithms. Using a Taylor Series expansion exactly as in Chapter 4 one may write
the functional estimation error as

f̃(x) = W̃T (σ̂ − σ̂′V̂ Tx) + ŴT σ̂′Ṽ Tx+ w (6.2.6)

where the higher-order terms are bounded according to

‖w(t)‖ ≤ C0 + C1‖Θ̃‖F + C2‖r‖ · ‖Θ̃‖F (6.2.7)

for computable positive constants C0, C1, C2.

6.2.1.2 Controller Structure

Since g(x) is known, based on (6.1.12) we select the control as

u = uc =
1

g(x)
[−f̂(x)−Kvr − Yd + ur]

=
1

g(x)
[−ŴTσ(V̂ Tx)−Kvr − Yd + ur] (6.2.8)

for any Kv > 0. The auxiliary robustifying term ur(t) will be detailed later. This
controller is shown in Fig. 6.2.1.

Substituting this control into the filtered error dynamics (6.1.14) yields

ṙ = −Kvr + f̃ + ur + d

ṙ = −Kvr + W̃T (σ̂ − σ̂′V̂ Tx) + ŴT σ̂′Ṽ Tx+ d+ w + ur. (6.2.9)

6.2. CASE OF KNOWN FUNCTION G(X) 285

Figure 6.2.1: Neural network controller with known g(x).

6.2.2 NN Weight Tuning for Tracking Stability

The next theorem shows how to tune the weights in the NN so that tracking perfor-
mance and internal stability are guaranteed. The resulting controller is shown in
Table 6.2.1.

Theorem 6.2.1 (NN Tracking Controller for Unknown f and Known g) :
Assume that the system has a representation in the Brunovsky canonical form with

g(x) known. Let the control input be given by (6.2.8) with robustifying term

ur = −Kz(‖Θ̂‖+Θm) (6.2.16)

with Kz > C2 > 0. Let the neural net weight update laws be provided by

˙̂
W = M(σ̂ − σ̂′V̂ Tx)r − κ|r|MŴ
˙̂
V = NrxŴT σ̂′ − κ|r|NV̂

(6.2.17)

where M and N are positive definite matrices and design parameter κ > 0. Then the
filtered tracking error r(t) and neural net weight error Θ̃ are UUB with specific bounds
giving by (6.2.20). Moreover, the tracking error may be kept as small as desired by
increasing the PD gains Kv.

Proof:
Let the Lyapunov function candidate be

L =
1

2
r2 +

1

2
tr
{
W̃TM−1W̃

}
+

1

2
tr
{
Ṽ TN−1Ṽ

}
. (6.2.18)

Differentiate, substitute for ṙ from (6.2.9) and perform a simple manipulation, (i.e. using
the equality xTy = tr

{
xTy

}
= tr

{
yxT

}
, one can place weight matrices inside a trace

operator) to obtain

L̇ = −Kvr
2 + tr

{
W̃T (σ̂ − σ̂′V̂ Tx)r +M−1 ˙̃W

}
+tr

{
Ṽ T (xrŴT σ̂′ +N−1 ˙̃V)

}
+ r(d+ w + ur).

286 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Table 6.2.1: Neural Net Controller with Known g(x)

NN Controller:

u =
1

g(x)
[−ŴTσ(V̂ Tx)−Kvr − Yd + ur] (6.2.10)

Robustifying Term:
ur = −Kz(‖Θ̂‖+Θm) (6.2.11)

NN Weight Tuning:

˙̂
W = M(σ̂ − σ̂′V̂ Tx)r − κ|r|MŴ
˙̂
V = NrxŴT σ̂′ − κ|r|NV̂.

(6.2.12)

Signals:

e(t) = x(t)− xd(t) Tracking error (6.2.13)

r(t) = ΛTe(t) Filtered tracking error (6.2.14)

Yd = −x(n)d + [0 Λ̄T]e Desired trajectory feedforward signal (6.2.15)

Design Parameters:
Gains Kv,Kz positive
Λ a coefficient vector of a Hurwitz function.
Θm a bound on the unknown target weight norms.
Tuning matrices M , N symmetric and positive definite.
Scalar κ > 0.

With the update rules given in (6.2.17) one has

L̇ = −Kvr
2 + r(d+ w + ur) + κ|r|tr{Θ̃T Θ̂}.

From the inequality

tr
{
Θ̃T Θ̂

}
=< Θ̃T ,Θ > −tr

{
Θ̃T Θ̃

}
≤ ‖Θ̃‖(Θm − ‖Θ̃‖),

it follows that

L̇ ≤ − Kvr
2 + r(d+ w + ur) + κ|r|‖Θ̃‖(Θm − ‖Θ̃‖).

Substitute the upper bound of w according to (6.2.7), bound bd for disturbances, and ur

from (6.2.16) to yield

L̇ ≤ −Kvr
2 −Kz(‖Θ̂‖+Θm)r2 + κ|r|‖Θ̃‖(Θm − ‖Θ̃‖)

+
[
C2‖Θ̃‖|r|+ C1‖Θ̃‖+ (bd + C0)

]
|r|.

Picking Kz > C2 and completing the squares yields

L̇ ≤ −|r|
{
Kv|r|+ κ(‖Θ̃‖ − C3/2)

2 −D1

}
(6.2.19)

where
D1 = bd + C0 +

κ

4
C2

3 ,

6.2. CASE OF KNOWN FUNCTION G(X) 287

and

C3 = Θm + C1/κ.

Observe that the terms in braces in (6.2.19) defines a compact set around the origin of
the error space (|r|, ‖Θ̃‖) outside of which L̇ ≤ 0. We can, therefore, deduce from (6.2.19)
that, if either |r| > δr or ‖Θ̃‖ > δf then L̇ ≤ 0 where

δr =
D1

Kv
, δf =

C3

2
+

√
D1

κ
. (6.2.20)

According to a standard Lyapunov theorem extension (Lewis et al. 1993), this demon-
strates the UUB of both |r| and ‖Θ̃‖. This concludes the proof. �

The tuning algorithm proposed is the augmented backpropagation through time
algorithm introduced in Chapter 4. See the comments following the theorems in that
chapter. The next remarks are particularly relevant.

Remarks:

1. For practical purposes, (6.2.20) can be considered as bounds on |r| and ‖Θ̃‖
in the sense that excursions above these bounds will be small.

2. The NN reconstruction construction error bound εN (which depends on the
number of hidden-layer neurons), the disturbance bound bd, and the bound Q
on the desired trajectory are all involved in the constants Ci which contribute
to definition of δr, δf . Note from the definitions of δr that the bound on the
tracking error may be kept arbitrarily small by selecting the control gain Kv

large enough.

3. Note the role of the design parameter κ; the larger κ, the smaller the bound
on parameter errors and the larger the bound on the tracking error.

4. The adaptation laws are derived from the Lyapunov approach. It turns out that
the first terms in the adaptation laws have the same structure as backpropaga-
tion through time terms, but show that the quantity to be backpropagated is the
filtered tracking error r(t). Moreover, the required Jacobian σ̂′ is easily com-
puted in terms of measurable signals in the closed-loop system. In the absence
of persistence of excitation (see Chapter 4) and with noise and/or unmodeled
dynamics we suggest an extra e-modification term (Narendra and Annaswamy
1987) to allow proof of UUB (i.e. the last terms). Moreover, we introduce a
novel feedforward propagating term in the tuning algorithm for Ŵ to cancel
out some of the higher-order terms coming from the Taylor series expansion.

5. As in Chapter 4, the initial NN weights may be set to zero, for then according
to Fig. 6.2.1 the controller consists of a PD tracking loop which holds the
system bounded stable until the NN begins to learn, at which point the tracking
performance will improve.

6.2.3 Illustrative Simulation Example

Example 6.2.1 (Van der Pol’s System) :

288 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Figure 6.2.2: Open-loop state trajectory of the Van der Pol’s system.

Figure 6.2.3: Actual and desired state x1.

Let us illustrate the NN controller design on a Van der Pol’s system

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1 + u

(6.2.21)

which is in the Brunovsky canonical form. Note that this system has an unstable equilib-
rium point at the origin x = (0, 0) and a stable limit cycle. A typical open-loop trajectory
for this system is illustrated in Fig. 6.2.2.

The neural net which is used for estimation of f(x1, x2) = (1−x2
1)x2−x1 consists of 10

neurons. Design parameters are set to Kv = 20, Λ = 5, Kz = 10, Θm = 1, M = N = 20,
and κ = 1. Initial conditions are Θ̂(0) = 0 and x1 = x2 = 1. The desired trajectory is
defined as yd(t) = sin t. Actual and desired outputs are show in Figs. 6.2.3 and 6.2.4. The
closed-loop tracking performance is very good even though f(x) is unknown. �

6.3 CASE OF UNKNOWN FUNCTION g(x)

In this section we assume that both f(x) and g(x) are unknown and provide the main
result of this chapter. In this section two NN are required, one for approximation

6.3. CASE OF UNKNOWN FUNCTION G(X) 289

Figure 6.2.4: Actual and desired state x2.

of f(x) and one for approximation of g(x).

6.3.1 Proposed NN Controller

6.3.1.1 Neural Networks For Approximating f and g

Let two neural networks be used to approximate the unknown continuous functions.
Therefore, on a compact set of �n there exist ideal target weights so that

f(x) = WT
f σ(V

T
f x) + εf

g(x) = WT
g σ(V

T
g x) + εg, (6.3.1)

where the functional estimation errors are bounded so that

‖εf‖ < εfN , ‖εg‖ < εgN (6.3.2)

for known constants εfN , εgN . Define the weight matrices

Θf =

[
Vf 0
0 Wf

]
, Θg =

[
Vg 0
0 Wg

]
. (6.3.3)

The ideal weights are unknown and possibly nonunique, but they satisfy the following
assumption.

Assumption 6.3.1 (Bounded NN Target Weights) : The ideal NN weights for the
continuous functions f(x) and g(x) are bounded in any compact subset of �n according
to

‖Θf‖ ≤ Θfm (6.3.4)

and

‖Θg‖ ≤ Θgm (6.3.5)

with θfm, θgm known.

290 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Estimates for the nonlinear functions are now given by the two NN as

f̂(x) = ŴT
f σ(V̂

T
f x) (6.3.6)

ĝ(x) = ŴT
g σ(V̂

T
g x), (6.3.7)

with ‘hat’ denoting the actual values of the NN weights as provided by the tuning
algorithms. Using Taylor Series expansions exactly as in Chapter 4 one may write
the functional estimation errors as

f̃(x) = W̃T
f (σ̂f − σ̂′

f V̂
T
f x) + ŴT

f σ̂
′
f Ṽ

T
f x+ wf

g̃(x) = W̃T
g (σ̂g − σ̂′

gV̂
T
g x) + ŴT

g σ̂
′
gṼ

T
g x+ wg (6.3.8)

where the higher-order terms are bounded according to

‖wf (t)‖ ≤ C0 + C1‖Θ̃f‖F + C2‖r‖ · ‖Θ̃f‖F
‖wg(t)‖ ≤ C0 + C1‖Θ̃g‖F + C2‖r‖ · ‖Θ̃g‖F (6.3.9)

for computable positive constants C0, C1, C2.
The next bounds will be needed. The first is easy to prove and the second relies on

the fact that the standard activation functions are bounded with bounded derivatives.

Lemma 6.3.1 (Technical Bounding Lemma) :
a. ‖x‖ ≤ d0 + d1‖r‖ for computable constants d0, d1.

b. In any compact set, there exist constants C3, C4 so that

‖f(x)‖ = ‖WT
f σ(V T

f x) + εf‖ ≤ C3 + C4‖r‖
‖g(x)‖ = ‖WT

g σ(V T
g x) + εg‖ ≤ C3 + C4‖r‖.

6.3.1.2 Controller Structure

The design of adaptive tracking controllers for systems with unknown g(x) is ex-
tremely difficult due to the fact that the error dynamics (6.1.14) has a term g̃uc
where estimation uncertainty is multiplied by the control input. This arises from
the well-definedness problem discussed in Section 6.1.2. We now introduce a con-
troller which is well-defined at any values of x, Θ̂f , and Θ̂g and does not require
restrictions on the system other than the assumptions already made. Particularly,
no linearity in an unknown parameter set is needed.

To ensure the stability of the closed-loop system with a well-defined control input
we propose the following action

u =

{
uc +

ur−uc

2 εγ(|uc|−s) If I = 1
ur − ur−uc

2 ε−γ(|uc|−s) If I = 0
(6.3.10)

where s > 0 is a design parameter, γ < ln 2/s, and uc is as defined in (6.1.12) with
the gain in (6.1.13) time-varying and given by

Kv = KN +Kz

[
(‖Θ̂f‖+Θfm) + s(‖Θ̂g‖+Θgm)

]
(6.3.11)

6.3. CASE OF UNKNOWN FUNCTION G(X) 291

Figure 6.3.1: NN controller with unknown f(x) and g(x).

with the constant portion KN > 0 and the multiplier Kz > max{C2, C4/sγεΘgm}
design parameters. The robustifying control term is

ur = −μ |ĝ|
g
|uc|sgn(r), μ ≥ 2, (6.3.12)

and the indicator function I is defined as

I =

{
1 If ĝ ≥ g and |uc| ≤ s
0 o.w.

and sgn(·) is the signum function. Note that I = 0 when the estimate ĝ is too
small or uc(t) is too large, either one corresponding to an undesirable situation. It
is important to note that u is well-defined for all ĝ, even when I = 0. Therefore,
ĝ → 0 does not generate any unbounded control signal.

The intuition behind this controller is as follows. When ĝ ≥ g and |uc| < s then
the total control action is set to uc, otherwise control is switched to the auxiliary
input ur. This controller structure is shown in Fig. 6.3.1. Thus the resulting control
action is well-defined everywhere and the uniform ultimate boundedness (UUB) of
the closed-loop system can be shown with suitable NN weight tuning algorithms, as
in the next subsection. Our proposed controller in (6.3.10) is formed from this idea
with extra terms added for a smooth transition between uc and ur so that existence
of solutions is guaranteed.

6.3.2 NN Weight Tuning for Tracking Stability

The next theorem shows how to tune the weights in the two NNs so that tracking
performance and internal stability are guaranteed. The resulting controller is shown
in Table 6.3.1. It is important for the existence of solutions to the closed-loop system
to note that the trajectory generated for Θ̂g(t) is continuous.

292 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Table 6.3.1: Neural Net Controller with Unknown f(x) and g(x)

NN Controller:

u =

{
uc +

ur−uc

2 εγ(|uc|−s) If I = 1
ur − ur−uc

2 ε−γ(|uc|−s) If I = 0
(6.3.13)

uc =
1

ŴT
g σ(V̂

T
g x)

[
−ŴT

f σ(V̂
T
f x) + v

]
(6.3.14)

Auxiliary Control Input:

ur = −μ |ĝ|
g
|uc|sgn(r) (6.3.15)

PD Term
v = −Kvr − Yd (6.3.16)

Time-Varying Gain:

Kv(t) = KN +Kz

[
(‖Θ̂f (t)‖+Θfm) + s(‖Θ̂g(t)‖+Θgm)

]
(6.3.17)

Indicator Function:

I =

{
1 If ĝ ≥ g and |uc| ≤ s
0 o.w.

(6.3.18)

NN Weight Tunings:

˙̂
W f = Mf (σ̂f − σ̂′

f V̂
T
f x)r − κ|r|MfŴf

˙̂
V f = NfxrŴ

T
f σ̂

′
f − κ|r|Nf V̂f

(6.3.19)

˙̂
W g =

{
Mg[(σ̂g − σ̂′

gV̂
T
g x)ucr − κ|r||uc|Ŵg] if I = 1

0 o.w.

˙̂
V g =

{
NgucrxŴ

T
g σ̂

′
g − κ|r||uc|NgV̂g if I = 1
0 o.w.

(6.3.20)

Signals:

e(t) = x(t)− xd(t) Tracking error (6.3.21)

r(t) = ΛTe(t) Filtered tracking error (6.3.22)

Yd = −x(n)d + [0 Λ̄T]e Desired trajectory feedforward signal (6.3.23)

Design Parameters:
Constant gains Λ > 0, KN > 0,Kz > max{C2, C4/sγεΘgm}
Tuning matrices Mi, Ni symmetric and positive definite.
Scalar κ > 0, s > 0, γ < ln 2/s, μ ≥ 2.

6.3. CASE OF UNKNOWN FUNCTION G(X) 293

Theorem 6.3.1 (NN Tracking Controller for Unknown f and g) :
Assume that the feedback linearizable system has a representation in the Brunovsky

canonical form and let all assumptions hold. Let the control input be given by (6.3.10).
Let the weight update laws for the f(x) NN be

˙̂
W f = Mf (σ̂f − σ̂′

f V̂
T
f x)r − κ|r|MfŴf

˙̂
V f = NfrxŴ

T
f σ̂′

f − κ|r|Nf V̂f

(6.3.24)

and the weight updates for the g(x) NN be provided by

˙̂
W g =

{
Mg[(σ̂g − σ̂′

gV̂
T
g x)ucr − κ|r||uc|Ŵg] if I = 1

0 o.w.

˙̂
V g =

{
NgucrxŴ

T
g σ̂′

g − κ|r||uc|NgV̂g if I = 1
0 o.w.

(6.3.25)

where Mi and Ni i = f, g are positive definite matrices. Then the filtered tracking error
r(t), neural net weight errors Θ̃f (t), Θ̃g(t) and control input u(t) are UUB with constant
specific bounds given in (6.3.32). Moreover the filtered tracking error r(t) can be made
arbitrarily small by increasing the gain KN .

Proof:
Let the Lyapunov function candidate be

L =
1

2
r2 +

1

2
tr

{∑
i=f,g

W̃T
i M−1

i W̃i + Ṽ T
i N−1

i Ṽi

}
. (6.3.26)

We will study the derivative of (6.3.26) in two mutually exclusive and exhaustive regions.

Region 1: |ĝ| ≥ g and |uc| ≤ s.

Substitution of the functional approximation errors (6.3.8) into the error system dy-
namics (6.1.14) yields

ṙ = −Kvr + W̃T
f (σ̂f − σ̂′

f V̂
T
f x) + ŴT

f σ̂′
f Ṽ

T
f x

+
[
W̃T

g (σ̂g − σ̂′
gV̂

T
g x) + ŴT

g σ̂′
gṼ

T
g x
]
uc

+d+ wf + wguc + gud.

The time derivative of (6.3.26) is

L̇ = rṙ + tr

{∑
i=f,g

W̃T
i M−1

i
˙̃Wi + Ṽ T

i N−1
i

˙̃Vi

}
. (6.3.27)

Substitute now ṙ into (6.3.27) and perform a simple manipulation, (i.e. using xTy =
tr{xTy} = tr{yxT }, one can place weight matrices inside a trace operator). Then

L̇ = −Kvr
2 + r(d+ wf) + rgud ++rwguc +

tr{W̃T
f (σ̂f − σ̂′

f V̂
T
f x)r +M−1

f
˙̃W f)}+ tr{Ṽ T

f (xrŴT
f σ̂′

f +N−1
f

˙̃V f)}+
tr{W̃T

g (σ̂g − σ̂′
gV̂

T
g x)ucr +M−1

g
˙̃W g)}+ tr{Ṽ T

g (xucrŴ
T
g σ̂′

g +N−1
g

˙̃V g)}.
With the update rules give in (6.3.24) and (6.3.25)

L̇ = − Kvr
2 + r(d+ wf) + rwguc + rgud +

κ|r|tr
{
Θ̃T

f Θ̂f

}
+ κ|r||uc|tr

{
Θ̃T

g Θ̂g

}

294 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

and from the inequality

tr{Θ̃T Θ̂} = < Θ̃T ,Θ > −tr{Θ̃T Θ̃} ≤ ‖Θ̃‖(Θm − ‖Θ̃‖),

it follows that

L̇ ≤ − Kvr
2 + r(d+ wf) + rwguc + rgud +

κ|r|‖Θ̃f‖(Θfm − ‖Θ̃f‖) + κ|r|‖Θ̃g‖(Θgm − ‖Θ̃g‖)|uc|.

Substitute the upper bound of wf and wg according to (6.3.9) and Kv from (6.3.11) to
yield

L̇ ≤ −
{
KN +Kz

[
‖Θ̂f‖+Θfm + s(‖Θ̂g‖ +Θgm)

]}
r2 + κ|r|‖Θ̃f‖(Θfm − ‖Θ̃f‖) +

κ|r||uc|‖Θ̃g‖(Θgm − ‖Θ̃g‖) +
(
C2‖Θ̃f‖|r|2 + C1‖Θ̃f‖|r|+ (bd + C0)|r|

)
+
(
C2‖Θ̃g‖|r|2 + C1‖Θ̃g‖|r|+ C0|r|

)
|uc| − rg

[
μ
|ĝ|
g
|uc|sgn(r) + uc

]
ε−γ(s−|uc|)

2
.

Picking Kz > C2,

L̇ ≤ − |r|
[
KN |r|+ κ‖Θ̃f‖(‖Θ̃f‖ −Θfm)− bd − C0 − C1‖Θ̃f‖

]
−|r| · |uc|

[
κ‖Θ̃g‖(‖Θ̃g‖ −Θgm)− C0 − C1‖Θ̃g‖

]
−

rg
[
μ |ĝ|

g
|uc|sgn(r) + uc

]
ε−γ(s−|uc|)

2
.

Since |ĝ| ≥ g and μ ≥ 2 the last term in this inequality is always negative. Now we can
write the final form by completing the squares

L̇ ≤ −|r|
{
KN |r|+ κ(‖Θ̃f‖ − Cf)

2 + κ|uc|(‖Θ̃g‖ − Cg)
2 −D1

}
(6.3.28)

where

D1 ≡ bd + (1 + s)C0 + κ(C2
f + sC2

g),

and

Cf ≡ Θfm

2
+

C1

2κ
, Cg ≡ Θgm

2
+

C1

2κ
.

Observe that the terms in braces in (6.3.28) define a conic ellipsoid, a compact set around
the origin of (r, ‖Θ̃f‖, ‖Θ̃g‖). We can, therefore, deduce from (6.3.28) that, if

|r| > δr1

then L̇ ≤ 0 for all ‖Θ̃f‖ and ‖Θ̃g‖ where

δr1 =
D1

KN
, (6.3.29)

or, if

‖Θ̃f‖ > δf1

then L̇ ≤ 0 for all |r| and ‖Θ̃f‖ where

δf1 =
Cf

2
+

√
D1

κ

(since the quadratic terms dominate the linear terms after the certain points δr1 and δf1).

6.3. CASE OF UNKNOWN FUNCTION G(X) 295

For the weights of ĝ(x) we can only claim an upper bound when |uc| ≥ εu > 0 for any
positive εu as

δg1 =
Cg

2
+

√
C2

g

4
+

C2
f

4εu
+ (1 + 1/εu)C0 + (�Θgm + ε)/2

κ

δg1 =
Cg

2
+

√
D1

εuκ
.

However it is not straightforward to show a bound on ĝ, through (6.3.28) when |uc| < εu.
This difficulty appears due to the multiplication by |uc| in L̇. In order to obtain a bound
on ‖Θ̃g‖ when |uc| < εu we will investigate its time derivative. Fortunately, the update
laws for Θ̂g can be rewritten in the form

˙̂
Θg = B1(r)ucΘ̂g +B2(r)uc

where Bi matrices are functions of r only. Integration of this equation in the interval of
[t0, t0 + T] yields

Θ̂g =

∫ t0+T

t0

B1(r, τ)uc(τ)Θ̂gdτ +

∫ t0+T

t0

B2(r, τ)uc(τ)dτ + Θ̂g(t0).

Thus

‖Θ̂g‖ ≤
∫ t0+T

t0

‖B1(r, τ)‖|uc(τ)|‖Θ̂g‖dτ +

∫ t0+T

t0

‖B2(r, τ)‖|uc(τ)|dτ + ‖Θ̂g(t0)‖

is satisfied. We have already shown that r ∈ L∞, which implies that for a finite T , the
bounds ∫ t0+T

t0

‖B1(r, τ)‖dτ ≤ β1(T)

and ∫ t0+T

t0

‖B2(r, τ)‖dτ ≤ β2(T)

hold. This allows us to write

‖Θ̂g‖ ≤
∫ t0+T

t0

εuβ1‖Θ̂g‖dτ + εuβ2T + ‖Θ̂g(t0)‖.

From the Bellman-Gronwall Lemma (Chapter 2) we can now infer a constant upper bound
for ‖Θ̂g‖ as

‖Θ̂g‖ ≤ (εuβ2T + ‖Θ̂g(t0)‖)εεuβ2T .

Since
‖Θ̃g‖ = ‖Θ̂g −Θg‖ ≤ ‖Θ̂g‖+Θgm.

This implies another upper bound on ‖Θ̃g‖ as

‖Θ̃g‖ ≤ δg2

where
δg2 = (εuβ2T + ‖Θ̂g(t0)‖)εεuβ2T +Θgm.

296 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Figure 6.3.2: Illustration of the upper bound on ‖Θ̃g‖.

We have shown two upper bounds on ‖Θ̃g‖ then one can establish a finite upper bound
on ‖Θ̃g‖ for all |uc| < s as

δg = min{δg1 , δg2}.
The symbolic variation of these bounds is illustrated in Fig. 6.3.2. This shows the bound-
edness of r, Θ̃f , Θ̃g, ur, and since |uc| ≤ s, this implies that u ∈ L∞.

Region 2: ĝ < g or |uc| > s.

With the update rules corresponding to this region L̇ becomes

L̇ ≤ −Kvr
2 + r(d+ wf) + rg̃uc + rgud + κ|r|‖Θ̃f‖(Θf − ‖Θ̃f‖). (6.3.30)

Observe that uc may not be defined in this region though, because of notational simplicity
we will use it in the ĝuc or ucε

−γ(|uc|−s) forms which are bounded when ĝ = 0. Now define

L̇g ≡ rg̃uc + rgud = −rĝuc + rgu.

Substitution of the controller corresponding to this region yields

L̇g = −rĝuc − rgur(1− 1

2
ε−γ(|uc|−s)) +

1

2
rgucε

−γ(|uc|−s).

If |uc| > s,

L̇g ≤ |r||ĝ||uc|(1− μ

2

g

g
) +

1

2
|r|g|uc|ε−γ(|uc|−s)

Assume at time t0 that g is in a compact set, invoke Assumption 6.3.1 to yield

|g| ≤ C3 + C4|r|.
Then using εγs ≤ 2

L̇g ≤ |r|(C3 + C4|r|) 1

γε
.

6.3. CASE OF UNKNOWN FUNCTION G(X) 297

The other case occurs when |uc| < s and |ĝ| < g. This affects L̇g as follows,

L̇g ≤ |r||ĝ||uc|+ 1

2
rgucε

−γ(|uc|−s)

≤ |r|
[
gs+

(C3 + C4|r|)
γε

]
.

Therefore

L̇g ≤ |r|
γε

[
γεgs+ C3 + C4|r|

]
in this region. Now pick Kz > C4

γεsΘgm
and substitute L̇g into L to obtain

L̇ ≤ −|r|
{
KN |r|+ κ(‖Θ̃f‖ − Cf)

2 −D2

}
where the constant D2 is

D2 ≡ bd + C0 + κC2
f +

C3

γε
+ gs.

Bounds for |r| and ‖Θf‖ are

δr2 =
D2

KN
(6.3.31)

and

δf2 =
Cf

2
+

√
D2

κ
.

Whenever |r| > δr2 or ‖Θ̃f‖ > δf2 L̇ ≤ 0. This implies that x and Θ̂f stay in a compact
set so does g(x). This shows the boundedness of r, Θ̃f together with bounded Θ̃g implies
that ur ∈ L∞, hence u ∈ L∞.

Reprise: Combining the results from region one and two, one can readily set

δr = max {δr1 , δr2} , δf = max {δf1 , δf2}
δg = min {δg1 , δg2} . (6.3.32)

Thus for both regions, if |r| > δr or ‖Θ̃f‖ > δf or ‖Θ̃g‖ > δg, then L̇ ≤ 0 and u ∈ L∞.
Let us denote (|r|, ‖Θ̃f‖, ‖Θ̃g‖) by new coordinate variables (ξ1, ξ2, ξ3). Define the region

D : {ξ | ξ1 < δr, ξ2 < δf , ξ3 < δg} ,
then there exists an open set

Ω :
{
ξ | ξ1 < δ̄r, ξ2 < δ̄f , ξ3 < δ̄g

}
,

where δ̄i > δi implies that D ⊂ Ω. These sets are shown in Fig. 6.3.3. We have proved
that whenever ξi > δi then L(ξ) will not increase. This implies that ξ will decrease, in
other words it will stay in the region Ω which is an invariant set. Therefore all the signals
in the closed-loop system remain bounded. This concludes the proof. �

See the remarks following Theorem 6.2.1. The tuning algorithms presented in
the theorem are augmented versions of backpropagation through time. Simplified
Hebbian tuning algorithms are given in [Yeşildirek 1994] (c.f. Chapter 4). Also
note the following.

Remarks:

298 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Figure 6.3.3: Illustration of the invariant set.

1. For practical purposes, (6.3.32) can be considered as bounds on |r|, ‖Θ̃f‖, and
‖Θ̃g‖ in the sense that excursions above these bounds will be small.

2. Note from the definitions of δr1 , δr2 that the bound on the tracking error may
be kept arbitrarily small by selecting the control gain KN large enough.

3. Note that the tuning of the NN that estimates g(x) is interrupted if ĝ becomes
too small. If the switching parameter s is chosen too small, it will limit the
control input and result in a large tracking error which gives undesirable closed-
loop performance. If it is too large, the control actuator may saturate as u(t)
increases in magnitude.

4. Stability of the closed-loop system is shown without making any assumptions
on the initial NN weight values. The NNs can easily be initialized as Θ̂f (0) = 0

and Θ̂g(0) > ĝ−1(g). It is crucial to note that the NN need not to be trained
off-line before use in closed-loop. No assumptions of the initial weights being
in an invariant set, or a region of attraction, or a feasible region are needed.

6.3.3 Illustrative Simulation Examples

Example 6.3.1 (Van der Pol System) :
As an example consider a Van der Pol’s system

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1 + (1 + x2

1 + x2
2)u

(6.3.33)

which is in the controllability canonical form and has g(x) ≥ 1 ≡ g ∀x. The neural nets

which are used for f̂ and ĝ consist of 10 neurons. The function sgn(r) is approximated
by a hyperbolic tangent function in simulations. Design parameters are set to s = 10,
γ = 0.05, KN = 20, λ1 = 5, Mi = Ni = 20, μ = 4 and the rest are set equal to 1. Initial

6.3. CASE OF UNKNOWN FUNCTION G(X) 299

Figure 6.3.4: Actual and desired states.

conditions are Θ̂f (0) = 0 and Θ̂g(0) = 0.4 so that ĝ(0) > 1 and x1(0) = x2(0) = 1. The
desired trajectory is defined as yd(t) = sin t.

The actual and desired outputs obtained by simulation are show in Fig. 6.3.4 and the
control action is shown in Fig. 6.3.5. Note that almost perfect tracking is obtained in less
than one second. �

Example 6.3.2 (Ill-Defined Relative Degree System) :

Let us change the above Van der Pol’s systems so that it is ill-defined when x1(t) = 0:

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1 + x2

1u.
(6.3.34)

We took the same NN controller parameters as in Example 1. Although g(x) is not lower
bounded, we treated g as a design parameter and set g = 0.1. The objective is to show that
our NN controller can give good performance even with systems that are not well-defined
in relative degree.

Simulation results showing the performance of the NN controller are given in Figs. 6.3.6
and 6.3.7. Observe that around the singularity points (t = nπ for n = · · · ,−1, 0, 1, · · ·
after tracking is satisfied) the controller needed to linearize the system reaches its peak
which is set by the design parameters g and s. That is, when u >> s, u → ur which

is proportional to g−1. There is a trade-off between the amount of control signal which
can be applied and the bound on the tracking error in the neighborhood of those singular
points. By choosing a lower bound on g, the amount of the control and tracking error are
decided.

Further discussion on control of systems with ill-defined relative degree is given in
(Commuri and Lewis 1994). �

Example 6.3.3 (Chemical Stirred-Tank Reactor) :

Chemical systems, in general, can be very difficult to control because of their strong
nonlinearities which are difficult to model, even though they may have few variables. They
offer a good application for NN-based control.

300 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Figure 6.3.5: Control input.

Figure 6.3.6: Actual and desired states.

6.3. CASE OF UNKNOWN FUNCTION G(X) 301

Figure 6.3.7: Control input.

Figure 6.3.8: Chemical stirred-tank reactor (CSTR) process.

302 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

a. CSTR Dynamical Model. There are many different models for bioreactors that
contain liquid in a tank and cells that consume substrates and yield desired products
and undesired byproducts. As an example, we take the continuously stirred tank reactor
(CSTR), which is described as a benchmark problem in adaptive control (Ungar 1990)
when the flow is considered as the control. A more complete and realistic model using a
cooler around the tank is shown in Fig. 6.3.8. Let the reactor vessel volume be V . We
assume the concentration CA inside the tank is uniform with temperature T . The inlet
reactant is supplied with concentration CAf , feed rate F , and temperature Tf . The control
input is the coolant temperature Tc.

A dynamic model for the CSTR temperature control is then given by Ray (1975)

V dCA
dt

= F (CAf − CA)− V koe
−E
RT CA

V ρCp
dT

dt
′ = ρCpF (Tf − T)−ΔHV koe

−E
RT CA − hA(T − Tc)

(6.3.35)

where the system parameters ρCp, h, A, E, ko, and ΔH are assumed to be constant. Let
t = F

V
t′ and define a transformation as[

x1

x2

]
=

[
CAf−CA

CAf
T−Tfd

Tfd

]
(6.3.36)

with Tfd the nominal inlet temperature. Note that the normalized x1(t) is the difference
between inlet and reactor concentrations and it is always less than or equal to 1 (since
CAf ≥ CA ≥ 0).

Suppose the objective is to control the temperature T of the reactor. Then, (6.3.35)
can be rewritten in terms of dimensionless variables as

ẋ1 = −x1 +Da(1− x1)e
γx2

γ+x2

ẋ2 = −x2 +BDa(1− x1)e
γx2

γ+x2 − β(x2 − x2c) + d+ βu
y = x2 − x2d

(6.3.37)

with constants
Da = koV

F
e−γ γ = E

RTfd

B =
−ΔHCAfγ

ρCpTfd
β = hA

ρCpF
d = γ

Tf−Tfd

Tfd

x2c = γ
Tcd−Tfd

Tfd
x2d =

γTd−Tfd

Tfd

where Tcd and Td are the nominal design values of coolant and reactor temperatures
respectively. Although it is assumed that Da, γ, B, and β are constants, there are some
uncertainties in them. The Damkohler constant Da is, in fact, a function of the reactor
catalyst, and the dimensionless heat transfer constant β is a slowly-varying parameter.
Note that this is a feedback linearizable model, though the less complete and realistic flow
control CSTR model in Ungar (1990) is not.

The behavior of the bioreactor is usually studied for three typical cases associated with
three sets of plant parameters:

CASE B β Da

Case 1 7 0.5 0.110

Case 2 8 0.3 0.072

Case 3 11 1.5 0.135

with γ = 20. The corresponding regions have been studied previously (Liu and Lewis
1994, Ray 1975). The desired inlet reactant temperature, Tfd is here selected as 300o K,
and the control objective is to keep the reactor temperature T at this level. Then, the
tank concentration will converge to some constant steady-state value.

6.4. CONCLUSIONS 303

Figure 6.3.9: CSTR open-loop response to a disturbance.

b. Open-Loop Response. The open-loop response of the bioreactor is shown in
Fig. 6.3.9. In order to show the sensitivity to variations in the inlet reactant tempera-
ture, at time t = 40 unit, we added a disturbance effect of a 5oK increase in the inlet
reactant temperature. Observe the response of the reactor for different cases. Clearly, the
temperature T fluctuates widely, an undesirable state of affairs. The tank temperature
T increases by about 30oK in Case one and twice as much in Case two, and exhibits
oscillatory behavior in Case three.

c. NN Controller Design and Simulation. The NN control structure in Table
6.3.1 was now used to regulate the CSTR temperature T . We use six neurons in the
hidden layers for both f̂ and ĝ. The design parameteres were selected as Kv = 20, Λ = 5,
Kz = 0.01, Θfm,gm = 0, Mi = Ni = 50, κ = 10, s = 100, g = 0.2, and μ = 4. The
controller is simulated for Case 1 and its response is shown in Figs. 6.3.10 and 6.3.11.
The results show that fast on-line convergence to the desired temperature setpoint and
robustness against disturbances can be achieved by the NN-based controller. �

6.4 CONCLUSIONS

In this chapter we showed how to design NN controllers for systems in Brunovsky
form. Two cases were considered— the case of known input influence function and
the case of unknown input influence function. In the latter case, great care had to
be taken to ensure that the control remained bounded. Several examples were con-
sidered, including a continuously stirred tank chemical reactor, which was presented

304 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Figure 6.3.10: Response with NN controller. Reactant temperature, T .

Figure 6.3.11: Response with NN controller. The state x1(t).

6.5. REFERENCES 305

as a benchmark problem for NN control in Ungar (1990) due to its complexity.

6.5 REFERENCES

Campion, G., and G. Bastin, “Indirect adaptive state feedback control of linearly
parameterized nonlinear systems,” Int. J. Control Signal Proc., vol 4., pp. 345-358,
1990.

Commuri, S., and F.L. Lewis, “Robust practical stabilization of nonlinear systems
with ill-defined relative degree,” Proc. IEEE Mediterranean Symp. New Directions
in Control and Automation, pp. 299-306, Crete, June 1994.

Hauser, J., S. Sastry, and P. Kokotovic, “Nonlinear control via approximate input-
output linearization,” IEEE Trans. Automat. Control, vol. 37, no. 3, pp. 392-398,
1992.

Isidori, A., Nonlinear Control Systems, second edition, Springer-Verlag, Berlin,
1989

Kanellakopoulos, I., P.V. Kokotovic, and A.S. Morse, “Systematic design of adap-
tive controllers for feedback linearizable systems,” IEEE Trans. Automat. Control,
vol. 36, no. 11, pp. 1241-1253, Nov. 1991.

Kim, Y.H., and F.L. Lewis, “Output feedback control of rigid robots using dynamic
neural networks,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 1923-1928,
Minneapolis, April 1996.

Kim, Y., and F.L. Lewis, “Nonlinear observer design using dynamic recurrent
neural networks, Proc. IEEE Conf. Decision and Control, pp. 949-954, Kobe, Dec.
1996.

Lewis, F.L., C.T. Abdallah, and D.M. Dawson, Control of Robot Manipulators,
Macmillan, New York, 1993.

Liu, C.-C., and F.-C. Chen, “Adaptive control of non-linear continuous systems
using neural networks-general relative degree and MIMO cases,” Int. J. Control,
vol. 58, no. 2, pp. 317-335, 1993.

Liu, K., and F.L. Lewis, “Robust control of a continuous stirred-tank reactor,”
Proc. American Control Conf., pp. 2350-2354, Baltimore, Maryland 1994.

Nam, K., and A. Arapostathis, “A model-reference adaptive control scheme for
pure-feedback nonlinear systems,” IEEE Trans. Automat. Control, vol. 33, pp 803-
811, Sept 1988.

Narendra, K.S., and A.M. Annaswamy, “A new adaptive law for robust adaptation
without persistent excitation,” IEEE Trans. Automat. Control, vol. AC-32, no. 2,
pp. 134-145, Feb. 1987.

Polycarpou, M.M., and P.A. Ioannou, “Identification and control using neural
network models: design and stability analysis,” Tech. Report 91-09-01, Dept. Elect.
Eng. Sys., Univ. S. Cal., Sept. 1991.

306 CHAPTER 6. NEURAL NETWORK CONTROL OF NONLINEAR SYSTEMS

Ray, W.H., “New approaches to the dynamics of nonlinear systems with impli-
cations of process and control system design,” Chemical Process Control II, pp.
245-267, 1975.

Rovithakis, G.A., and M.A. Christodoulou, “Adaptive control of unknown plants
using dynamical neural networks,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 24, no. 3, pp. 400-412, 1994.

Slotine, J.-J.E., and W. Li, Applied Nonlinear Control, Prentice-Hall, New Jersey,
1991.

Taylor, D.G., P.V. Kokotovic, R. Marino, and I. Kanellakopoulos, “Adaptive reg-
ulation of nonlinear systems with unmodeled dynamics,” IEEE Trans. Automat.
Control, vol.34, pp. 405-412, Apr. 1989.

Teel, A., R. Kadiyala, P.V. Kokotovic, and S.S. Sastry, “Indirect techniques for
adaptive input output linearization of nonlinear systems,” Int. J. Control, vol. 53,
pp. 193-222, Jan. 1991.

Ungar, L.H., “A bioreactor benchmark for adaptive network-based process control,”
in Neural Networks for Control, Chap. 16, ed. W.T. Miller, R.S. Sutton, and P.J.
Werbos, MIT press, Boston, 1990.

Yeşildirek, A., Nonlinear Systems Control Using Neural Networks, Ph.D. Thesis,
Dept. of Electrical Engineering, The University of Texas at Arlington, Arlington,
Texas 76019, USA, 1994.

Yeşildirek. A., and F.L. Lewis, “Feedback linearization using neural networks,”
Automatica, vol. 31., no. 11, pp. 1659-1664, Nov. 1995.

Zhang, T., C.C. Hang, and S.S. Ge, “Robust adaptive control for general nonlinear
systems using multilayer neural networks,” preprint, 1998.

Chapter 7

NN Control with
Discrete-Time Tuning

Adaptive control is an important area of research that has been pursued by many
across the world (Åström and Wittenmark 1989, Landau 1979, Ljung and Söderström
1983, Narendra and Annaswamy 1989). The progress of adaptive control theory and
the availability of microprocessors have led to a series of successful applications in
the last several decades in the areas of robotics, aircraft control, process control and
estimation, etc. One of the first industrial adaptive controllers was installed in the
Port Arthur oil refinery in the 1960s by Åström.

Controllers are usually implemented on actual systems using microprocessors.
To implement a controller on a digital microprocessor, it is necessary to express it
in terms of difference equations. This is accomplished using digital or discrete-time
design, discussed in this chapter and the next two. Unfortunately, most rigorous
adaptive control results are available for continuous-time systems, where approaches
such as the direct model-reference approach (Åström and Wittenmark 1989, Lan-
dau 1993) allow simultaneous proofs of tracking error stability and parameter error
stability. Discrete-time adaptive control design is far more complex than continuous-
time design, due primarily to the fact that discrete-time Lyapunov derivatives are
quadratic in the state first difference, while for continuous-time systems the Lya-
punov derivative is linear in the state derivative. This has led to traditional tech-
niques where the parameter identification problem is decoupled from the control
problem using the so-called certainty equivalence assumption. In this approach,
two separate proofs are essentially given, one for identification and one for control.
Various elegant techniques for providing a posteriori proofs of overall convergence
have been offered by Ljung and others (Ljung and Söderström 1983). Even recently,
several authors (e.g.)Kanellakopoulos 1994)) state that for discrete-time nonlinear
adaptive systems very few rigorous results exist, and one has to impose linear growth
conditions on the nonlinearities to provide global stability.

Moreover, most adaptive control design algorithms are restricted to systems that
are linear in the unknown parameters, and an often complex regression matrix must
be computed for each plant. Uncertainty in the regression matrix and unmodeled
disturbances may cause the performance of the adaptive controllers to deteriorate

307

308 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

considerably (Åström and Wittenmark 1989).
In recent years, learning-based control using neural networks (NN) and fuzzy

logic systems has emerged as an alternative to adaptive control. These systems are
nonlinear in the tunable parameters, and open-loop systems can be tuned using the
essential backpropagation algorithm and its variants (see Chapter 1). For closed-loop
feedback systems, however, it has not been fully understood until recently how to use
the learning phenomenon for training. Research in NN for control applications is
now being pursued by several groups (Narendra and Parthasarathy 1990, Polycarpou
and Ioannou 1991, Sanner and Slotine 1992, Sadegh 1993, Chen and Khalil, 1995).
Results for continuous-time NN controllers are presented in Chapters 4 through 6
of this book. While some work in the design of discrete-time NN controllers has
been performed (Sadegh 1993), until recently (Chen and Khalil 1995, Jagannathan
and Lewis 1996c) there have been no results for closed-loop control of nonlinear sys-
tems with multilayer NN in the discrete-time domain that employ direct techniques
to estimate the controller parameters while guaranteeing boundedness of both the
tracking error and the parameter estimation error.

In this chapter a family of novel learning schemes is given for discrete-time
neural networks. The traditional problems with discrete-time adaptive control are
overcome by using a single Lyapunov-like proof for both the parameter identification
and the control error stability. This guarantees at once both stable identification
and stable tracking with no certainty equivalence assumption. In these proofs, com-
plex manipulations are required where it is necessary to complete the square with
respect to several different variables in the same proof. Along the way various other
standard assumptions in discrete-time adaptive control are also overcome, includ-
ing persistence of excitation, linearity-in-the-parameters, and the need for tedious
computation of a regression matrix.

First we discuss design for one-layer neural nets (Jagannathan and Lewis 1996c)
where the NN weights enter linearly, then design for the more complex multilayer
discrete-time NN (Jagannathan and Lewis 1996b) which are nonlinear in the ad-
justable weights. In each case we discuss the controller structure, various weight
update algorithms, and persistence of excitation definitions for NN. In keeping with
the approach in Chapters 4-6, the weights are tuned on-line with no off-line learn-
ing phase needed. Finally, passivity properties of discrete-time NN controllers are
covered.

7.1 BACKGROUND AND ERROR DYNAMICS

7.1.1 Neural Network Approximation Property

As discussed in Chapter 1, a general function f(x) ∈ C(S) can be approximated
using the n-layer neural network shown in Fig. 7.1.1 as

f(x) =Wn
Tϕn[Wn

Tϕn−1[· · ·ϕ1(x(k))]] + ε(k) (7.1.1)

where WT
n ,W

T
n−1, · · · ,WT

2 ,W
T
1 are constant weights and ϕi(k) denotes the vectors

of activation functions at the instant k, with ε(k) a NN functional reconstruction
error vector. If there exist N2 and constant constant ideal (‘target’) weights such
that ε = 0 for all x ∈ S, then f(x) is said to be in the functional range of the NN.

7.1. BACKGROUND AND ERROR DYNAMICS 309

Figure 7.1.1: A multilayer neural network.

In general, given a constant real number εN ≥ 0, f(x) is within εN of the NN range
if there exist constant weights so that for all x ∈ �n, (7.1.1) holds, for a sufficiently
large number of hidden-layer neurons, with ‖ε‖ ≤ εN .

In (7.1.1) for notational convenience, the vector of activation functions of the
input layer at the instant k is denoted as ϕ1(k) = ϕ(x(k)). Then, the vectors of
hidden and output layer activation functions are denoted by

ϕm+1(k) =Wm
Tϕm(k); ∀m = 1, · · · , n− 1. (7.1.2)

Define ϕ(x(k)) = ϕn[· · ·ϕ1(x(k))] and Ŵ
T
n (k) = ŴT (k) so that the net output is

defined as

ŷ(k) = ŴT (k)ϕ(x(k)). (7.1.3)

By selecting n=1 one obtains a one-layer NN. Then, for suitable approximation
properties, ϕ(x(k)) must be a basis (Sadegh 1993).

Definition (Sadegh 1993): Let S be a compact simply-connected set of �n,
and ϕ(x(k)) : S → �N2 be integrable and bounded. Then ϕ(x(k)) is said to provide
a basis for Ck(S) if

a) A constant function on S can be expressed as (7.1.3) for finite N2.

b) The functional range of NN (7.1.3) is dense in Ck(S) for countable N2. �

In Chapter 1 we discussed the selection of a basis for one-layer functional-link NN;
for instance it is well-known in the literature that radial basis functions (Sanner
and Slotine 1992) and sigmoidal functions form a basis (Sadegh 1993). In Section
7.2 we use a one-layer net (7.1.3) for controls purposes. Multilayer NN are used in
Section 7.3.

310 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

It is important to note that, although the NN weights enter in a linear fash-
ion in the one-layer case, this is far less restrictive than the standard linear-in-
the-parameters assumption of adaptive control where the system parameters enter
linearly. In fact, the one-layer NN is a basis for all smooth functions if a suitable
basis set is selected for the activation functions. By contrast, the linear-in-the-
parameters assumption of adaptive control amounts to the requirement to find by
tedious computation a regression matrix, which essentially serves as a basis only for
that system.

7.1.2 Stability of Systems

To formulate the discrete-time controller, the following stability notions are needed
(see Chapter 2). Consider the nonlinear system given by

x(k + 1) = f(x(k), u(k))

y(k) = h(x(k), (7.1.4)

where x(k) is a state vector, u(k) is the input vector and y(k) is the output vector.
The solution is said to be uniformly ultimately bounded (UUB) if for all x(k0) = x0,
there exists an ε ≥ 0 and a number N(ε, x0) such that ‖x(k)‖ ≤ ε for all k ≥ k0+N .

Consider now the linear discrete time-varying system given by

x(k + 1) = A(k)x(k) +B(k)u(k), y(k) = C(k)x(k) (7.1.5)

Lemma 7.1.1 : Define ψ(k1, k0) as the state-transition matrix corresponding to A(k) for

system (7.1.5), i.e., ψ(k1, k0) =
∏k1−1

k=k0
A(k). Then if ‖ ψ(k1, k0) ‖≤ 1, ∀k1, k0 ≥ 0, system

(7.1.5) is exponentially stable.

Proof: See (Sadegh 1993). �

7.1.3 Tracking Error Dynamics for a Class of Nonlinear Systems

Consider an mn-th order multi-input and multi-output (MIMO) discrete-time non-
linear system, to be controlled, given in multivariable Brunovsky form (see Chapter
2) by

x1(k + 1) = x2(k)
...

xn−1(k + 1) = xn(k)
xn(k + 1) = f(x(k)) + u(k) + d(k)

(7.1.6)

with state x(k) = [xT1 (k), · · · , xTn (k)]T with xi(k) ∈ �m; i = 1, · · · , n, and control
u(k) ∈ �m. The nonlinear function f(·) is assumed unknown. The disturbance
vector acting on the system at the instant k is d(k) ∈ �m, which we assume unknown
but bounded so that ‖ d(k) ‖≤ dM a known constant. In this chapter we consider the
class of systems where u(k) directly enters the last equation in (7.1.6). In Chapter
8 we consider the more complex case where xn(k + 1) depends on g(x(k))u(k) with
the control influence function g(·) unknown.

Many systems occur naturally in the continuous-time Brunovsky form. Unfortu-
nately, the exact discretization of the continuous Brunovsky form does not yield the

7.1. BACKGROUND AND ERROR DYNAMICS 311

discrete-time Brunovsky form, but a more general discrete-time system of the form
x(k+1) = F (x(k), u(k)), y(k) = H(x(k), u(k)). Under reachability and involutivity
conditions, this may be converted to the discrete-time Brunovsky form. See Chapter
2. It is not always easy to find the transformation required to accomplish this. In
recent work by Zhang et al. (1998) it is shown how to use the NN approximation
properties to effectively estimate this transformation for continuous-time systems,
so that NN controllers can be designed for a large class of continuous nonlinear sys-
tems more general than Brunovsky form. This remains to be done for discrete-time
systems.

Given a desired trajectory xnd(k) and its delayed values, define the tracking error
as

en(k) = xn(k)− xnd(k), (7.1.7)

and the filtered tracking error, r(k) ∈ �m,

r(k) = en(k) + λ1en−1(k) + · · ·+ λn−1e1(k), (7.1.8)

where en−1(k), · · · , e1(k) are the delayed values of the error en(k) and λ1, · · · , λn−1

are constant matrices selected so that | zn−1 + λ1z
n−2 + · · · + λn−1 | is stable.

Equation (7.1.8) can be expressed as

r(k + 1) = en(k + 1) + λ1en−1(k + 1) + · · ·+ λn−1e1(k + 1). (7.1.9)

Using (7.1.6) in (7.1.9), the dynamics of the MIMO system (7.1.6) can be written
in terms of the filtered tracking error as

r(k+1) = f(x(k))−xnd(k+1)+λ1en(k)+ · · ·+λn−1e2(k)+u(k)+ d(k) (7.1.10)

Define the control input u(k) as

u(k) = xnd(k + 1)− f̂(x(k)) + kvr(k)− λ1en(k)− · · · − λn−1e2(k) (7.1.11)

with a diagonal gain matrix kv, and f̂(x(k)) an estimate of the unknown nonlinear
function f(x(k)). Then, the closed-loop error system becomes

r(k + 1) = kvr(k) + f̃(x(k)) + d(k) (7.1.12)

where the functional estimation error is given by

f̃(x(k)) = f(x(k))− f̂(x(k)). (7.1.13)

Note that the error system is driven by the functional estimation error and the
unknown disturbances.

In this chapter, a discrete-time NN is used to provide the estimate f̂(·). The er-
ror system (7.1.12) is used to focus on selecting discrete-time NN tuning algorithms
that guarantee the stability of the filtered tracking error r(k). Then, since (7.1.8),
with the input considered as r(k) and the output e(k) describes a stable system, us-
ing the notion of operator gain (Slotine and Li 1991) one can guarantee that e(k)
exhibits stable behavior. In fact, (7.1.8) can be rewritten as

x̄(k + 1) = Ax̄(k) +Br(k) (7.1.14)

312 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

where x̄(k) = [e1(k), · · · , en−1]
T ,

A ≡
⎡
⎣ 0 1 0

· · ·
−λn−1 · −λ1

⎤
⎦

B ≡
⎡
⎣ 0

0
1

⎤
⎦ .

Then one may show using the notion of operator gain that

‖ e1(k) ‖≤ ‖ r(k) ‖
Λmin(A)

, · · · , ‖ en(k) ‖≤ ‖ r(k) ‖
Λmin(A)

, (7.1.15)

with Λmin(A) the minimum singular value of matrix A.

7.2 ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN

In this section the one-layer NN is considered as a first step to bridging the gap
between discrete-time adaptive control and NN control. In the next section we cover
multilayer discrete-time NN for control and present our main results. In the one-
layer case the tunable NN weights enter in a linear fashion. The one-layer case is
treated for radial basis functions in Sanner and Slotine (1992), using a projection
algorithm in Polycarpou and Ioannou (1991), and employing a delta rule (Sira-
Ramirez and Zak 1991) for weight tuning for discrete-time systems in Sadegh (1993).
Even though discrete-time controller design is presented in Sira-Ramirez and Zak
(1991), Lyapunov stability analysis is not discussed.

In this section stability analysis by Lyapunov’s direct method is performed for a
family of weight tuning algorithms for a one-layer neural network developed based
on the delta rule. These weight tuning paradigms yield a passive neural net, yet per-
sistency of excitation (PE) is generally needed for suitable performance. Specifically
this holds as well as for standard backpropagation in continuous-time case (Lewis et
al. 1995). Unfortunately, PE cannot generally be tested for or guaranteed in a NN.
Therefore, modified tuning paradigms are proposed in subsequent sections to make
the NN robust so that the PE is not needed. Finally, for guaranteed stability, it is
shown that the delta-rule-based-weight tuning algorithms must slow down as the NN
becomes larger. By employing a projection algorithm as shown in the next section
the tuning rate can be made independent of the NN size.

Assume, therefore, that there exist some constant ideal weightsW for a one-layer
NN so that the nonlinear function in (7.1.6) can be written as

f(x) =WTϕ(x(k)) + ε(k) (7.2.1)

where ϕ(x(k)) provides a suitable basis and ‖ ε(k) ‖< εN , with the bounding con-
stant εN known. Unless the net is ‘minimal’, the ‘ideal’ weights may not be unique
(Sontag 1992, Sussmann 1992). The best weights may then be defined as those
which minimize the supremum norm over S of ε(k). This issue is not a major
concern here, as it is needed to know only the existence of such ideal weights; their

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 313

actual values are not required. This assumption is similar to Erzberger’s assump-
tions in the linear-in-the-parameters adaptive control. The major difference is that,
while Erzberger’s assumptions often do not hold, the approximation properties of NN
guarantee that the ideal weights always exist if f(x) is continuous over a compact
set.

For suitable approximation properties, it is necessary to select a ‘large enough
number’ of hidden-layer neurons. It is not known how to compute this number for
general fully-connected NN; however, for CMAC NN the required number of hidden-
layer neurons for approximation to a desired degree of accuracy is given in Commuri
and Lewis (1996).

7.2.1 Structure of the One-layer NN Controller and Error System Dy-
namics

Defining the NN functional estimate in the controller (7.1.11) by

f̂(x(k)) = ŴT (k)ϕ(x(k)) (7.2.2)

with Ŵ (k) the current value of the weights, yields the controller structure shown in
Fig. 7.2.1. The output of the plant is processed through a series of delays to obtain
the past values of the output, and fed as inputs to the NN so that the nonlinear
function in (7.1.6) can be suitably approximated. Thus, the NN controller derived
in a straightforward manner using filtered error notions naturally provides a dynam-
ical NN structure. Note that neither the input u(k) or its past values are needed
by the NN. The next step is to determine the weight updates so that the tracking
performance of the closed-loop filtered error dynamics is guaranteed.

Let W be the unknown ideal weights required for the approximation to hold in
(7.2.2) and assume they are bounded by known values so that

‖W ‖≤Wmax. (7.2.3)

Then the error in the weights during estimation is given by

W̃ (k) =W − Ŵ (k). (7.2.4)

Fact 1: The activation functions are bounded by known positive values so that
‖ ϕ(x(k)) ‖≤ ϕmax and ‖ ϕ̃(x(k)) ‖≤ ϕ̃max.

The control input u(k) is

u(k) = xnd(k + 1)− ŴT (k)ϕ(x(k))− λ1en(k)− · · · − λn−1e2(k) + kvr(k), (7.2.5)

and the closed-loop filtered dynamics become

r(k + 1) = kvr(k) + ēi(k) + ε(k) + d(k), (7.2.6)

where the identification error is defined by

ēi(k) = W̃T (k)ϕ(x(k)). (7.2.7)

314 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Figure 7.2.1: One-layer discrete-time neural network controller structure.

7.2.2 One-layer Neural Network Weight Updates

A family of NN weight tuning paradigms that guarantee the stability of the closed-
loop system (7.2.6) is presented in this section. It is required to demonstrate that the
tracking error r(k) is suitably small and that the NN weights Ŵ (k) remain bounded,
for then the control u(k) is bounded. To proceed further, the following machinery is
needed.

Lemma 7.2.1 : If A(k) = I−αϕ(x(k))ϕT (x(k)) in (7.1.5), where 0 < α < 2 and ϕ(x(k))
is a vector of basis functions, then ‖ ψ(k1, k0) ‖< 1 is guaranteed if there is an L > 0

such that
∑k1+L−1

k=k0
ϕ(x(k))ϕT (x(k)) > 0 for all k. Then, Lemma 7.1.1 guarantees the

exponential stability of the system (7.1.5).

Proof: See Sadegh (1993). �

Definition 7.2.1 : An input sequence x(k) is said to be persistency exciting (PE) (Chap-
ter 2) if there are λ > 0 and an integer k1 ≥ 1 such that

λmin[

k1∑
k=k0

ϕ(x(k))ϕT (x(k))] > λ, ∀k0 ≥ 0 (7.2.8)

where λmin(P) represents the smallest eigenvalue of P . �

Note that PE is exactly the stability condition needed in Lemma 7.2.1.

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 315

Table 7.2.1: Discrete-Time Controller Using One-Layer Neural Net: PE Required

The control input is

u(k) = xnd(k + 1)− ŴT (k)ϕ(x(k))− λ1en(k)− · · · − λn−1e2(k) + kvr(k),

The NN weight tuning is given by either

(a) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))f̄T (k)

where f̄(k) is defined as the functional augmented error given by

f̄(k) = xn(k + 1)− u(k)− f̂(x(k))

or

(b) Ŵ (k + 1) = Ŵ (k) + α(k)ϕ(x(k))rT (k + 1)

with α > 0 denoting constant learning rate parameters or adaptation gains.

In the following theorem we present the two alternative discrete-time weight tun-
ing algorithms given in Table 7.2.1, one based on a modified functional estimation
error and the other based on the filtered tracking error. Both algorithms guarantee
that both the tracking error and the error in the weight estimates are bounded if a
PE condition holds. (This PE requirement is relaxed in Theorem 7.2.3).

Theorem 7.2.1 (One-Layer Discrete-Time NN Controller Requiring PE) :
Let the desired trajectory xnd(k) be bounded and the NN functional reconstruction

error bound εN and the disturbance bound dM be known constants. Take the control
input for (7.1.6) as (7.2.5) with weight tuning provided by either

Algorithm (a) Ŵ (k) = Ŵ (k) + αϕ(x(k))f̄T (k) (7.2.9)

where f̄(k) is defined as the functional augmented error computed using

f̄(k) = xn(k + 1)− u(k)− f̂(x(k)) (7.2.10)

or

Algorithm (b) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))rT (k + 1) (7.2.11)

with α > 0 denoting constant learning rate parameters or adaptation gains.
Let the hidden-layer output vector, ϕ(x(k)) be persistently exciting. Then the filtered

tracking error r(k) and the error in weight estimates, W̃ (k), are UUB, with the bounds
specifically given by (7.2.20) and (7.2.21) for the case of Algorithm (a), and (7.2.23) and
(7.2.24) for the case of Algorithm (b), provided the following conditions hold

(1) α ‖ ϕ(x(k)) ‖2< 1, (7.2.12)

(2) kvmax <
1√
η
, (7.2.13)

316 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

where η is given for Algorithm (a) as

η = 1 +
1

(1− α ‖ ϕ(x(k)) ‖2) (7.2.14)

and for the Algorithm (b) as

η =
1

(1− α ‖ ϕ(x(k)) ‖2) . (7.2.15)

Proof:
Note: Given a trajectory and a specific activation function, the bound on the activation

function, ‖ ϕ(x(k)) ‖, and the corresponding η can be calculated. Note that η is dependent
upon the trajectory.

Algorithm(a): Define the Lyapunov function candidate

J = rT (k)r(k) +
1

α
tr(W̃T (k)W̃ (k)). (7.2.16)

The first difference is given by

�J = rT (k + 1)r(k + 1)− rT (k)r(k)

+
1

α
tr(W̃T (k + 1)W̃ (k + 1)− W̃T (k)W̃ (k)) (7.2.17)

Substituting (7.2.9) and (7.2.6) in (7.2.17), collecting terms together, and completing the
square yields

�J ≤ −rT (k)[I − kT
v kv]r(k) + ēTi (k)ēi(k) + (ε(k) + d(k))T (ε(k) + d(k))

+2(kvr(k))
T ēi(k) + 2(kvr(k))

T (ε(k) + d(k)) + 2(ε(k) + d(k))T ēi(k)

−(2− αϕT (x(k))ϕ(x(k)))ēTi (k)ēi(k)

+αϕT (x(k))ϕ(x(k))(ε(k) + d(k))T (ε(k) + d(k))

−2(1− αϕT (x(k))ϕ(x(k)))ēTi (k)(ε(k) + d(k)). (7.2.18)

Reorganizing (7.2.18) and completing the squares for ēi(k) yields

�J ≤ −(1− ηk2
vmax)[‖ r(k) ‖2 −2

(η − 1)kvmax

(1− ηk2
vmax)

(εN + dM) ‖ r(k) ‖

− (η − 1)

(1− ηk2
vmax)

(εN − dM)2]− (1− α ‖ ϕ(x(k)) ‖2) ‖ ēi(k)

−kvr(k) + α ‖ ϕ(x(k))2 ‖ (ε(k) + d(k))

(1− α ‖ ϕ(x(k)) ‖2) ‖2 (7.2.19)

where η is given in (7.2.14) with kvmax the maximum singular value of kv. Since (εN +dM)
is constant, �J ≤ 0 as long as

‖ r(k) ‖> (η − 1)

(1− ηk2
vmax)

[kvmax +

√
(1− k2

vmax)

(η − 1)
]. (7.2.20)

Note that |∑∞
k=k0

�J(k) |=| J(∞)−J(0) |< ∞ since �J ≤ 0 as long as (7.2.12), (7.2.13),

and (7.2.20) hold. This demonstrates that the tracking error r(k) is bounded for all k ≥ 0
and it remains to show that the weight estimates, W̃ (k), are bounded.

The dynamics relative to error in weight estimates using (7.2.9) are given by

W̃ (k + 1) = [I − αϕ(x(k))ϕT (x(k))]W̃ (k)− αϕ(x(k))[ε(k) + d(k)]T , (7.2.21)

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 317

where the functional reconstruction error ε(k) and the disturbance d(k) are considered to be
bounded. Applying the PE condition (7.2.8), (7.2.20), and Lemma 7.2.1, the boundedness
of W̃ (k) in (7.2.21), and hence of Ŵ (k) are assured.

Algorithm(b): Define the Lyapunov function candidate (7.2.16). Substituting (7.2.6)
and (7.2.11) in (7.2.17), collecting terms together, and completing the square for ēi(k)
yields

�J ≤ −(1− ηk2
vmax)[‖ r(k) ‖2 −2

ηkvmax

(1− ηkvmax)
(εN + dM) ‖ r(k) ‖

− η

(1− ηkvmax)
(εN + dM)2]− (1− α ‖ ϕ(x(k)) ‖2) ‖ ēi(k)

− α ‖ ϕ(x(k)) ‖2
(1− η ‖ ϕ(x(k)) ‖2) [kvr(k) + ε(k) + d(k)] ‖2 (7.2.22)

with η is given by (7.2.15). �J ≤ 0 as long as (7.2.12) through (7.2.13) hold and this
results in

‖ r(k) ‖> 1

(1− ηk2
vmax)

(εN + dM)[ηkvmax +
√
η]. (7.2.23)

The dynamics relative to error in weight estimates using (7.2.11) are given by

W̃ (k + 1) = [I − αϕ(x(k))ϕT (x(k))]W̃ (k)− αϕ(x(k))[kvr(k) + ε(k) + d(k)]T (7.2.24)

where the filtered tracking error, r(k), functional reconstruction error ε(k) and the distur-
bance d(k) are considered to be bounded. Applying the PE condition (7.2.8), and Lemma
7.2.1 the boundedness of W̃ (k) in (7.2.24), respectively, and hence of Ŵ (k) are assured. �

In applications, the right-hand sides of (7.2.20) and (7.2.21) for the case of
Algorithm (a), or (7.2.23) and (7.2.24) for the case of Algorithm (b), may be taken
as practical bounds on the norms of the error r(k) and the weight errors W̃ (k).
Since the target weight values are bounded, it follows that the NN weights, Ŵ (k)
provided by the tuning algorithms are bounded; hence the control input is bounded.

Note from (7.2.20) and (7.2.23) that the tracking error increases with the NN
reconstruction error bound εN and the disturbance bound dM , yet small tracking
errors (but not arbitrary small) may be achieved by selecting small gains kv. In
other words, placing the closed-loop poles closer to the origin inside the unit circle
forces smaller tracking errors. Selecting kvmax = 0 results in a deadbeat controller,
but it should be avoided as it is not robust.

It is important to note that the problem of initializing the net weights (referred
to as symmetric breaking (Rumelhart et al. 1990)) occurring in other techniques in
the literature does not arise, since when Ŵ (0) is taken as zero the PD term kvr(k)
stabilizes the plant on an interim basis for a restricted class of nonlinear systems
such as robotic systems. Thus, the NN controller requires no off-line learning phase.

It is technically necessary to include in the proof the compact set on which the
NN approximation property holds. This has not been done in this chapter since
the discrete-time proofs are exceedingly complicated, and including the compact set
makes them more difficult to follow. Techniques like those in Chapter 4 can be used
to include the compact approximation region.

Example 7.2.1 (NN Control of Continuous-Time Nonlinear System) :
To illustrate the performance of the NN controller, a continuous-time nonlinear system

is considered and the objective is to control this MIMO system by using a one-layer NN

318 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

controller. Note that it is extremely difficult to discretize a nonlinear system and therefore
offer stability proofs. Note that the NN controllers derived herein require no a priori
knowledge of the dynamics of the nonlinear systems, unlike conventional adaptive control,
nor is any initial learning phase needed.

Consider the nonlinear system described by

Ẋ1 = X2

Ẋ2 = F (X1, X2) + U (7.2.25)

where X1 = [x1, x2]
T , X2 = [x3, x4]

T , U = [u1, u2]
T and the nonlinear function in (7.2.25)

is described by F (X1, X2) = [M(X1)]
−1G(X1, X2), with

M(X1) =

[
(b1 + b2)a

2
1 + b2a

2
2 + 2b2a1a2cos(x2) b2a

2
2 + b2a1a2cos(x2)

b2a
2
2 + b2a1a2cos(x2) b2a

2
2

]
(7.2.26)

and

G(X1, X2) =

[
−b2a1a2(2x3x4 + x2

4)sin(x2) + 9.8(b1 + b2)a1cos(x1) + 9.8b2a2cos(x1 + x2)
b2a1a2x

2
1sin(x2) + 9.8b2a2cos(x1 + x2)

]
(7.2.27)

The parameters for the nonlinear system were selected as a1 = a2 = 1, b1 = b2 = 1.
Desired sinusoidal, sin(2πt

25
), and cosine inputs, cos(2πt

25
), were preselected for the axis 1

and 2 respectively. The continuous-time gains of the PD controller were chosen as kv =
dia(20, 20) with Λ = diag(5, 5) and a sampling interval of 10msec was considered. A
one-layer NN was selected with 25 hidden-layer nodes. Sigmoidal activation functions
were employed in all the nodes in the hidden layer. The initial conditions for X1 were
chosen to be [0.5, 0.1]T , and the weights were initialized to zero. No off-line learning is
performed initially to train the networks. Fig. 7.2.2 presents the tracking response of the
neural network controller with delta-rule weight tuning (7.2.11) and small α = 0.1. From
the figure it can be seen that the delta rule-based weight tuning performs impressively. �

7.2.3 Projection Algorithm

The adaptation gains α > 0 are constant parameters in the update laws presented in
(7.2.9) and (7.2.11). These update laws correspond to the delta rule (Rumelhart et
al. 1990, Sadegh 1993), also referred to as the Widrow-Hoff rule (Widrow and Lehr
1990). This reveals that the update tuning mechanisms employing the delta rule
have a major drawback. In fact, using (7.2.12), the upper bound on the adaptation
gain can be obtained as

α <
1

‖ ϕ(x(k)) ‖2 , (7.2.28)

since ϕ(x(k)) ∈ �N2 , with N2 the number of hidden-layer neurons. It is evident that
the upper bound on the adaptation gain depends upon the number of hidden-layer
neurons. Specifically, if there N2 hidden-layer neurons and the maximum value of
the each hidden-node output is taken as unity (as for the sigmoid), then the bounds
on the adaptation gain to assure stability of the closed-loop system are given by

0 < α <
1

N2
. (7.2.29)

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 319

Figure 7.2.2: Response of neural network controller with delta-rule weight tuning
and small α. (a) Actual and desired joint angles. (b) Neural network outputs

320 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

In other words, the upper bound on the adaptation gain for the case of delta rule
decreases with an increase in the number of hidden-layer nodes, so that learning
must slow down for guaranteed performance. The phenomenon of large NN requiring
very slow learning rates has often been encountered in the practical NN literature
(Chen and Khalil 1992, Mpitsos and Burton 1992, Rumelhart et al. 1990) but never
explained adequately.

This major drawback can be easily overcome by modifying the update rule at each
layer to obtain a projection algorithm (Goodwin and Sin 1984). To wit, replace the
constant adaptation gain at each layer by

αi =
ξ

ζ+ ‖ ϕ(x(k)) ‖2 , (7.2.30)

where

ζ > 0, (7.2.31)

and

0 < ξ < 1, (7.2.32)

are constants. Note that ξ is now the new adaptation gain and it is always true that

ξ

ζ+ ‖ ϕ(x(k)) ‖2 ‖ ϕ(x(k)) ‖2 < 1,

(7.2.33)

hence guaranteeing (7.2.12) for every N2.

Example 7.2.2 (Effect on Learning Rate of NN Size) :

The objective here is to demonstrate for the Example 7.2.1 that the learning rate for
the delta rule employed at each layer in fact decreases with an increase in the number of
hidden-layer neurons in that layer. In addition, it is demonstrated that the problem can
be avoided by using a projection algorithm.

The adaptation gains for the weight tuning are increased from 0.0005 to 0.1 for the
case of the delta rule (7.2.11), and ξ = 0.5 with ζ = 0.001 for the case of the delta rule
with projection algorithm with (7.2.11) and (7.2.33). Fig.s 7.2.4 and 7.2.3 present the
tracking responses of the controllers with delta rule and projection algorithm respectively.
It is clear that the controller using the delta rule at each layer performs equally well with
the projection algorithm when the value of the adaptation gain is small so that (7.2.12)
is satisfied. Large values of the weights initially, however, were needed not only for the
delta rule with small [shown in Fig. 7.2.2], but also for the projection algorithm with large
adaptation gain [Fig. 7.2.3].

Note from Fig. 7.2.3 the tracking performance is extremely impressive. Fig. 7.2.4
illustrates the response of the NN controller when the delta rule is employed with the
adaptation gain 0.1 to 0.51. From Fig. 7.2.4 it is evident that the weight tuning using the
delta rule becomes unstable. Note that the representative weight estimates, as illustrated
in Fig. 7.2.4(b), of the NN are unbounded in this case. This demonstrates that the adap-
tation gain in the case of delta rule must decrease with an increase in the hidden-layer
neurons. �

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 321

Figure 7.2.3: Response of neural network controller with delta-rule weight tuning
and projection algorithm. (a) Actual and desired joint angles. (b) Neural network
outputs.

322 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Figure 7.2.4: Response of neural network controller with delta-rule weight tuning
and large α. (a) Actual and desired joint angles. (b) Neural network outputs.

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 323

7.2.4 Ideal Case: No Disturbances or NN Reconstruction Errors

In the idealized case of no net functional reconstruction errors with no unmodeled
disturbances in the dynamics of the system, the PE condition is not needed. The
next result can be shown. Note that it guarantees asymptotic stability, not simply
UUB.

Theorem 7.2.2 (NN Controller in the Ideal Case of Perfect NN Estimation) :
Let the desired trajectory xnd be bounded and the NN functional reconstruction error

bound εN and the disturbance bound dM be equal to zero. Let the control input for (7.1.6)
be given by (7.2.5) with the weight tuning provided by either:

a) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))f̄T (k), (7.2.34)

b) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))rT (k + 1), (7.2.35)

where α > 0 is a constant learning rate parameter or adaptation gain.
Then the filtered tracking error r(k) approaches asymptotically to zero and the NN

weight estimates are bounded provided the conditions (7.2.12)-(7.2.13) hold, with η given
for Algorithm (a) and (b) by (7.2.14) and (7.2.15), respectively. �

Note that now for guaranteed closed-loop stability, it is not necessary that the
hidden-layer outputs ϕ(x(k)) be PE. Equations (7.2.34) and (7.2.35) are nothing
but the delta-rule-based weight tuning algorithms for the one-layer case. Theorem
7.2.2 indicates that delta-rule-based weight tuning should suffice when the functional
reconstruction error ε(k) and disturbance d(k) are zero. However, Theorem 7.2.1
reveals the failure of standard delta rule-based weight tuning in the presence of net
functional reconstruction errors and/or bounded disturbances. Therefore, delta-rule-
based weight updates used in a net that cannot exactly reconstruct f(x) with bounded
unmodeled disturbances, cannot be guaranteed to yield bounded weights. Then, the
PE condition is required to guarantee boundedness of the weight estimates. However,
it is very difficult to verify the PE of the hidden-layer output functions ϕ(x(k)), and
this problem is compounded due to the presence of hidden-layers in the case of a
multilayered neural network. This possible unboundedness of the weight estimates
(c.f. parameter estimates in adaptive control) when PE fails to hold is known as pa-
rameter drift (Polycarpou and Ioannou 1991). In the next section, improved weight
tuning paradigms are presented so that PE is not required.

7.2.5 One-layer Neural Network Weight Tuning Modification for Re-
laxation of Persistency of Excitation Condition

Approaches such as σ-modification (Polycarpou and Ioannou 1991) or ε-modification
(Narendra and Annaswamy 1987) are available for the robust adaptive control of
continuous systems wherein the persistency of excitation condition is not needed.
A one-layer network with continuous weight update laws and ε-modification was
developed (Lewis et al. 1995) and the UUB of both the tracking error and the
error in weight estimates was demonstrated. On the other hand, modification to the
standard weight tuning mechanisms in discrete-time to avoid the necessity of PE is
also investigated in (Jagannathan and Lewis 1996a).

In (Jagannathan and Lewis 1996c) an approach similar to ε-modification was
derived for discrete-time NN control. The following theorem from that paper shows

324 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Table 7.2.2: Discrete-Time Controller Using One-Layer Neural Net: PE not Re-
quired

The control input is

u(k) = xnd(k + 1)− ŴT (k)ϕ(x(k))− λ1en(k)− · · · − λn−1e2(k) + kvr(k),

The weight tuning is given by either

(a) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))f̄T (k)− Γ ‖ I − αϕ(x(k))ϕT (x(k)) ‖ Ŵ (k)

where f̄(k) is defined as the functional augmented error given by

f̄(k) = xn(k + 1)− u(k)− f̂(x(k))

or

(b) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))rT (k + 1)− Γ ‖ I − αϕ(x(k))ϕT (x(k)) ‖ Ŵ (k)

with α = ξ
ζ+‖ϕ(x(k))‖ , where ζ > 0 and 0 < ξ < 1 denoting learning rate parameters

or adaptation gains.

two tuning algorithms that do not require persistence of excitation. The controllers
derived are presented in Table 7.2.2.

Theorem 7.2.3 (One-Layer Discrete-Time NN Controller With No PE) :
Assume the hypotheses presented in Theorem 7.2.1, and consider the modified weight

tuning algorithms provided by either:

(a) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))f̄T (k)

−Γ ‖ I − αϕ(x(k))ϕT (x(k)) ‖ Ŵ (k) (7.2.36)

(b) Ŵ (k + 1) = Ŵ (k) + αϕ(x(k))rT (k + 1)

−Γ ‖ I − αϕ(x(k))ϕT (x(k)) ‖ Ŵ (k) (7.2.37)

with Γ > 0 a design parameter. Then the filtered tracking error r(k) and the NN weight
estimates Ŵ (k) are UUB, with the bounds specifically given by (7.2.46) and (7.2.49) for
the case of Algorithm (a) and (7.2.53) and (7.2.55) for the case of Algorithm (b) provided
the following conditions hold:

(1) α ‖ ϕ(x(k)) ‖2< 1, (7.2.38)

(2) 0 < Γ < 1, (7.2.39)

with

(3) kvmax <
1√
η

(7.2.40)

for the case of Algorithm (a), and

(3) kvmax <
1√
σ̄

(7.2.41)

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 325

for the case of Algorithm (b), where η is given in (7.2.14) and σ̄ is given by

σ̄ = η+
1

(1− α ‖ ϕ(x(k)) ‖2) [Γ
2(1−α ‖ ϕ(x(k)) ‖2)2+2αΓ ‖ ϕ(x(k)) ‖2 (1−α ‖ ϕ(x(k)) ‖2)].

(7.2.42)
Note: The parameters α, η, σ, κ and ρ are dependent upon the trajectory.

Proof:
Algorithm (a): Select the Lyapunov function candidate (7.2.16). Use the tracking error

dynamics (7.2.6) and tuning mechanism (7.2.36) in (7.2.17) and completing the squares
for ‖ W̃ (k) ‖ to obtain (7.2.43)

�J ≤ −[1− η̄k2
vmax][‖ r(k) ‖2 − 2κkvmax

[1− ηk2
vmax]

‖ r(k) ‖ (εN + dM)− ρ

[1− ηk2
vmax]

]

−[1− αϕT (x(k))ϕ(x(k))] ‖ ēi(k)− 1

[1− αϕT (x(k))ϕ(x(k))]
[kvr(k) +

(αϕT (x(k))ϕ(x(k)) + Γ ‖ I − αϕ(x(k))ϕT (x(k)) ‖)(ε(k) + d(k))] ‖2 −
1

α
‖ I − αϕ(x(k))ϕT (x(k)) ‖2 Γ(2− Γ)[‖ W̃ (k)− (1− Γ)

(2− Γ)
Wmax]

2, (7.2.43)

where

κ = [1 +
1

(1− α ‖ ϕ(x(k)) ‖2) (Γ(1− α ‖ ϕ(x(k)) ‖2) + α ‖ ϕ(x(k)) ‖2)](7.2.44)

ρ = [1 + α ‖ ϕ(x(k)) ‖2 +
1

(1− α ‖ ϕ(x(k)) ‖2) (Γ(1− α ‖ ϕ(x(k)) ‖2) +

α ‖ ϕ(x(k)) ‖2]2(εN + dM)2 + 2Γ(1− α ‖ ϕ(x(k)) ‖2) ‖ ϕ(x(k)) ‖
Wmax(εN + dM) +

1

α

Γ

(2− Γ)
(1− α ‖ ϕ(x(k)) ‖2)2W 2

max (7.2.45)

Then �J ≤ 0 as long as (7.2.38) through (7.2.40) hold and the quadratic term of r(k)
in (7.2.43) is positive, which is guaranteed when

‖ r(k) ‖> 1

(1− ηk2
vmax)

[κkvmax(εN + dM) +
√

κ2k2
vmax(εN + dM)2 + ρ(1− ηk2

vmax)]

(7.2.46)
Similarly, completing the squares ‖ r(k) ‖ in (7.2.43) yields

�J ≤ −[1− ηk2
vmax][‖ r(k) ‖ − κkvmax

[1− ηk2
vmax

(εN + dM)]2 − [1− αϕT (x(k))ϕ(x(k))]

‖ ēi(k)− 1

[1− αϕTx(k))ϕ(x(k))]
[kvr(k) + (αϕT (x(k))ϕ(x(k))

+Γ ‖ I − αϕ(x(k))ϕT (x(k)) ‖)(ε(k) + d(k))] ‖2

− 1

α
‖ I − αϕ(x(k))ϕT (x(k)) ‖2 [Γ(2− Γ)

‖ W̃ (k) ‖2 −2Γ(1− Γ)Wmax ‖ W̃ (k) ‖ −ρ] (7.2.47)

where κ is given in given in (7.2.44) and ρ is given by

ρ = [
k2
vmaxκ

2

(1− ηk2
vmax)

(εN + dM)2 + 2Γ(1− α ‖ ϕ(x(k)) ‖2) ‖ ϕ(x(k)) ‖ Wmax(εN + dM) +

[1 + α ‖ ϕ(x(k)) ‖2 +
1

(1− α ‖ ϕ(x(k)) ‖2) (Γ(1− α ‖ ϕ(x(k)) ‖2) +

α ‖ ϕ(x(k)) ‖2]2(εN + dM)2]
α

(1− α ‖ ϕ(x(k)) ‖2)2 + Γ2W 2
max. (7.2.48)

326 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Then �J ≤ 0 as long as (7.2.38)-(7.2.40) hold and the quadratic term for ‖ W̃ (k) ‖ is
positive, which is guaranteed when

‖ W̃ (k) ‖> Γ(1− Γ)Wmax +
√

Γ2(1− Γ)2W 2
max + Γ(2− Γ)ρ

Γ(2− Γ)
. (7.2.49)

From (7.2.46) and (7.2.49), �J is negative outside a compact set. According to a standard
Lyapunov extension, it can be concluded that the tracking error r(k) and the error in weight
etimates W̃ (k) are UUB.

Algorithm (b): Select the Lyapunov function candidate (7.2.16). Use the tracking error
dynamics (7.2.6) and tuning mechanism (7.2.37) to obtain

�J ≤ −[1− σ̄k2
vmax] ‖ r(k) ‖2 −[1− αϕT (x(k))ϕ(x(k))] ‖ ēi(k)

− 1

(1− αϕT (x(k))ϕ(x(k))

(αϕT (x(k))ϕ(x(k)) + 2Γ ‖ I − αϕ(x(k))ϕT (x(k)) ‖)(kvr(k) + ε(k) + d(k)) ‖2
+2γkvmax ‖ r(k) ‖ +ρ−
1

α
‖ I − αϕ(x(k))ϕT (x(k)) ‖2 [Γ(2− Γ) ‖ ˜W (k) ‖ Wmax − Γ2W 2

max], (7.2.50)

where

γ = [η(εN + dM) + Γ(1− α ‖ ϕ(x(k)) ‖2) ‖ ϕ(x(k)) ‖ Wmax] (7.2.51)

and

ρ = [η(εN + dM)2 + 2Γ(1− α ‖ ϕ(x(k)) ‖2) ‖ ϕ(x(k)) ‖ Wmax(εN + dM)].

(7.2.52)

Completing the squares for ‖ W̃ (k) ‖ in (7.2.50) similar to Algorithm (a) results in
�J ≤ 0 as long as the conditions in (7.2.38) through (7.2.41) are satisfied and with the
upper bound on the tracking error given by

‖ r(k) ‖> 1

(1− σ̄k2
vmax)

[γkvmax +
√

ρ1(1− σ̄k2
vmax)] (7.2.53)

where

ρ1 = ρ+
1

α

Γ

(2− Γ)
(1− α ‖ ϕ(x(k)) ‖2)2W 2

max. (7.2.54)

On the other hand, completing the squares for ‖ r(k) ‖ in (7.2.50) results in �J ≤ 0
as long as the conditions (7.2.38)-(7.2.41) are satisfied and

‖ W̃ (k) ‖> Γ(1− Γ)Wmax +
√

Γ2(1− Γ)2W 2
max + Γ(2− Γ)θ

Γ(2− Γ)
, (7.2.55)

where
θ = [Γ2W 2

max +
αρ1

(1− α ‖ ϕ(x(k)) ‖2)2], (7.2.56)

and

ρ1 = ρ+
γ2k2

vmax

(1− σ̄k2
vmax)

. (7.2.57)

In general �J ≤ 0 in a compact set as long as (7.2.38) and (7.2.41) are satisfied and
either (7.2.53) or (7.2.55) holds. According to a standard Lyapunov extension theorem
(Lewis et al. 1993), this demonstrates that the tracking error and the error in weight
estimates are UUB. �

7.2. ONE-LAYER NEURAL NETWORK CONTROLLER DESIGN 327

Note that for practical purposes, (7.2.46) and (7.2.49) for the case of Algorithms
(a) and (7.2.53) with (7.2.55) for the case of Algorithm (b) can be considered as
bounds for ‖ r(k) ‖ and ‖ W̃ (k) ‖.

Note that the NN reconstruction error bound εN and the bounded disturbances dM
increase the bounds on ‖ r(k) ‖ and ‖ W̃ (k) ‖ in a very interesting way. Note that
small tracking error bounds, but not arbitrarily small, may be achieved by placing
the closed-loop poles inside the unit circle and near the origin through the selection
of the largest eigenvalue, kvmax. On the other hand, the NN weight error estimates
are fundamentally bounded by Wmax, the known bound on ideal weights W . The
parameter Γ offers a design trade-off between the relative eventual magnitudes of
‖ r(k) ‖ and W̃ (k) ‖; a smaller Γ yields a smaller ‖ r(k) ‖ and a larger ‖ W̃ (k) ‖,
and vice versa.

The effect of adaptation gains α at each layer on the weight estimation error,
W̃ (k), and tracking error, r(k), can be easily observed by using the bounds presented
in (7.2.46) and (7.2.53). Large values of α forces smaller tracking error but larger
weight estimation error. In contrast, a small value of α forces larger tracking and
smaller weight estimation errors.

Example 7.2.3 : For Example 7.2.1, the response of the neural network controller with
the improved weight tuning (7.2.37) and projection algorithm (7.2.33) is presented in
Fig. 7.2.5. The design parameter Γ is selected as 0.01. Note that with the improved
weight tuning, the output of the neural network remains bounded because the weights are
guaranteed to remain bounded without the necessity of persistency of excitation. To study
the contribuion of the neural network, Fig. 7.2.6 shows the reponse of the PD controller
with no neural network. It is clear that the addition of the neural network makes a
significant improvement in the tracking performance. �

Example 7.2.4 (NN Control of Discrete-Time Nonlinear System) : Consider the
first-order multi-input/multi-output discrete-time nonlinear system described by

X(k + 1) = F (X) + U(k), (7.2.58)

where X(k) = [x1(k), x2(k)]
T , F (X) =

[
x2(k)

1+x2
1
(k)

x1(k)

1+x2
1
(k)

]
, and U(k) = [u1(k), u2(k)]

T . The

objective is to track a periodic step input of magnitude two units with a period of 30s.

The elements of the diagonal matrix were chosen as kv =

[
0.1 0
0 0.1

]
and a sampling

interval of 10 ms was considered. A one-layer NN was selected with twelve hidden-layer
nodes. Sigmoidal activation functions were employed in all the nodes in the hidden layer.
The initial conditions for the plant were chosen to be [1,−1]T . The weights were initialized
to zero with an initial threshold value of 3.0. The design parameter Γ is selected to be
0.01. No learning is performed initially to train the networks. The design parameters for
the projection algorithm (7.2.33) were selected to be ξ = 0.5 with ζ = 0.001.

It is also found (not shown) in this example that the delta rule based weight tuning
performs very well when the learning rate is small. In addition, it was also observed
during simulation studies that the learning rate for delta rule based weight tuning should
decrease with an increase in the number of hidden-layer neurons. As expected, however,
this problem is solved by employing a projection algorithm. In this example, only results
using the improved weight tuning is presented. The response of the controller with the

328 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Figure 7.2.5: Response of neural network controller with improved weight tuning
and projection algorithm. (a) Actual and desired joint angles. (b) Neural network
outputs.

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 329

Figure 7.2.6: Response of the PD controller.

improved weight tuning (7.2.37) with (7.2.33) is shown in Fig. 7.2.7. Note from Fig. 7.2.7,
as expected, the performance of the controller is extremely impressive.

Let us consider the case when a bounded disturbance given by

w(k) =

{
0.0 0 ≤ kTm < 12
0.1 kTm ≥ 12

(7.2.59)

is acting on the plant at the time instant t. Fig. 7.2.8 presents the tracking response of
NN controllers with the improved weight tuning and projection algorithm. The magnitude
of the disturbance can be increased, however, the value should be bounded. The value
shown in (7.2.59) is employed for simulation purposes only. It can be seen from the figure
that the bounded disturbance induces bounded tracking errors at the output of the plant.
From the results, it can be inferred that the bounds presented and the theoretical claims
were justified through simulation studies both in continuous and discrete-time. �

7.3 MULTILAYER NEURAL NETWORK CONTROLLER DESIGN

In this section a three-layer NN is considered initially and stability analysis is carried
out out for the closed-loop system (7.1.12). Thereafter, all the stability analysis
presented for a three-layer NN is shown to be easily extended for a multilayer NN
having an arbitrary number of hidden layers. In this section, stability analysis by
Lyapunov’s direct method is performed for a family of multilayer NN weight tuning
algorithms using a delta rule in each layer. These weight tuning paradigms yield
a passive NN, yet persistency of excitation (PE) is generally needed for suitable
performance. Specifically, this holds as well as for standard backpropagation in
the continuous-time case (Lewis et al. 1995) and the one-layer discrete-time case
(Jagannathan and Lewis 1996c). Unfortunately, PE cannot generally be tested for

330 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Figure 7.2.7: Response of neural network controller with improved weight tuning
and projection algorithm. (a) Desired and actual state 1. (b) Desired and actual
state 2.

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 331

Figure 7.2.8: Response of neural network controller with improved weight tuning in
the presence of bounded disturbances. (a) Desired and actual state 1. (b) Desired
and actual state 2.

332 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

or guaranteed in a NN. In addition, for guaranteed stability, the weight tuning using
the delta rule at each layer must slow down as the NN becomes larger. This is a
problem often noted in NN literature (Mpitsos and Burton 1992).

By employing a projection algorithm, it is shown that the tuning rate can be
made independent of the NN size. Modified tuning paradigms are finally proposed
to make the NN robust so that the PE is not needed.

Assume that there exists some constant ideal weights W1,W2 and W3 for a three-
layer NN so that the nonlinear function in (7.1.6) can be written as

f(x) =WT
3 ϕ3[W

T
2 ϕ2[W

T
1 ϕ1(x(k))]] + ε(k) (7.3.1)

where ‖ ε(k) ‖< εN , with the bounding constant known. Unless the net is “minimal”
suitable “ideal” weights may not be unique (Sontag 1992) and (Sussmann 1992).
The best weights may then be defined as those which minimize the supremum norm
over S of ε(k). This issue is not a major concern here, as it is needed to know
only the existence of such ideal weights; their actual values are not required. This
assumption is similar to Erzberger’s assumptions in the linear-in-the-parameters
adaptive control. This major difference is that, while Erzberger’s assumptions often
do not hold, the approximation properties of NN guarantee that the ideal weights do
always exist if f(x) is continuous over a compact set.

For notational convenience define the matrix of all the ideal weights as Z =
diag{W1,W2,W3}. Then some bounding assumptions can be stated.

Assumption 7.3.1 : The ideal weights are bounded by known positive values so that
‖ W1 ‖≤ W1max, ‖ W2 ‖≤ W2max, and ‖ W3 ‖≤ W3max, or ‖ Z ‖≤ Zmax.

7.3.1 Structure of the NN Controller and Error System Dynamics

Define the NN functional estimate by

f̂(x(k)) = ŴT
3 (k)ϕ3(Ŵ

T
2 (k)ϕ2(Ŵ

T
1 (k)ϕ1(x(k)))) (7.3.2)

with Ŵ3(k), Ŵ2(k), and Ŵ1(k) the current value of the weights. The vector of input
layer activation functions is given by ϕ̂1(k) = ϕ1(k) = ϕ(x(k)). Then the vector of
activation functions of the hidden and output layer with the actual weights at the
instant k is denoted by

ϕ̂m+1(k) = ϕ(ŴT
mϕ̂m(k)); ∀m = 1, · · · , n− 1. (7.3.3)

Fact 2: For a given trajectory, the activation functions are bounded by known
positive values so that ‖ ϕ̂1(k) ‖≤ ϕ1max, ‖ ϕ̂2(k) ‖≤ ϕ2max, and ‖ ϕ̂3(k) ‖≤ ϕ3max.

The error in the weights or weight estimaion errors are given by

W̃3(k) =W3−Ŵ3(k), W̃2(k) =W2−Ŵ2(k), W̃1(k) =W1−Ŵ1(k), Z̃(k) = Z−Ẑ(k),
(7.3.4)

where ˆZ(k) = diag{Ŵ1(k), Ŵ2(k), Ŵ3(k)}, and the hidden-layer output errors are
defined as

ϕ̃2(k) = ϕ2 − ϕ̂2(k), ϕ̃3(k) = ϕ3 − ϕ̂3(k). (7.3.5)

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 333

Figure 7.3.1: Multilayer neural network controller structure.

Select the control input u(k) by

u(k) = xnd(k + 1)− ŴT
3 (k)ϕ̂3(k)− λ1en(k)− · · · − λn−1e2(k) + kvr(k) (7.3.6)

where the functional estimate (7.3.2) is provided by a three-layer NN and denoted
in (7.3.6) by ŴT

3 (k)ϕ̂3(k). Then, the closed-loop filtered dynamics become

r(k + 1) = kvr(k) + ēi(k) +WT
3 ϕ̃3(k) + ε(k) + d(k) (7.3.7)

where the identification error is defined by

ēi(k) = W̃T
3 (k)ϕ̂3(k). (7.3.8)

The proposed controller structure is shown in Fig. 7.3.1. The output of the plant
is processed through a series of delays to obtain the past values of the output, and fed
as inputs to the NN so that the nonlinear function in (7.1.6) can be suitably approx-
imated. Note that neither the input u(k) or its past values are needed by the NN.
The next step is to determine the weight updates so that the tracking performance
of the closed-loop filtered error dynamics is guaranteed.

7.3.2 Multilayer Neural Network Weight Updates

A family of NN weight tuning paradigms that guarantee the stability of the closed-
loop system (7.3.7) is presented in this section. It is required to demonstrate that the

334 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Table 7.3.1: Discrete-Time Controller Using Three-Layer Neural Net: PE Required

The control input is

u(k) = xnd(k + 1)− ŴT
3 (k)ϕ̂3(k)− λ1en(k)− · · · − λn−1e2(k) + kvr(k)

The weight tuning is given by:
Input and Hidden Layers:

Ŵi(k + 1) = Ŵi(k)− αiϕ̂(k)[ŷi +Bikvr(k)]
T , i = 1, 2,

Output Layer: Tuning is provided by either

(a) Ŵi(k + 1) = Ŵi(k) + αiϕ̂(k)f̄
T (k), i = 3

where f̄(k) is defined as the functional augmented error given by

f̄(k) = xn(k + 1)− u(k)− f̂(x(k))

or

(b) Ŵi(+1) = Ŵi(k) + αi(k)ϕ̂(k)r
T (k + 1), i = 3

with αi > 0, ∀i = 1, 2, 3 denoting constant learning rate parameters or adaptation
gains and ‖ Bi ‖≤ κi, ∀i = 1, 2.

tracking error r(k) is suitably small and that the NN weights ŴT
3 (k), ŴT

2 (k), ŴT
1 (k),

remain bounded, for then the control u(k) is bounded.

7.3.2.1 NN Controller with Three Layers

Here we consider the three-layer NN case. The two tuning algorithms in Table 7.3.1
are derived in the next Theorem. One algorithm is based on a modified functional
estimation error and the other on the filtered tracking error. These algorithms
require PE, which is defined for a multilayer NN during the proof (Jagannathan
and Lewis 1996b).

Theorem 7.3.1 (Three-Layer NN Controller Requiring PE) :
Let the desired trajectory xnd(k) be bounded and the NN functional reconstruction

error and the disturbance bounds, εN , dM , respectively, be known constants. Take the
control input for (7.1.6) as (7.3.6) and the weight tuning provided for the input and hidden
layers as

Ŵ1(k + 1) = Ŵ1(k)− α1ϕ̂1(k)[ŷ1(k) +B1kvr(k)]
T , (7.3.9)

Ŵ2(k + 1) = Ŵ2(k)− α1ϕ̂2(k)[ŷ2(k) +B2kvr(k)]
T , (7.3.10)

where ŷi(k) = ŴT
i (k)ϕ̂i(k), and

‖ Bi ‖≤ κi, i = 1, 2. (7.3.11)

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 335

Take the weight tuning update for the output layer as either

(a) Ŵ3(k + 1) = Ŵ3(k) + α3ϕ̂3(k)f̄
T (k), (7.3.12)

where f̄(k) is defined as the functional augmented error given by

f̄(k) = xn(k + 1)− u(k)− f̂(x(k)) (7.3.13)

or as

(b) Ŵ3(k + 1) = Ŵ3(k) + α3ϕ̂3(k)r
T (k + 1) (7.3.14)

with αi > 0, ∀i = 1, 2, 3 denoting constant learning rate parameters or adaptation gains.

Let the output vectors of the input, hidden, and output layers, ϕ̂1(k), ϕ̂2(k), and
ϕ̂3(k) be persistently exciting. Then, the filtered tracking error r(k) and the error in
weight estimates, W̃1(k), W̃2(k), and W̃3(k), are UUB, with the bounds specifically given
by (7.3.25) and (7.3.26) through (7.3.28) for the case of Algorithm (a) and (7.3.25) and
(7.3.30) through (7.3.32) for the case of Algorithm (b), provided the following conditions
hold:

(1) αi ‖ ϕ̂i(k) ‖2<
{

2 ∀i = 1, 2
1 ∀i = 3

(7.3.15)

(2) kvmax <
1√
η
, (7.3.16)

where η is given for Algorithm (a) as

η = 1 +
1

(1− α3 ‖ ϕ̂3(k) ‖2) +

2∑
i=1

κ2
i

(2− αi ‖ ϕ̂i(k) ‖2) , (7.3.17)

and for the Algorithm (b) as

η =
1

(1− α3 ‖ ϕ̂3(k) ‖2) +

2∑
i=1

κ2
i

(2− αi ‖ ϕ̂i(k) ‖2) . (7.3.18)

Note: The design parameters η, γ, αi; ∀i = 1, 2, 3 and ρ are dependent upon the tra-
jectory.

Proof:

Algorithm(a): Define the Lyapunov function candidate

J = rT (k)r(k) +
1

α1
tr(W̃T

1 (k)W̃1(k)) +
1

α2
tr(W̃T

2 (k)W̃2(k)) +
1

α3
tr(W̃T

3 (k)W̃3(k)).

(7.3.19)
The first difference is given by

�J = rT (k + 1)r(k + 1)− rT (k)r(k) +
1

α1
tr(W̃T

1 (k + 1)W̃1(k + 1)− W̃T
1 (k)W̃1(k)) +

1

α2
tr(W̃T

2 (k + 1)W̃2(k + 1)− W̃T
2 (k)W̃2(k)) +

1

α3
tr(W̃T

3 (k + 1)W̃3(k + 1)− W̃T
3 (k)W̃3(k)) (7.3.20)

336 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Substituting (7.3.7) and (7.3.9) - (7.3.13) in (7.3.20), collecting terms together, and
completing the square yields

�J ≤ −rT (k)[I − kT
v kv]r(k) + 2(kvr(k))

T [WT
3 ϕ̃3(k) + ε(k) + d(k)] + (1 + α3ϕ̂

T
3 ϕ̂3)

[WT
3 ϕ̃3(k) + ε(k) + d(k)] +

W 2
1max ‖ ϕ̂1(k) ‖2

(2− α1 ‖ ϕ̂1(k) ‖2) +
W 2

2max ‖ ϕ̂2(k) ‖2
(2− α2 ‖ ϕ̂2(k) ‖2)

−[1− α3ϕ̂
T
3 (k)ϕ̂3(k)][ēi(k)− kvr(k) + α3ϕ̂

T
3 (k)ϕ̂3(k)(W

T
3 ϕ̃3(k) + ε(k) + d(k))

(1− α3ϕ̂T
3 (k)ϕ̂3(k))

]T

[ēi(k)− kvr(k) + α3ϕ̂
T
3 (k)ϕ̂3(k)(W

T
3 ϕ̃3(k) + ε(k) + d(k))

(1− α3ϕ̂T
3 (k)ϕ̂3(k))

] +

1

(1− α3ϕ̂T
3 (k)ϕ̂3(k))

[kvr(k) + α3ϕ̂
T
3 (k)ϕ̂3(k)(W

T
3 ϕ̃3(k) + ε(k) + d(k))]T

[kvr(k) + α3ϕ̂
T
3 (k)ϕ̂3(k)(W

T
3 ϕ̃3(k) + ε(k) + d(k))]

−(2− α1ϕ̂
T
1 (k)ϕ̂1(k)) ‖ ŴT

1 (k)ϕ̂1(k)− (1− α1ϕ̂
T
1 (k)ϕ̂1(k))

(2− α1ϕ̂T
1 (k)ϕ̂1(k))

(WT
1 ϕ̂1(k) + kvr(k)) ‖2

−(2− α2ϕ̂
T
2 (k)ϕ̂2(k)) ‖ ŴT

2 (k)ϕ̂2(k)− (1− α2ϕ̂
T
2 (k)ϕ̂2(k))

(2− α2ϕ̂T
2 (k)ϕ̂2(k))

(WT
2 ϕ̂2(k) + kvr(k)) ‖2

+2kvmax ‖ r(k) ‖
2∑

i=1

κi ‖ ϕi(k) ‖ Wimax

(2− αiϕ̂T
i (k)ϕ̂i(k))

+ k2
vmax ‖ r(k) ‖2

2∑
i=1

κ2
i

(2− αiϕ̂T
i (k)ϕ̂i(k))

(7.3.21)

�J ≤ −(1− ηk2
vmax)[‖ r(k) ‖2 −2

γkvmax

(1− ηk2
vmax)

− ρ

(1− ηk2
vmax)

]− [1− α3ϕ̂
T
3 (k)ϕ̂3(k)]

‖ ēi(k)− kvr(k) + α3ϕ̂
T
3 (k)ϕ̂3(k)(W

T
3 ϕ̃3(k) + ε(k) + d(k))

(1− α3ϕ̂T
3 (k)ϕ̂3(k))

‖2

−(2− α1ϕ̂
T
1 (k)ϕ̂1(k)) ‖ ŴT

1 (k)ϕ̂1(k)− (1− α1ϕ̂
T
1 (k)ϕ̂1(k))

(2− α1ϕ̂T
1 (k)ϕ̂1(k))

(WT
1 ϕ̂1(k) + kvr(k)) ‖2

−(2− α2ϕ̂
T
2 (k)ϕ̂2(k)) ‖ ŴT

2 (k)ϕ̂2(k)− (1− α2ϕ̂
T
2 (k)ϕ̂2(k))

(2− α2ϕ̂T
2 (k)ϕ̂2(k))

(WT
2 ϕ̂2(k) + kvr(k)) ‖2

(7.3.22)

where η is given in (7.3.17) with kvmax the maximum singular value of kv and

γ =
1

(1− α3 ‖ ϕ̂i(k) ‖2) [W3maxϕ̃3max + εN + dM] +

2∑
i=1

κi ‖ ϕ̂i(k) ‖ Wimax

(2− αi ‖ ϕ̂i(k) ‖2) (7.3.23)

and

ρ = [
(W3max ‖ ϕ̃3(k) ‖ +εN + dM)2

(1− α3 ‖ ϕ̂3(k) ‖2) +

2∑
i=1

‖ ϕ̂i(k) ‖2 W 2
imax

(2− αi ‖ ϕ̂i(k) ‖2)]. (7.3.24)

Since (εN + dM) is constant, �J ≤ 0 as long as

‖ r(k) ‖> 1

(1− ηk2
vmax)

[γkvmax +
√

γ2k2
vmax + ρ(1− ηk2

vmax)]. (7.3.25)

Note that |∑∞
k=k0

�J(k) |=| J(∞)−J(0) |< ∞ since �J ≤ 0 as long as (7.3.15), (7.3.16),

and (7.3.25) hold. This demonstrates that the tracking error r(k) is bounded for all k ≥ 0
and it remains to show that the weight estimates W̃1(k), W̃2(k) and W̃3(k), are bounded.

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 337

The dynamics relative to error in weight estimates using (7.3.9), (7.3.10) and (7.3.12)
are given by

W̃1(k + 1) = [I − α1ϕ̂1(k)ϕ̂
T
1 (k)]W̃1(k) + α1ϕ̂1(k)[W

T
1 ϕ̂1(k) +B1kvr(k)]

T , (7.3.26)

W̃2(k + 1) = [I − α2ϕ̂2(k)ϕ̂
T
2 (k)]W̃2(k) + α2ϕ̂2(k)[W

T
2 ϕ̂2(k) +B2kvr(k)]

T , (7.3.27)

W̃3(k + 1) = [I − α3ϕ̂3(k)ϕ̂
T
3 (k)]W̃3(k)− α3ϕ̂3(k)[W

T
3 ϕ̂3(k) + ε(k) + d(k)]T (7.3.28)

where the functional reconstruction error ε(k) and the disturbance d(k) are considered to be
bounded. Applying the PE condition (7.2.8), and using tracking error bound (7.3.25), and
Lemma 7.2.1 for the cases ϕ(k) = ϕ̂i(k); ∀i = 1, · · · , 3, the boundedness of W̃1(k), W̃2(k),
and W̃3(k) in (7.3.26)-(7.3.28), respectively, and hence of Ŵ1(k), Ŵ2(k), and Ŵ3(k) are
assured.

Algorithm(b): Define a Lyapunov function candidate as in (7.3.19). Substituting
(7.3.7), (7.3.9)-(7.3.10), and (7.3.14) in (7.3.20), collecting terms together, and completing
the square yields

�J ≤ −(1− ηk2
vmax)[‖ r(k) ‖2 −2

γkvmax

(1− ηkvmax)
‖ r(k) ‖ − ρ

(1− ηkvmax)
]−

[1− α3ϕ̂
T
3 (k)ϕ̂3(k)] ‖ ēi(k)− α3ϕ̂

T
3 (k)ϕ̂3(k)(kvr(k) + (WT

3 ϕ̃3(k) + ε(k) + d(k)))

(1− α3ϕ̂T
3 (k)ϕ̂3(k))

‖2

−(2− α1ϕ̂
T
1 (k)ϕ̂1(k)) ‖ ŴT

1 (k)ϕ̂1(k)− (1− α1ϕ̂
T
1 (k)ϕ̂1(k))

(2− α1ϕ̂T
1 (k)ϕ̂1(k))

(WT
1 ϕ̂1(k) + kvr(k)) ‖2

−(2− α2ϕ̂
T
2 (k)ϕ̂2(k)) ‖ ŴT

2 (k)ϕ̂2(k)− (1− α2ϕ̂
T
2 (k)ϕ̂2(k))

(2− α2ϕ̂T
2 (k)ϕ̂2(k))

(WT
2 ϕ̂2(k) + kvr(k)) ‖2

(7.3.29)

with η is given by (7.3.18) and ρ is given in (7.3.24). �J ≤ 0 as long as (7.3.15) and
(7.3.16) hold and this results in (7.3.25).

The dynamics relative to error in weight estimates using (7.3.9), (7.3.10), and (7.3.14)
are given by

W̃1(k + 1) = [I − α1ϕ̂1(k)ϕ̂
T
1 (k)]W̃1(k) + α1ϕ̂1(k)[W

T
1 ϕ̂1(k) +B1kvr(k)]

T , (7.3.30)

W̃2(k + 1) = [I − α2ϕ̂2(k)ϕ̂
T
2 (k)]W̃2(k) + α2ϕ̂2(k)[W

T
2 ϕ̂2(k) +B2kvr(k)]

T , (7.3.31)

W̃3(k+1) = [I−α3ϕ̂3(k)ϕ̂
T
3 (k)]W̃3(k)−α3ϕ̂3(k)[kvr(k)+WT

3 ϕ̃3(k)+ε(k)+d(k)]T (7.3.32)

where the functional reconstruction error ε(k) and the disturbance d(k) are considered
to be bounded. Applying the PE condition (7.2.8), tracking error bound (7.3.25), and
Lemma 7.2.1 for the cases ϕ(k) = ϕ̂i(k); ∀i = 1, · · · , 3, the boundedness of W̃1(k), W̃2(k),
and W̃3(k) in (7.3.30)-(7.3.32), respectively, and hence of Ŵ1(k), Ŵ2(k), and Ŵ3(k) are
assured. �

In applications, the right-hand sides of (7.3.25) and (7.3.26)-(7.3.28) for the
case of Algorithm (a) or (7.3.25) and (7.3.30)-(7.3.32) for the case of Algorithm
(b) may be taken as practical bounds on the norms of the error r(k) and the weight
errors W̃1(k), W̃2(k), and W̃3(k). Since the target values are bounded, it follows
that the NN weights, Ŵ1(k), Ŵ2(k), and Ŵ3(k) provided by the tuning algorithms
are bounded; hence the control input is bounded.

One of the drawbacks of the available methodologies that guarantee the tracking
and bounded weights (Chen and Khalil 1995, Lewis et al. 1995) is the lack of gen-
eralization of stability analysis to NN having an arbitrary number of hidden layers.

338 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

The reason is partly due to the problem of defining and verifying the persistency
of excitation for a multilayered NN. For instance, in the case of a three-layered
continuous-time NN (Lewis et al. 1995), the PE conditions are not easy to derive
as one is faced with the observability properties of a certain bilinear system. Accord-
ing to the proof presented above, however, the PE for a multilayer NN is defined as
the PE (in the sense of Definition) of all the hidden layer inputs ϕ̂i(k); ∀i = 1, · · · , n.

The effect of the tracking error on the hidden layer weights and the position of
the closed-loop poles can be observed through the design parameters, κi, i = 1, · · · , n.
These parameters weight the tracking error which in turn drive the hidden layer
weight updates. A large value of κi will increase the hidden layer weights and the
bounding constants γ and ρ. This in turn causes the position of the poles to move
closer to the origin resulting in an increase in the input thereby forcing the tracking
error to converge to the compact set as fast as possible.

It is important to note that the problem of initializing the net weights (referred
to as symmetric breaking (Rumelhart et al. 1990)) occurring in other techniques in
the literature does not arise, since when Ẑ(0) is taken as zero the PD term of kvr(k)
stabilizes the plant, on an interim basis, for instance in certain restricted class of
nonlinear systems such as robotic systems. Thus, the NN controller requires no
learning phase.

Example 7.3.1 (Nonlinear System Using Multilayer Neural Network) :

Consider the nonlinear system described by Example 7.2.1 with the parameters for the
nonlinear system selected as a1 = a2 = 1, b1 = b2 = 1. Desired sinusoidal, sin(2πt

25
), and

cosine inputs, cos(2πt
25

), were preselected for the axis 1 and 2 respectively. The continuous-
time gains of the PD controller were chosen as kv = dia(5, 5) and a sampling interval of
10 msec was considered. A three-layer NN was selected with four input, six hidden and
two output nodes. Sigmoidal activation functions were employed in all the nodes in the
hidden layer. The initial conditions for X1 were chosen to be [0.5, 0.1]T , and the weights
were initialized to zero. No off-line learning is performed initially to train the networks.
The elements of the Bi, ∀i = 1, 2 are chosen to be 0.1. Fig. 7.3.2 presents the tracking
response of the neural net controller with α1 = 0.2, α2 = 0.01, and α3 = 0.1 using (7.3.9),
(7.3.10) and (7.3.14). From the figure, the tracking response is impressive. �

7.3.2.2 NN Controller with Multiple Hidden Layers

The following presents the generalization of the above to NN having an arbitrary
number of hidden layers when the NN functional reconstruction error and the un-
modeled disturbances are nonzero but bounded by known constants. Only the updates
are presented here but the proof is left as an excercise for the reader.

Theorem 7.3.2 (Multilayer NN Controller Requiring PE) :

Assume the hypotheses presented before and take the weight tuning provided for the
input and hidden layers as

Ŵi(k + 1) = Ŵi(k)− αiϕ̂i(k)[ŷi(k) +Bikvr(k)]
T , ∀i = 1, · · · , n− 1 (7.3.33)

where

ŷi(k) = ŴT
i (k)ϕ̂i(k); ∀i = 1, · · · , n− 1 (7.3.34)

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 339

Figure 7.3.2: Response of multilayer neural network controller with delta-rule weight
tuning and small α3. (a) Desired and actual trajectory. (b) Representative weight
estimates.

340 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

and the weight tuning update for the output layer is given either by

(a) Ŵn(k + 1) = Ŵn(k) + αnϕ̂n(k)f̄
T (k) (7.3.35)

(b) Ŵn(k + 1) = Ŵn(k) + αnϕ̂n(k)r
T (k + 1) (7.3.36)

with αi > 0, ∀i = 1, 2, · · · , n denoting constant learning rate parameters or adaptation
gains.

Let the output vectors of the input, hidden, and output layers, ϕ̂i(k); ∀i = 1, 2, · · · , n,
be persistently exciting, the filtered tracking error r(k) and the error in weight estimates,
W̃i(k); ∀i = 1, 2, · · · , n, are UUB, provided the following conditions hold:

(1) αi ‖ ϕ̂i(k) ‖2<
{

2 ∀i = 1, · · · , n− 1
1 ∀i = n

(7.3.37)

(2) kvmax <
1√
η
, (7.3.38)

where η is given for Algorithm (a) as

η = 1 +
1

(1− αn ‖ ϕ̂n(k) ‖2) +

n−1∑
i=1

κ2
i

(2− αi ‖ ϕ̂i(k) ‖2) , (7.3.39)

and for the Algorithm (b) as

η =
1

(1− αn ‖ ϕ̂n(k) ‖2) +

n−1∑
i=1

κ2
i

(2− αi ‖ ϕ̂i(k) ‖2) . (7.3.40)

Note: The parameters η, αi; ∀i = 1, · · · , n are dependent upon the trajectory.
�

The tracking error bounds and weight estimate bounds are given as in the proof
of Theorem 7.3.1.

7.3.3 Projection Algorithm

The adaptation gains for an n-layer NN, αi > 0, ∀i = 1, 2, · · · , n, are constant
parameters in the update laws presented in (7.3.9)-(7.3.14). These update laws
correspond to the delta rule (Rumelhart et al. 1990, Sadegh 1993) or referred to as
the Widrow-Hoff rule (Widrow and Lehr 1990). As discussed in Section 7.2.3 the
update tuning mechanisms employing the delta rule have a major drawback. In fact,
using (7.3.15), the upper bound on the adaptation gain can be obtained as

αi <
2

‖ ϕ̂i(k) ‖2 , i = 1, · · · , n− 1

<
1

‖ ϕ̂i(k) ‖2 , i = n. (7.3.41)

Since ϕ̂i(k) ∈ �Npi , with Np the number of hidden-layer neurons in the i-th layer,
it is evident that the upper bound on the adaptation gain at each layer depends upon
the the number of hidden-layer neurons present in that particular layer. Specifically,
if there Np hidden-layer neurons and the maximum value of the each hidden-node

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 341

output in the i-th layer is taken as unity (as for the sigmoid), then the bounds on
the adaptation gain to assure stability of the closed-loop system are given by

0 < αi <
2

Np
, ∀i = 1, · · · , n− 1

0 < αi <
1

Np
, i = n. (7.3.42)

This major drawback can be easily overcome by modifying the update rule at each
layer to obtain a projection algorithm (Goodwin and Sin 1984). To wit, replace the
constant adaptation gain at each layer by

αi =
ξi

ζi+ ‖ ϕ̂i(k) ‖2 , i = 1, · · · , n (7.3.43)

where
ζi > 0, i = 1, · · · , n (7.3.44)

and

0 < ξi < 2, i = 1, · · · , n− 1

0 < ξi < 1, i = n. (7.3.45)

are constants. Note that ξi, i = 1, · · · , n is now the new adaptation gain at each
layer and it is always true that

ξi
ζi+ ‖ ϕ̂i(k) ‖2 ‖ ϕ̂i(k) ‖2 < 2, i = 1, · · · , n− 1,

< 1, i = n. (7.3.46)

hence guaranteeing (7.3.37) for every Np at each layer.

Example 7.3.2 (Multilayer NN Size and Adaptation Gains) :
Consider the example presented in Example 7.3.1 and note the upper bound on the

allowed adaptation gains α1, α2, and α3 using (7.3.15) for the case of delta rule at each
layer is computed to be 0.5, 0.32, and 0.5. The adaptation gains for the multilayer NN
weight tuning are selected as ξ1 = ξ2 = 1.0, and ξ3 = 0.7 and ζ1 = ζ2 = ζ3 = 0.01 for
the case of the projection algorithm with (7.3.9)-(7.3.14) with (7.3.46). Fig. 7.3.3 presents
the tracking responses of the controllers with projection algorithm respectively. It is clear
from Fig. 7.3.2 that the controller using the delta rule at each layer performs equally well
with the projection algorithm (see Fig. 7.3.3) when the value of the adaptation gain is
small so that (7.3.15) is satisfied.

Large values of the weights were needed initially not only for the delta rule with small
[shown in Fig. 7.3.2b], but also for the projection algorithm with large adaptation gain
[see Fig. 7.3.3b].

Note from Fig. 7.3.3 due to large adaptation gains for the case of projection algorithm,
overshoots and undershoots are observed in the initial stages even though the tracking
performance is extremely impressive.

Fig. 7.3.4 illustrates the response of the NN controller when the delta rule is employed
with the adaptation gain α3 in the last layer changed from 0.1 to 0.51. From Fig. 7.3.4,
it is evident that the weight tuning using the delta rule at each layer becomes unstable at

342 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

t = 1.08sec. Note that the representative weight estimates, as illustrated in Fig. 7.3.4(b),
of the NN are unbounded in this case. This demonstrates that the adaptation gain in the
case of delta rule at each layer must decrease with an increase in the hidden-layer neurons.
In fact, the theoretical limit implied by (7.3.15) in this case for this sampling interval is,
so that this bound appears to be a tight bound in general.

The performance of the NN controller was investigated while varying the adaptation
gains at the output layer for the case of projection algorithm. Fig. 7.3.5(a) and 7.3.5(b)
show the tracking response and some NN representative weight estimates of the NN con-
troller with ξ3 = 0.1. As expected, the overshoots and undershoots have been totally
eliminated but there appears to be a slight degradation in the performance. In other
words at very low adaptation gains, overshoots and undershoots are not seen but there
appears a slight degradation in the tracking performance with a slow and smooth con-
vergence. On the other hand, at large adaptation gains overshoots and undershoots are
observed with a good tracking performance. As the adaptation gains are further increased,
the oscillatory behavior continues to increase and finally the system becomes unstable. In
other words, from the bounds presented in (7.3.15), as the adaptation gains are increased
the margin of stability continues to decrease and at large adaptation gains (close to one
for instance for the last layer) the system becomes unstable. Thus, the simulation results
conducted corroborate with the bounds presented in the previous sections. �

7.3.4 Multilayer Neural Network Weight Tuning Modification for Re-
laxation of Persistency of Excitation Condition

An approach similar to ε-modification is derived for one-layer (i.e. linear) discrete-
time NN (Jagannathan and Lewis 1996b). In this section, the modified weight tuning
algorithms discussed for a one-layer discrete-time NN in Section 7.2.5 are extended
to a multilayer discrete-time NN so that PE is not needed. The results of this section
present tuning algorithms that overcome the need for PE in the case of multilayered
NN. First we consider three-layer NN, then multiple-layer NN.

7.3.4.1 Three-Layer NN Controller Not Requiring PE

The next theorem proves the stability of the NN controllers in Table 7.3.2, which
have tuning algorithms augmented to avoid PE.

Theorem 7.3.3 (Three-Layer NN Controller Not Requiring PE) :

Assume the hypotheses presented above and now consider the modified weight tuning
algorithms provided for the input and hidden layers as

Ŵ1(k+1) = Ŵ1(k)−α1ϕ̂1(k)[ŷ1(k)+B1kvr(k)]
T −Γ ‖ I−α1ϕ̂1(k)ϕ̂

T
1 (k) ‖ Ŵ1(k) (7.3.47)

Ŵ2(k+1) = Ŵ2(k)−α2ϕ̂2(k)[ŷ2(k)+B2kvr(k)]
T−Γ ‖ I−α2ϕ̂2(k)ϕ̂

T
2 (k) ‖ Ŵ2(k). (7.3.48)

Let the weight update for the output layer given by either

(a) Ŵ3(k + 1) = Ŵ3(k) + α3ϕ̂3(k)f̄
T (k)

−Γ ‖ I − α3ϕ̂3(k)ϕ̂
T
3 (k) ‖ Ŵ3(k) (7.3.49)

(b) Ŵ3(k + 1) = Ŵ3(k) + α3ϕ̂3(k)r
T (k + 1)

−Γ ‖ I − α3ϕ̂3(k)ϕ̂
T
3 (k) ‖ Ŵ3(k) (7.3.50)

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 343

Figure 7.3.3: Response of multilayer neural network controller with delta-rule weight
tuning and projection algorithm with large α3. (a) Desired and actual trajectory.
(b) Representative weight estimates.

344 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Figure 7.3.4: Response of multilayer neural network controller with delta-rule weight
tuning and large α3. (a) Desired and actual trajectory. (b) Representative weight
estimates.

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 345

Figure 7.3.5: Response of multilayer neural network controller with delta-rule weight
tuning and projection algorithm with small α3. (a) Desired and actual trajectory.
(b) Representative weight estimates.

346 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Table 7.3.2: Discrete-Time Controller Using Three-Layer Neural Net: PE not Re-
quired

The control input is

u(k) = xnd(k + 1)− ŴT
n (k)ϕ̂n(k)− λ1en(k)− · · · − λn−1e2(k) + kvr(k)

The weight tuning is given by:
Input and Hidden Layers:

Ŵi(k + 1) = Ŵi(k)− αiϕ̂i(k)[ŷi(k) +Bikvr(k)]
T

−Γ ‖ I − αiϕ̂i(k)ϕ̂
T
i (k) ‖ Ŵi(k), i = 1, ·, n− 1,

Output Layer: tune using either

(a) Ŵi(k + 1) = Ŵi(k) + αiϕ̂i(k)f̄
T (k)− Γ ‖ I − αiϕ̂i(k)ϕ̂

T
i (k) ‖ Ŵi(k),

i = n

where f̄(k) is defined as the functional augmented error given by

f̄(k) = xn(k + 1)− u(k)− f̂(x(k))

or

(b) Ŵi(k + 1) = Ŵi(k) + αi(k)ϕ̂i(k)r
T (k + 1)− Γ ‖ I − αiϕ̂i(k)ϕ̂

T
i (k) ‖ Ŵi(k),

i = n

with αi = ξi
ζi+‖ϕ̂i(k)‖2 , where ζi > 0 and 0 < ξi < 2, ∀i = 1, 2, · · · , n − 1, and

0 < ξi < 1, ∀i = n denoting learning rate parameters or adaptation gains and
‖ Bi ‖≤ κi.

with Γ > 0 a design parameter. The filtered tracking error r(k) and the NN weight
estimates Ŵ1(k), Ŵ2(k), and Ŵ3(k) are UUB provided the following conditions hold:

(1) αi ‖ ϕ̂i(k) ‖2<
{

2 ∀i = 1, 2,
1 ∀i = 3,

(7.3.51)

(2) 0 < Γ < 1, (7.3.52)

(3) kvmax <
1√
σ̄

(7.3.53)

where σ̄ is given by

σ̄ = β3 +

2∑
i=1

βiκ
2
i (7.3.54)

with

βi = αi ‖ ϕ̂i(k) ‖2 +
[(1− αi ‖ ϕ̂i(k) ‖2)− Γ ‖ I − αiϕ̂i(k)ϕ̂

T
i (k) ‖]2

(2− αi ‖ ϕ̂i(k) ‖2) . (7.3.55)

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 347

For Algorithm (a) β3 is given by

β3 = 1 +
1

(1− α3 ‖ ϕ̂3(k) ‖2) (7.3.56)

whereas for Algorithm (b) it is given by

β3 = 1 + α3 ‖ ϕ̂3(k) ‖2 +
1

(1− α3 ‖ ϕ̂3(k) ‖2) [α3 ‖ ϕ̂3(k) ‖2 +Γ(1− α3 ‖ ϕ̂3(k) ‖2)]2.
(7.3.57)

Note: The parameters βi, αi, ∀i = 1, 2, 3 and σ are dependent upon the trajectory.

�

The proof and bounds on tracking error and NN weights are similar to those in
the other theorems of this chapter.

Example 7.3.3 (Improved Weight Tuning and Projection Algorithm) :

In the case of projection algorithm (7.3.47)-(7.3.50) with (7.3.46), the weights in
Fig. 7.3.5 appear to be bounded, though this in general cannot be guaranteed without
the PE condition. Therefore, the response of the controller with the improved weight
tuning (7.3.47)-(7.3.50) with (7.3.46) is shown in Fig. 7.3.6.

The design parameter Γ is selected to be 0.01. Note that with the improved weight
tuning, not only is the tracking performance improved, for instance in axis 2, but also the
weights remain bounded without the necessity of PE. Finally, in all cases no initial NN
training or learning phase was needed. In addition, the dynamics of the nonlinear system
was not required to implement the NN controller as opposed to conventional adaptive
control.

To study the contribution of the NN, Fig. 7.3.7 shows the response of the PD controller
with no neural net. From Fig. 7.3.7, it is clear that the addition of the NN makes a
significant improvement in the tracking performance. �

Example 7.3.4 : Consider the Example 7.2.4 and the objective is to track a periodic
step input of magnitude two units with a period of 30 sec. The elements of the diag-

onal matrix were chosen as kv =

[
0.1 0
0 0.1

]
and a sampling interval of 10 ms was

considered. A three-layer NN was selected with two input, six hidden, and two output
nodes. Sigmoidal activation functions were employed in all the nodes in the hidden layer.
The initial conditions for the plant were chosen to be [1,−1]T . The weights were initial-
ized to zero with an initial threshold value of 3.0. The design parameter Γ is selected to
be 0.01. All the elements of the design parameter matrix, Bi; i = 1, 2, are taken to be
0.1. No learning is performed initially to train the networks. The design parameters for
the projection algorithm (7.3.46) were selected to be ξ1 = ξ2 = 1.0, and ξ3 = 0.7 with
ζ1 = ζ2 = ζ3 = 0.001.

It is also found (not shown) in this example as well that the delta rule based weight
tuning performs very well when the learning rate is small. In addition, it was also observed
during simulation studies that the learning rate for delta rule based weight tuning should
decrease with an increase in the number of hidden-layer neurons. As expected, however,
this problem is solved by employing a projection algorithm. In this example, only results
using the improved weight tuning is presented. The response of the controller with the
improved weight tuning (7.3.47)-(7.3.50) with (7.3.46) is shown in Fig. 7.3.8. Note from
Fig. 7.3.8, as expected, the performance of the controller is extremely impressive.

348 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Figure 7.3.6: Response of multilayer neural network controller with improved weight
tuning and projection algorithm with small α3. (a) Desired and actual trajectory.
(b) Representative weight estimates.

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 349

350 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Let us consider the case when a bounded disturbance given by

w(k) =

{
0.0 0 ≤ kTm < 12
0.5 kTm ≥ 12

(7.3.58)

is acting on the plant at the time instant t. Fig. 7.3.9 presents the tracking response of
NN controllers with the improved weight tuning and projection algorithm. The magnitude
of the disturbance can be increased, however, the value should be bounded. The value
shown in (7.3.58) is employed for simulation purposes only. It can be seen from the figure
that the bounded disturbance induces bounded tracking errors at the output of the plant.
From the results, it can be inferred that the bounds presented and the theoretical claims
were justified through simulation studies both in continuous and discrete-time. �

7.3.4.2 Multilayer NN Controller Not Requiring PE

The next result uses the improved weight tuning updates to avoid PE, extending the
stability analysis just presented for a three-layer NN to an n-layer NN. The proof
is omitted and left for the reader as an excercise.

Theorem 7.3.4 (Multilayer NN Controller Not Requiring PE) :
Assume the hypotheses presented above and now consider the modified weight tuning

algorithms provided for the input and hidden layers as

Ŵi(k + 1) = Ŵi(k)− αiϕ̂i(k)[ŷi(k) +Bikvr(k)]
T

−Γ ‖ I − αiϕ̂i(k)ϕ̂
T
i (k) ‖ Ŵi(k), i = 1, · · · , n− 1 (7.3.59)

Let the weight update for the output layer be given by either

a) Ŵn(k + 1) = Ŵn(k) + αnϕ̂n(k)f̄
T

−Γ ‖ I − αnϕ̂n(k)ϕ̂
T
n (k) ‖ Ŵn(k) (7.3.60)

or

b) Ŵn(k + 1) = Ŵn(k) + αnϕ̂n(k)r
T (k + 1)

−Γ ‖ I − αnϕ̂n(k)ϕ̂
T
n (k) ‖ Ŵn(k) (7.3.61)

with Γ > 0 a design parameter. Then, the filtered tracking error r(k) and the NN weight
estimates Ŵi(k); ∀i = 1, · · · , n are UUB, provided the following conditions hold:

(1) αi ‖ ϕ̂i(k) ‖2<
{

2 ∀i = 1, · · · , n− 1
1 ∀i = n

(7.3.62)

(2) 0 < Γ < 1, (7.3.63)

(3) kvmax <
1√
σ̄

(7.3.64)

where σ̄ is given by

σ̄ = βn +

n−1∑
i=1

βiκ
2
i (7.3.65)

with

βi = αi ‖ ϕ̂i(k) ‖2 +
[(1− αi ‖ ϕ̂i(k) ‖2)− Γ(1− αi ‖ ϕ̂i(k) ‖2)]2

(2− αi ‖ ϕ̂i(k) ‖2) . (7.3.66)

7.3. MULTILAYER NEURAL NETWORK CONTROLLER DESIGN 351

352 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

7.4. PASSIVITY PROPERTIES OF THE NN 353

For Algorithm (a) βn is given by

βn = 1 +
1

(1− αn ‖ ϕ̂n(k) ‖2) (7.3.67)

whereas for the case of Algorithm (b) it is given by

βn = 1 + αn ‖ ϕ̂n(k) ‖2 +
1

(1− αn ‖ ϕ̂n(k) ‖2) [αn ‖ ϕ̂n(k) ‖2 +Γ(1− αn ‖ ϕ̂n(k) ‖2)]2

(7.3.68)
Note: The parameters αi, βi, ∀i = 1, · · · , n−1 and σ are dependent upon the trajectory.

�

Note that no PE condition is needed with the modified tuning algorithms.

7.4 PASSIVITY PROPERTIES OF THE NN

In this section, an interesting property of the NN controller is shown. Namely, the
NN controller makes the closed-loop system passive. The practical importance of
this is that additional unknown bounded disturbances do not destroy the stability
and tracking of the system. Passivity was discussed in Chapter 2. Note that the
NN used in the controllers in this chapter are feedforward NN with no dynamics.
However, tuning them on-line turns them into dynamical systems so that passivity
properties can be defined.

The closed-loop error system (7.3.7) is shown in Fig. 7.4.1 using a n-layer neu-
ral network, for instance when (7.3.36) is employed (the structure for (7.3.35) is
similar); note that the NN now is in the standard feedback configuration as opposed
to the NN controller in Fig. 7.3.1, which has both feedback and feedforward connec-
tions. Passivity is essential in a closed-loop system as it guarantees the boundedness
of the signals, and hence suitable peformance, even in the presence of additional un-
forseen bounded disturbances. This equates to robustness of the closed-loop system.
Therefore, in this section the passivity properties of the multilayer NN, and of the
closed-loop system, are explored for various weight tuning algorithms. Note the in-
put and the hidden layer weight update laws employed in multilayer nets are the
same for Algorithms (a) and (b).

7.4.1 Passivity Properties of the Tracking Error System

In general, the closed-loop tracking system (7.1.12) can also be expressed as

r(k + 1) = kvr(k) + ζ0(k) (7.4.1)

where
ζ0(k) = f̃(x) + d(k). (7.4.2)

The next dissipativity result holds for this system.

Theorem 7.4.1 (Passivity of the Tracking Error System) :
The tracking error system (7.1.12) is state strict passive (SSP) from ζ0(k) to kvr(k)

provided that
kT
v kv < I. (7.4.3)

354 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Figure 7.4.1: Neural network closed-loop system using an n-layer neural network.

Proof:
Select a Lyapunov function candidate

J = rT (k)r(k). (7.4.4)

The first difference is given by

�J = rT (k + 1)r(k + 1)− rT (k)r(k). (7.4.5)

Substituting (7.4.1) in (7.4.5) yields

�J = −rT (k)[I − kT
v kv]r(k) + 2rT (k)kvζ0 + ζT0 (k)ζ0(k). (7.4.6)

Note (7.4.6) is in power form defined in Chapter 2 with the first term taken as g(k), a
quadratic function of the state r(k). Hence (7.4.1) is a state strict passive system. �

Even though the closed-loop error system (7.4.1) is state strict passive, the
closed-loop system is not passive unless the weight update laws guarantee the pas-
sivity of the lower block in Fig. 7.4.1. It is usually difficult to demonstrate that
the error in weight updates are passive. However, in the next subsection it is shown
that the delta-rule-based tuning algorithm (7.2.9) and (7.2.11) for a one-layer neural
network yield a passive net.

7.4.2 Passivity Properties of One-layer Neural Networks and the Closed-
Loop System

It is shown here that the one-layer NN tuning algorithms in Theorem 7.2.1, where
PE is required, make the NN passive, but the tuning algorithms in Theorem 7.2.3,
where PE is not required, make the NN state strict passive (SSP). The implications
for the closed-loop passivity using the NN contoller in Table 7.2.1 and Table 7.2.2
are then discussed.

7.4. PASSIVITY PROPERTIES OF THE NN 355

7.4.2.1 Passivity of the NN

The next result details the passivity properties engendered by the tuning rules in
Table 7.2.1.

Theorem 7.4.2 (One-Layer NN Passivity of Tuning Algorithms ith PE) :

The weight tuning algorithms (7.2.9) and (7.2.11) make the map from (ε(k) + d(k))
for the case of Algorithm (a), and (kvr(k) + ε(k) + d(k)) for the case of Algorithm (b), to
−W̃T (k)ϕ(x(k)) a passive map.

Proof:

Define the Lyapunov function candidate

J =
1

α
tr[W̃T (k)W̃ (k)], (7.4.7)

whose first difference is given by

J =
1

α
tr[W̃T (k + 1)W̃ (k + 1)− W̃T (k)W̃ (k)]. (7.4.8)

Algorithm (a): Substituting the weight update law (7.2.9) in (7.4.8) yields

�J = −(2− αϕTϕ(x(k)))(−W̃T (k)ϕ(x(k)))T (−W̃T (k)ϕ(x(k))) +

2(1− αϕT (x(k))ϕ(x(k)))(−W̃T (k)ϕ(x(k)))T (ε(k) + d(k)) +

αϕT (x(k))ϕ(x(k))(ε(k) + d(k))T (ε(k) + d(k)). (7.4.9)

Note (7.4.9) is in power form defined in Chapter 2 as long as the condition (7.2.12)
holds. This in turn guarantees the passivity of the weight tuning mechanism (7.2.9).

Algorithm (b): Select the Lyapunov function candidate (7.4.7). Use (7.2.11) in (7.4.8)
to obtain

�J = −(2− αT (x(k))ϕ(x(k)))(−W̃T (k)ϕ(x(k)))T (−W̃T (k)ϕ(x(k))) +

2(1− αϕT (x(k))ϕ(x(k)))(−W̃T (k)ϕ(x(k)))T (kvr(k) + ε(k) + d(k)) +

αϕT (x(k))ϕ(x(k))(kvr(k) + ε(k) + d(k))T (kvr(k) + ε(k) + d(k)) (7.4.10)

which is in power form defined in Chapter 2 for discrete-time systems as long as the
condition (7.2.12) holds.

�

The next result shows that the modified tuning algorithms in Table 7.2.2 yield
a stronger passivity property for the NN. The proof is an extension of the previous
one.

Theorem 7.4.3 (One-Layer NN Passivity of Tuning Algorithms without PE) :

The modified weight tuning algorithms (7.2.36) and (7.2.37) make the map from,
(ε(k) + d(k)) for the case of Algorithm (a), and (kvr(k) + ε(k) + d(k)) for the case of
Algorithm (b), to −W̃T (k)ϕ(x(k)) a state strict passive map. �

356 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

7.4.2.2 Passivity of the Closed-Loop System

It has been shown that the filtered tracking error system (7.4.1) in Fig. 7.4.1 is state
strict passive, while the NN weight error block is passive using the tuning rules in
Table 7.2.1. Thus, using standard results (Slotine and Li 1991), it can be concluded
that the closed-loop system is passive. Therefore, according to the Passivity Theorem
one can conclude that the inputs/output signals of each block are bounded as long
as the disturbances are bounded. Though passive, however, the closed-loop system
is not state strict passive so this does not yield boundedness of the internal states
of the lower block (e.g. W̃ (k)) unless PE holds.

On the other hand, the enhanced tuning rules of Table 7.2.2 yield a SSP weight
tuning block in the figure, so that the closed-loop system is SSP. Thus, the internal
states of the lower block (e.g. W̃ (k)) are bounded even if PE does not hold.

7.4.3 Passivity Properties of Multilayer Neural Networks

In this subsection the results of the previous subsection are extended for controllers
using multilayer NN. It is shown that the three-layer tuning algorithms in Theorem
7.3.1, where PE is required, make the NN passive, whereas the tuning algorithms in
Theorem 7.3.3, where PE is not required, make the NN state strict passive. Similar
results can be shown for the general case of multiple hidden layers. The implications
for closed-loop passivity are detailed.

Theorem 7.4.4 (Three-Layer NN Passivity of Tuning Algorithms with PE) :

The weight tuning algorithms (7.3.9) and (7.3.10) make the map from WT
i ϕ̂i(k) +

Bikvr(k) to W̃T
i (k)ϕ̂i(k); i = 1, 2, both passive maps. �

Thus, the weight error block is passive and the closed-loop filtered tracking er-
ror system (7.3.7) in Fig. 7.4.1 is dissipative; this guarantees the dissipativity of
the closed-loop system [Slotine and Li 1991]. By employing the passivity theorem
(Slotine and Li 1991), one can conclude that the inputs/output signals of each block
are bounded as long as the external inputs are bounded. Although dissipative, the
closed-loop system is not state strict passive so this does not yield boundedness of
the internal states of the lower block (W̃i(k); ∀i = 1, · · · , n) unless PE holds.

The next proof shows why PE is not needed with the modified update algorithms.

Theorem 7.4.5 (Three-Layer NN Passivity without PE) :

The modified weight tuning algorithms (7.3.47) and (7.3.48) make the map from
WT

i ϕ̂i(k) + Bikvr(k) to W̃T
i ϕ̂i(k); i = 1, 2, both state strict passive maps. Also, the

weight tuning mechanisms (7.3.49) and (7.3.50) for a three-layer NN make the map from,
(WT

3 ϕ̃3(k)+ε(k)+d(k)) for the case of Algorithm (a), and (kvr(k)+WT
3 ϕ̃3(k)+ε(k)+d(k))

for the case of Algorithm (b), to −W̃T
3 (k)ϕ̂3(k) a state strict passive map. �

Thus, the modified tuning algorithms guarantee SSP of the weight tuning blocks,
so that the closed-loop system is SSP. Therefore, internal stability can be guaranteed
even in the absence of PE.

7.5. CONCLUSIONS 357

7.5 CONCLUSIONS

In this chapter and the next two are given neural network controllers and identifiers
that use discrete-time tuning. Discrete-time tuning is important because the com-
plexity of NN controllers, and indeed modern control algorithms in general, requires
their implementation as digital controllers using microprocessors. Rigorous proofs of
closed-loop stability and performance for discrete-time learning/adaptive controllers
are exceedingly complex, since discrete-time Lyapunov functions are quadratic in the
state first difference. This has traditionally been approached by proving convergence
of the parameter identification algorithm and then making a certainty equivalence
assumption. Under this assumption, tracking error stability is then proved sepa-
rately. However, in our approach we select a Lyapunov function that includes both
the tracking error and the parameter estimation error. This makes for complicated
proofs but allows one to avoid the certainty equivalence assumption. We also showed
how to avoid other restrictions such as linearity in the unknown system parameters,
the need for computing a regression matrix, and persistence of excitation.

First, a class of NN was considered that has only one layer of tunable weights.
Then the full nonlinear in the parameters control problem was confronted for mul-
tilayer NN controllers. In each case, several NN controllers were derived. Finally,
passivity properties of NN controllers were studied.

7.6 REFERENCES

Åström, K.J. , and B. Wittenmark, Adaptive Control, Addison-Wesley Company,
Reading, Massachusetts, 1989.

Chen, F.-C., and H.K. Khalil, “Adaptive control of nonlinear systems using neural
networks,” International Journal of Control, vol. 55, pp. 1299-1317, 1992.

Chen, F.-C., and H.K. Khalil, “Adaptive control of nonlinear discrete-time systems
using neural networks,” IEEE Trans. on Automatic Control, vol. 40, no. 5, pp.
791-801, May 1995.

Commuri, S., and F.L. Lewis, “CMAC neural networks for control of nonlinear
dynamical systems: structure, stability and passivity,” Proc. IEEE Int. Symposium
on Intelligent Control, pp. 123-129, Monterey, August 1995.

Goodwin, G.C., and K.S. Sin, Adaptive Filtering, Prediction, and Control,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

Kanellakopoulos, I., “A discrete-time adaptive nonlinear system,” IEEE Trans. on
Automatic Control, vol. 39, no. 11, pp. 2362-2365, November 1994.

Jagannathan, S., and F.L. Lewis, “Robust implicit self-tuning regulator: conver-
gence and stability,” Automatica, vol. 32, no. 12, pp. 1629-1644, 1996a.

Jagannathan, S., and F. L.Lewis, “Multilayer discrete-time neural net controller
with guaranteed performance,” IEEE Trans. on Neural Networks, vol.7, no.1, pp.
107-130, January 1996b.

358 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Jagannathan, S., and F.L. Lewis, “Discrete-time neural net controller for a class
of nonlinear dynamical systems,” IEEE Trans. Automat. Control, vol. 41, no. 11,
pp. 1693-1699, Nov. 1996c.

Landau, I.D., Adaptive Control: The Model Reference Approach, Marcel Dekker,
New York, 1979.

Landau, I.D., “Evolution of adaptive control,” ASME J. Dynamic Syst. Measure-
ments, Contr, vol. 115, pp. 381-391, June 1993.

Lewis, F.L., K. Liu and A. Yesilderik, “Multilayer neural robot controller with
guaranteed performance,” IEEE Trans. on Neural Networks, vol.6, no.3, pp. 703-
715, May 1995.

Lewis, F.L., C.T. Abdallah, and D.M. Dawson, Control of Robot Manipulators,
MacMillan, New York, 1993.

Ljung, L., and T. Söderström, Theory and Practice of Recursive Identification,
MIT Press Cambridge, MA, 1983.

Mpitsos, G.J., and R.M. Burton Jr, “Convergence and divergence in neural net-
works: Processing of chaos and biological analogy,” Neural Networks, vol. 5, pp.
605-625, 1992.

Narendra, K.S., and A.M. Annaswamy, “A new adaptive law for robust adaptation
without persistent excitation,” IEEE Trans. on Automatic Control, vol. AC-32, no.
2, pp. 134-145, February 1987.

Narendra, K.S., and A.M. Annaswamy, Stable Adaptive Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

Narendra, K.S., and K.S. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. on Neural Networks, vol. 1, no. 1,
pp. 4-27, March 1990.

Polycarpou, M.M., and P.A. Ioannou, “Identification and control using neural
network models: design and stability analysis,” Dept. of Elec. Eng., Tech Report
91-09-01, September 1991.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning internal represen-
tations by error propagation,” in Readings in Machine Learning, pp. 115-137, ed.
J. W. Shavlik, Morgan Kaufmann, San Mateo, CA, 1990.

Sadegh, N., “A perceptron network for functional identification and control of non-
linear systems,” IEEE Trans. on Neural Networks, vol. 4, no. 6, pp. 982-988,
November 1993.

Sanner, R.M., and J.-J. Slotine, “Gaussian networks for direct adaptive control”,
IEEE Trans. on Neural Networks, vol. 3, no. 6, pp. 837-863, November 1992.

Sira-Ramirez, H.J., and S.H. Zak, “The adaptation of perceptrons with applications
to inverse dynamics identification of unknown dynamic systems,” IEEE Trans.
Syst., Man, Cybernetics, vol. 21, no. 3, pp. 534-543, May/June 1991.

7.7. PROBLEMS 359

Slotine, J.-J. E, and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood
Cliffs, NJ,1991.

Sontag, E., “Feedback stabilization using two-hidden-layer nets,” IEEE Trans. on
Neural Networks, vol. 3, no. 6, pp.981-990, November 1992.

Sussmann, H. J., “Uniqueness of the weights for minimal feedforward nets with
given input-output map,” Neural Networks, vol.5, pp.589-593, 1992.

Widrow, B., and M. Lehr, “Thirty years of adaptive neural networks: Perceptrons,
madaline and backpropagation,” Proc. of the IEEE, vol. 78, no. 9, pp.1415-1442,
September 1990.

Zhang, T., C.C. Hang, and S.S. Ge, “Robust adaptive control for general nonlinear
systems using multilayer neural networks,” preprint, 1998.

7.7 PROBLEMS

Section 7.2

Problem 7.2-1 : One-Layer Neural Network. For the system described by

x(k + 1) = f(x(k), x(k − 1)) + u(k), (7.7.1)

where f(x(k), x(k − 1)) = x(k)x(k−1)[x(k)+1.0]
1+x2(k)+x(k−1)

.

Design a one-layer neural network controller with and/or without learning phase
and by using the developed delta rule-based weight tuning algorithm and appropri-
ately choosing the adaptation gains. Repeat the problem by using the modified update
weight tuning method.

Problem 7.2-2 : One-layer Neural Network. For the system described by

x(k + 1) = f(x(k), x(k − 1)) + u(k), (7.7.2)

where f(x(k), x(k − 1)) = x(k)
1+x(k) + u3(k). Design a one-layer neural network con-

troller with and/or without learning phase and by using the developed delta rule-
based weight tuning algorithm and appropriately choosing the adaptation gains. Re-
peat the problem by using the modified update weight tuning method.

Section 7.3

Problem 7.3-1 : Stability and Convergence for a n-layer NN Using Algo-
rithm (a). Assume the hypotheses presented for three-layer NN and use the weight
updates presented in (7.3.33)-(7.3.35) and show the stability and boundedness of
tracking error and error in weight updates.

Problem 7.3-2 : Stability and Convergence for a n-layer NN Using Al-
gorithm (b). Assume the hypotheses presented for three-layer NN and use the
weight updates presented in (7.3.33)-(7.3.34) with (7.3.35) and show the stability
and boundedness of tracking error and error in weight updates.

360 CHAPTER 7. NN CONTROL WITH DISCRETE-TIME TUNING

Problem 7.3-3 : Three-layer NN Continuous-Time Simulation Example
Using Algorithm (a). Perform a MATLAB simulation for Example 7.2.1 using
a multilayer neural network with delta rule-based weight tuning.

Problem 7.3-4 : Three-layer NN Using Algorithm (b). Perform a MATLAB
simulation for systems described by (7.7.1) and (7.7.2) using a multilayer neural
network with delta rule-based weight tuning.

Problem 7.3-5 : Three-layer NN Discrete-time Simulation Example Us-
ing Algorithm (a). Perform a MATLAB simulation for Example 7.2.4 using a
multilayer neural network with delta rule-based weight tuning.

Problem 7.3-6 : Delta Rule Slows Down Using Algorithm (a). Perform a
MATLAB Simulation using a large value of adaptation gains for Example 7.2.1.

Problem 7.3-7 : n-Layer NN for Control. Perform a MATLAB simulation
using a n-layer NN and with Algorithms (a) and (b) for the Example 7.2.1. Show
the advantage of adding more layers by picking less number of hidden-layer neurons
and layers more than three. Use both deta-rule and projection algorithm.
Problem 7.3-8 : Stability and Convergence of a n-Layer NN with Modi-
fied Weight Tuning. Show for a n-layer NN and use the modified weight tuning
(use both Algorithm (a) and Algorithm (b) to show the boundedness of both tracking
error and weight estimates.

Problem 7.3-9 : Example (7.2.1) Using Modified Weight Tuning. Perform
a MATLAB simulation for the Example 7.2.1 using a three-layer NN and with
Algorithm (a).

Problem 7.3-10 : Discrete-Time Simulation Example Using Modified
Weight Tuning. Perform a MATLAB simulation for the Example 7.2.4 using a
three-layer NN and with Algorithm (a).

Problem 7.3-11 : Three-layer NN Using Algorithm (b). Perform a MAT-
LAB simulation for systems described by (7.7.1) and (7.7.2) using a multilayer
neural network with improved weight tuning.

Problem 7.3-12 : n-layer NN and Modified Tuning Methods. Repeat Ex-
amples 7.2.1 and 7.2.4 using a n-layer (choose more than three layers) with fewer
number of hidden-layer neurons and with more number of layers.

Section 7.4

Problem 7.4-1 : Passivity Properties for a n-layer NN. Show the passivity
properties of the input and hidden layers for a n-layer neural network using delta
rule-based weight tuning and with Algorithms (a) and (b).

Problem 7.4-2 : Passivity Properties for a n-layer NN Using Modified
Weight Tuning. Show the passivity properties of the input and hidden layers for
a n-layer neural network using improved weight tuning and with Algorithms (a) and
(b).

Chapter 8

Discrete-Time Feedback
Linearization by Neural
Networks

In the previous chapter, adaptive control of a class of nonlinear systems in discrete-
time was presented using neural networks. Although Lyapunov stability analysis
and passivity properties were detailed, the analysis was limited to a specific class
of nonlinear systems of the form x(k + 1) = f(x(k)) + u(k), where there are no
uncertainties in the coefficient of the control input u(k). However, if a system in
continuous-time of the form ẋ = f1(x)+u(k) is discretized (Chen and Khalil 1995),
the system in discrete-time will be of the form x(k+1) = f(x(k))+ g(x(k))u(k) for
some functions f(.) and g(.). Therefore, in this chapter the results in the previous
chapter are extended to the more general class of nonlinear discrete-time systems of
the form x(k + 1) = f(x(k)) + g(x(k))u(k).

Note that for control purposes even if the open-loop system is stable, it must
be shown that inputs, outputs, and states remain bounded when a feedback loop is

designed. In addition, if the controller is given in the form u(k) = N(x)
D(x) , then D(x)

must be non zero for all time— we call this a well-defined controller. For feedback
linearization, this type of controller is usually needed. If any adaptation scheme is
implemented to provide an estimate D̂(x) of D(x), then extra precaution is required
to guarantee that D̂(x) �= 0 for all time.

In Jagannathan and Lewis (1996a, 1996c) it has been shown that NN can ef-
fectively control in discrete-time a complex nonlinear system without the necessity
of a regression matrix. There, the nonlinear systems under consideration are of
the form x(k + 1) = f(x(k)) + u(k), with the coefficient of the input matrix be-
ing identity. Even though in Chen and Khalil (1995) a multilayer NN controller
designed in discrete-time is employed to control a nonlinear system of the form
x(k+1) = f(x(k))+ g((k))u(k), an initial off-line learning phase is needed. There,
g(x(k)) is reconstructed by an adaptive scheme as ĝ(x), and a local solution is given
by assuming that initial estimates are close to the actual values and they do not
leave a feasible invariant set in which ĝ(x) �= 0. Unfortunately, even with very good

361

362 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

knowledge of the system it is not easy to choose the initial weights so that the NN
approximates it. Therefore off-line learning phase is used to identify the system in
order to choose the initial weight values.

In Chapter 6 a multilayer NN controller (Yeşildirek and Lewis 1995) is designed
in continuous-time to perform feedback linearization of Brunovsky form systems
that takes into account all these problems. The motivation of this chapter is to pro-
vide like results for discrete-time. A family of novel learning schemes is presented
here that do not require preliminary off-line training. The traditional problems with
discrete-time adaptive control are overcome by using a single Lyapunov function
containing both the parameter identification errors and the control errors. This
guarantees at once both stable identification and stable tracking. However, it leads
to complex proofs where it is necessary to complete the square with respect to sev-
eral different variables. The use of a single Lyapunov function for tracking and
estimation avoids the need for the certainty equivalence assumption. Along the way
various other standard assumptions in discrete-time adaptive control are also over-
come, including persistence of excitation, linearity-in-the-parameters, and the need
for tedious computation of a regression matrix. The problem of ĝ(x) �= 0 is con-
fronted by appropriately selecting the weight updates as well as the control input.

First we treat design for one-layer neural nets (Jagannathan and Lewis 1996b)
where the weights enter linearly. In this case, we discuss the controller structure,
various weight update algorithms, and persistence of excitation definitions. Note
that linearity in the NN weights is far milder than the usual adaptive control re-
striction of linearity in the unknown system parameters, since the universal approx-
imation property of NN means any smooth nonlinear function can be reconstructed.
Next, multilayer NN are employed for feedback linearization, with rigorous stability
analyses presented. Finally, passivity properties of discrete-time NN controllers are
covered.

8.1 SYSTEM DYNAMICS AND THE TRACKING PROBLEM

In this section we describe the class of systems to be dealt with in this chapter and
study the error dynamics using a specific feedback linearization controller.

8.1.1 Tracking Error Dynamics for a Class of Nonlinear Systems

Consider anmn-th-order multi-input/multi-output (MIMO) discrete-time state feed-
back linearizable minimum phase nonlinear system (Chen and Khalil 1995), to be
controlled, given in the multivariable Brunovsky form (see Chapter 2) as

x1(k + 1) = x2(k)
...

xn−1(k + 1) = xn(k)
xn(k + 1) = f(x(k)) + g(x(k))u(k) + d(k)

(8.1.1)

with state x(k) = [xT1 (k), · · · , xTn (k)]T having xi(k) ∈ �m; i = 1, · · · , n, and control
u(k) ∈ �m. The nonlinear functions f(·) and g(·) are assumed unknown. The
disturbance vector acting on the system at the instant k is d(k) ∈ �m, which we

8.1. SYSTEM DYNAMICS AND THE TRACKING PROBLEM 363

assume unknown but bounded so that ‖ d(k) ‖≤ dM a known constant. Further, the
unknown smooth function satisfies the mild assumption

| g(x(k)) |≥ g
¯
> 0 (8.1.2)

with g
¯

a known lower bound. The assumption given above on the smooth function
g(x) implies that g(x) is strictly either positive or negative for all x. From now on,
without loss of generality, we will assume that g(x) is strictly positive. Note that at
this point there is no general approach to analyze this class of unknown nonlinear
systems. Adaptive control, for instance, needs an additional linear in the parameters
assumption (Åström and Wittenmark 1989, Goodwin and Sin 1984).

Feedback linearization will be used to perform output tracking, whose objective
can be described as: given a desired trajectory in terms of output, xnd(k), and
its delayed values, find a control input u(k) so that the system tracks the desired
trajectory with an acceptable bounded error in the presence of disturbances while
all the states and controls remain bounded. In order to continue, the following
assumptions are required.

Assumption 8.1.1 (Bounds for System and Desired Trajectory) :
1. The sign of g(x) is known.
2. The desired trajectory vector with its delayed values is assumed to be available for

measurement and bounded by an upper bound.
�

Given a desired trajectory xnd(k) and its delayed values, define the tracking error
as

en(k) = xn(k)− xnd(k), (8.1.3)

and the filtered tracking error, r(k) ∈ �m,

r(k) = en(k) + λ1en−1(k) + · · ·+ λn−1e1(k), (8.1.4)

where en−1(k), · · · , e1(k) are the delayed values of the error en(k) and λ1, · · · , λn−1

are constant matrices selected so that | zn−1 + λ1z
n−2 + · · · + λn−1 | is stable.

Equation (8.1.4) can be expressed as

r(k + 1) = en(k + 1) + λ1en−1(k + 1) + · · ·+ λn−1e1(k + 1). (8.1.5)

Using (8.1.1) in (8.1.5), the dynamics of the filtered tracking error system (8.1.5)
can be written in terms of the tracking error as

r(k + 1) = f(x(k))− xnd(k + 1) + λ1en(k) + · · ·+ λn−1e2(k) + g(x(k))u(k) + d(k)
(8.1.6)

Equation (8.1.6) can be expressed as

r(k + 1) = f(x(k)) + g(x(k))u(k) + d(k) + Yd, (8.1.7)

where

Yd = −xnd(k + 1) +
n−2∑
i=0

λi+1en−i. (8.1.8)

364 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

If we knew the functions f(x(k)) and g(x(k)) and when no disturbances are present,
the control input u(k) could be selected as the feedback linearization controller

u(k) =
1

g(x(k))
(−f(x(k)) + v(k)) (8.1.9)

with v(k) taken as an auxiliary input given by

v(k) = kvr(k)− Yd. (8.1.10)

Then the filtered tracking error r(k) goes to zero exponentially by properly selecting
the gain matrix kv. Since the system functions are not known a priori, the control
input u(k) can be selected as

u(k) =
1

ĝ(x(k))
(−f̂(x(k)) + v(k)), (8.1.11)

with f̂(x(k)) and ĝ(x(k)) being the estimates of f(x(k)) and g(x(k)) respectively.
Note that it is well-known, even in adaptive control of linear systems, that guar-
anteeing the boundedness of ĝ(x(k)) away from zero becomes an important issue in
this type of controller.

Equation (8.1.7) can be rewritten as

r(k + 1) = v(k)− v(k) + f(x(k)) + g(x(k))u(k) + d(k) + Yd. (8.1.12)

Substituting (8.1.10) and (8.1.11) for v(k) in (8.1.12), Equation (8.1.12) can be
rewritten as

r(k + 1) = kvr(k) + f̃(x(k)) + g̃(x(k))u(k) + d(k), (8.1.13)

where the functional estimation errors are given by

f̃(x(k)) = f(x(k))− f̂(x(k)) (8.1.14)

and
g̃(x(k)) = g(x(k))− ĝ(x(k)). (8.1.15)

This is an error system wherein the filtered tracking error is driven by the functional
estimation errors and unknown disturbances.

In this chapter, discrete-time NN are used to provide the estimate f̂(·) and ĝ(·).
The error system (8.1.13) is used to focus on selecting discrete-time NN tuning
algorithms that guarantee the stability of the filtered tracking error r(k). Then,
since (8.1.4), with the input considered as r(k) and the output e(k), describes a
stable system, using the notion of operator gain (Jagannathan and Lewis 1996b)
one can guarantee that e(k) exhibits stable behavior.

8.2 NN CONTROLLER DESIGN FOR FEEDBACK LINEARIZATION

In this section we derive the error system dynamics and present the NN controller
structure. NN weight tuning algorithms are given for the one-layer case in Section
8.3 and for the multilayer case in Section 8.4.

8.2. NN CONTROLLER DESIGN FOR FEEDBACK LINEARIZATION 365

8.2.1 NN Approximation of Unknown Functions

It will be necessary to review the notation given in Chapter 7 for multilayer NN.
Assume that there exist some constant ideal weights Wf and Wg for two one-layer
NN and W1f ,W2f ,W3f and W1g,W2g,W3g for the case of three-layer NN so that
the nonlinear functions in (8.1.1) can be written as

f(x) =WT
f ϕf (x(k)) + εf (k) (8.2.1)

and
g(x) =WT

g ϕg(x(k)) + εg(k) (8.2.2)

for the case of two one-layer NN and

f(x) =WT
3fϕ3f (k) + εf (k) (8.2.3)

and
g(x) =WT

3gϕ3g(k) + εg(k) (8.2.4)

for the case of two three-layer NN. The notation ϕ3(k) was defined in Chapter 7.
We assume that ‖ εf (k) ‖< εNf , ‖ εg(k) ‖< εNg with the bounding constants εNf

and εNg known. The activation functions ϕf (x(k)) and ϕg(x(k)) must be selected
to provide suitable basis sets for f(·) and g(·) respectively for the case of one-layer
NN. Note that the activations functions in the case of multilayer NN do not need to
form a basis, unlike the case of one-layer NN, due to the universal approximation
property of multilayer NN (Cybenko 1989).

Unless the net is ‘minimal’, the ‘ideal’ weights may not be unique (Sontag 1992,
Sussmann 1992). The best weights may then be defined as those which minimize
the supremum norm over S of ε(k). This issue is not a major concern here as it
is needed to know only the existence of such ideal weights; their actual values are
not required. This assumption is similar to Erzberger’s assumptions in the linear-
in-the-parameters adaptive control. This major difference is that, while Erzberger’s
assumptions often do not hold, the approximation properties of NN guarantee that
the ideal weights do always exist if f(x(k)) and g(x(k)) are continuous over a com-
pact set.

Let x ∈ U a compact subset of Rn. Assume that h(x(k)) ∈ C∞[U], i.e. a
smooth function U −→ R, so that the Taylor series expansion of h(x(k)) exists.
One can derive that ‖ x(k) ‖≤ d01 + d11 | r(k) |. Then using the bound on x(k) and
expressing h(x(k)) as (8.2.5), yields an upper bound on h(x(k)) as

| h(x(k)) |=|WT
h ϕh(k) + εh(k) |≤ C01 + C11 ‖ r(k) ‖, (8.2.5)

with C0 and C11 computable constants. In addition, the hidden-layer activation
functions, such as radial basis functions, sigmoids, etc. are bounded by a known
upper bound

‖ ϕf (k) ‖≤ ϕfmax

‖ ϕg(k) ‖≤ ϕgmax (8.2.6)

and

‖ ϕif (k) ‖≤ ϕifmax, i = 1, 2, 3

‖ ϕig(k) ‖≤ ϕigmax, i = 1, 2, 3. (8.2.7)

366 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Figure 8.2.1: Discrete-time neural network controller structure for feedback lin-
earization.

8.2.2 Error System Dynamics

Defining the NN functional estimates, employed to select the control input presented
in (8.1.11), as

f̂(x(k)) = ŴT
f (k)ϕf (x(k)) (8.2.8)

and
ĝ(x(k)) = ŴT

g (k)ϕg(x(k)) (8.2.9)

with Ŵf (k) and Ŵg(k) the current value of the weights. Similarly for the case of
three-layer NN,

f̂(x(k)) = ŴT
3f (k)ϕ̂3f (k) (8.2.10)

and
f̂(x(k)) = ŴT

3g(k)ϕ̂3g(k) (8.2.11)

with Ŵ3f (k), Ŵ2f (k), Ŵ1f (k) and Ŵ3g(k), Ŵ2g(k), Ŵ1g(k) the current values of the
weights. This yields the controller structure shown in Fig. 8.2.1. The controller
structure is very similar for the multilayer case also. The output of the plant is
processed through a series of delays to obtain the past values of the output, and
fed as inputs to the NN so that the nonlinear function in (8.1.1) can be suitably
approximated. Thus, the NN controller derived in a straightforward manner using
filtered error notions naturally provides a dynamical NN structure. Note that neither
the input u(k) nor its past values are needed by the NN. The next step is to determine
the weight updates so that the tracking performance of the closed-loop filtered error
dynamics is guaranteed.

Let Wf and Wg be the unknown ideal weights required for the approximation to
hold in (8.2.8) and (8.2.9) for the case of one-layer NN and W1f ,W2f ,W3f , W1g,
W2g, W3g be the ideal weights for multilayer NN. The weight matrices for the case
of multilayered NN are rewritten as

Zf = diag(Z1f , Z2f , Z3f) (8.2.12)

8.2. NN CONTROLLER DESIGN FOR FEEDBACK LINEARIZATION 367

and
Zg = diag(Z1g, Z2g, Z3g). (8.2.13)

Assume they are bounded by known values so that

‖Wf (k) ‖≤Wfmax (8.2.14)

and
‖Wg(k) ‖≤Wgmax (8.2.15)

for the case of one-layer NN and

‖W3f (k) ‖≤W3fmax,

‖W2f (k) ‖≤W2fmax,

‖W1f (k) ‖≤W1fmax, (8.2.16)

with

‖W3g(k) ‖≤W3gmax,

‖W2g(k) ‖≤W2gmax,

‖W1g(k) ‖≤W1gmax, (8.2.17)

for the multilayer case. Similarly, the ideal weights for the case of multilayered NN
are bounded by a known bound

‖ Zf (k) ‖≤ Zfmax (8.2.18)

‖ Zg(k) ‖≤ Zgmax. (8.2.19)

Similarly, one can also define the matrix of current weights for the case of a
multilayered NN as

Ẑf (k) = diag(Ẑ1f (k), Ẑ2f (k), Ẑ3f (k)) (8.2.20)

and
Ẑg(k) = diag(Ẑ1g(k), Ẑ2g(k), Ẑ3g(k)). (8.2.21)

Then the error in the weights during estimation is given by

W̃f (k) =Wf − Ŵf (k) (8.2.22)

and
W̃g(k) =Wg − Ŵg(k), (8.2.23)

for the case of one-layer NN and

W̃3f (k) = W3f − Ŵ3f (k),

W̃2f (k) = W2f − Ŵ2f (k),

W̃1f (k) = W1f − Ŵ1f (k),

Z̃f (k) = Zf − Ẑf (k), (8.2.24)

368 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

with

W̃3g(k) = W3g − Ŵ3g(k),

W̃2g(k) = W2g − Ŵ2g(k),

W̃1g(k) = W1g − Ŵ1g(k),

Z̃g(k) = Zg − Ẑg(k), (8.2.25)

for the case of multilayered NN. The error vector in activation function is given by

ϕ̃1f (k) = ϕ1f (k)− ϕ̂1f (k),

ϕ̃2f (k) = ϕ2f (k)− ϕ̂2f (k),

ϕ̃3f (k) = ϕ3f (k)− ϕ̂3f (k),

ϕ̃1g(k) = ϕ1g(k)− ϕ̂1g(k),

ϕ̃2g(k) = ϕ2g(k)− ϕ̂2g(k),

ϕ̃3g(k) = ϕ3g(k)− ϕ̂3g(k). (8.2.26)

The closed-loop filtered dynamics (8.1.13) become

r(k + 1) = kvr(k) + W̃T
f (k)ϕf (k) + W̃T

g (k)ϕg(k)u(k) + εf (k) + εg(k)u(k) + d(k),
(8.2.27)

using one-layer NN and

r(k + 1) = kvr(k) + W̃T
3f (k)ϕ̂3f (k) +WT

3f ϕ̃3f (k) + W̃T
3g(k)ϕ̂g(k)u(k) + εf (k) +

εg(k)u(k) + d(k) +WT
3gϕ̃3g(k)u(k), (8.2.28)

for the case of multilayered NN.

8.2.3 Well-Defined Control Problem

In general boundedness of x(k), Ŵf (k) and Ŵg(k) does not indicate the stability
of the closed-loop system, because control law (8.1.11) is not well defined when
ĝ(Ŵg, x) = 0. Therefore, some attention must be taken to guarantee the bounded-
ness of the controller as well. To overcome the problem, several techniques exist
in the literature that assure local or global stability with an additional knowledge.
First if the bounds on the function g(x) are known, then ĝ(Ŵg, x) may be set to
a constant and a robust-adaptive controller bypasses this problem. This is not an
accurate approach because the bounds on the function are not known a prori. If
g(x) is reconstructed by an adaptive scheme then a local solution can be generated
by assuming that the initial estimates are close to the actual values and these values
do not leave a feasible invariant set in which the ĝ(Ŵg, x) is not equal to zero (Liu
and Chen 1991), or lie inside a region of attraction of a stable equilibrium point
which forms a feasible set (Kanellakopoulos et al. 1991). Unfortunately with a very
good knowledge of the system, it is not easy to pick initial weight values such that
NN approximates it. The most popular way to avoid the problem is to project Ŵg(k)
inside an estimated feasible region by properly selecting the weight values (Polycar-
pou and Ioannou 1991). A shortcoming of this approach is that the actual Ŵg(k)
does not necessarily belong to this set, which then renders a sub-optimal solution.

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 369

8.2.4 Proposed Controller

In order to guarantee the boundedness of ĝ(x) away from zero for all well-defined
values of x(k), Ŵf (k), and Ŵg(k), the control input in (8.1.11) is selected in terms
of another control input, uc(k), and a robustifying term, ur(k) as

u(k) = uc(k) +
ur(k)− uc(k)

2
eγ(|uc(k)|−s), I = 0,

= ur(k)− ur(k)− uc(k)

2
e−γ(|uc(k)|−s), I = 1, (8.2.29)

where

uc(k) =
1

ĝ(x)
(−f̂(x) + v(k)), (8.2.30)

and

ur(k) = −μ | uc(k) |
g
¯

sgn(r(k)). (8.2.31)

The indicator I in (8.2.29) is

I = 1, if ĝ(x) ≥ g
¯
and | uc(k) |≤ s

= 0, otherwise (8.2.32)

with γ < ln 2
s , μ > 0, and s > 0 design parameters. These modifications in the

control input are necessary in order to ensure that the functional estimate ĝ(x) is
bounded away from zero.

The intuition behind this controller is as follows. When ĝ(x) ≥ g
¯
and | uc(k) |≤

s, then the total control input is set to uc(k), otherwise the control is smoothly
switched to the auxiliary input ur(k) due to the additional term in (8.2.29). This
results in well-defined control everywhere and the uniform ultimate boundedness of
the closed-loop system can be shown by appropriately selecting the NN weight tuning
algorithms.

8.3 SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION

In this section the one-layer NN is considered as a first step to bridging the gap
between discrete-time adaptive control and NN control. As mentioned in the previous
chapter, in the one-layer case the tunable NN weights enter in a linear fashion. The
one-layer case is treated for radial basis functions in Sanner and Slotine (1992),
using a projection algorithm in Polycarpou and Ioannou (1991). This case is treated
in Chen and Khalil (1995) using the discrete-time update laws for NN weights and a
certainty equivalence assumption. The assumptions made in this chapter are milder
than in these works, while rigorous Lyapunov stability analysis is presented similar
to the case of continuous-time systems in Chapter 6. In the next section the analysis
is extended to the case of general multilayer NN with discrete-time tuning.

A family of one-layer NN weight tuning paradigms that guarantee the stability
of the closed-loop system (8.2.27) is presented in this section. It is required to
demonstrate that the tracking error r(k) is suitably small and that the NN weights
Ŵf (k), and Ŵg(k) remain bounded. To proceed further, the machinery presented

370 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Table 8.3.1: Discrete-Time Controller Using One-Layer Neural Net: PE Required

The control input is

u(k) = uc(k) +
ur(k)− uc(k)

2
eγ(|uc(k)|−s), I = 1,

= ur(k)− ur(k)− uc(k)

2
e−γ(|uc(k)|−s). I = 0

The NN weight tuning for f(x(k)) is given by

Ŵf (k + 1) = Ŵf (k) + αϕf (k)r
T (k + 1)

and the NN weight tuning for g(x(k)) is provided by

Ŵg(k + 1) = Ŵg(k) + βϕg(k)r
T (k + 1), I = 1,

= Ŵg(k), I = 0, (8.3.1)

with α > 0 and β > 0 denoting constant learning rate parameters or adaptation
gains.

in the Lemma 7.2.1 and definition of the PE condition (see Definition 7.2.1) in
Chapter 7 should be reviewed. Recall that for one-layer NN the activation functions
must provide a basis. See the discussion on functional-link NN in Chapter 4.

Stability analysis by Lyapunov’s direct method is performed using a novel weight
tuning algorithm for a one-layer neural network developed based on the delta rule.
These weight tuning paradigms yield a passive neural net, yet persistency of exci-
tation (PE) is generally needed for suitable performance. Specifically, this holds
as well as for standard backpropagation in continuous-time case (see Chapter 7).
Unfortunately, PE cannot generally be tested for, or guaranteed, in a NN. There-
fore, modified tuning paradigms are proposed in subsequent subsections to make the
NN robust so that the PE is not needed. For guaranteed stability, it is shown for
the case of feedback linearization that the delta-rule-based-weight tuning algorithms
must slow down as the NN becomes larger. By employing a projection algorithm it
is shown that the tuning rate can be made independent of the NN size.

8.3.1 Weight Updates Requiring Persistence of Excitation

In the following theorem we present a discrete-time weight tuning algorithm given
in Table 8.3.1, based on the filtered tracking error. The algorithm guarantees that
both the tracking error and the error in the weight estimates are bounded if a PE
condition holds. (This PE requirement is relaxed in Theorem 8.3.2.)

Theorem 8.3.1 (One-Layer Discrete-Time NN Controller Requiring PE) :

Let the desired trajectory xnd(k) be bounded and the NN functional reconstruction
error bound εNf and εNg with the disturbance bound dM be known constants. Take the

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 371

control input for (8.1.1) as (8.2.29) with weight tuning for f(x(k)) provided by

Ŵf (k + 1) = Ŵf (k) + αϕf (k)r
T (k + 1) (8.3.2)

and the weight tuning for g(x(k) is expressed as

Ŵg(k + 1) = Ŵg(k) + βϕg(k)r
T (k + 1), I = 1,

= Ŵg(k), I = 0 (8.3.3)

with α > 0 and β > 0 denoting constant learning rate parameters or adaptation gains.
Assume that the initial error in weight estimates for both NN are bounded and let

the hidden-layer output vectors, ϕf (k) and ϕg(k)uc(k), be persistently exciting. Then
the filtered tracking error r(k) and the error in weight estimates W̃f (k), and W̃g(k) are
UUB, with the bounds specifically given by (8.3.36) or (8.3.56) with (8.3.18) or (8.3.58)
and (8.3.19) provided the following conditions hold:

(1) β ‖ ϕg(k)uc(k) ‖2= β ‖ ϕg(k) ‖2< 1, (8.3.4)

(2) α ‖ ϕf (k) ‖2< 1, (8.3.5)

(3) η < 1, (8.3.6)

(4) max(a4, b0) < 1, (8.3.7)

where η is given as
η = α ‖ ϕf (k) ‖2 +β ‖ ϕg(k)uc(k) ‖2 (8.3.8)

for I = 1, and for I = 0, the parameter η is defined as

η = α ‖ ϕf (k) ‖2 (8.3.9)

and with a4, b0 design parameters chosen using the gain matrix kvmax and the relationship
is presented during the proof.

Note: The parameters α, β and η are dependent upon the trajectory.
Proof:

(Note, in the proof g(x(k)) is also referred to as g(x).) Define the Lyapunov function
candidate

J = rT (k)r(k) +
1

α
tr(W̃T

f (k)W̃f (k)) +
1

β
tr(W̃g

T
(k)W̃g(k)). (8.3.10)

The first difference is given by

�J = rT (k + 1)r(k + 1)− rT (k)r(k) +
1

α
tr(W̃T

f (k + 1)W̃f (k + 1)− W̃T
f (k)W̃f (k))

1

β
tr(W̃T

g (k + 1)W̃g(k + 1)− W̃T
g (k)W̃g(k)). (8.3.11)

Region I:| ĝ |≥ g
¯
and | uc |≤ s.

The filtered error dynamics (8.2.27) can be rewritten as

r(k + 1) = kvr(k) + (f(x(k))− f̂(x(k))) + (g(x(k))− ĝ(x(k)))uc(k)

+d(k) + g(x(k))ud(k) (8.3.12)

where ud(k) = u(k)− uc(k). Substituting (8.3.2) and (8.3.3) in (8.3.12), one obtains

r(k + 1) = kvr(k) + W̃T
f (k)ϕf (k) + W̃T

g (k)ϕg(k)uc(k) + ε(k)

+d(k) + g(x(k))ud(k), (8.3.13)

372 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

where

ε(k) = εf (k) + εg(k)uc(k). (8.3.14)

Equation (8.3.13) can be rewritten

r(k + 1) = kvr(k) + eTf (k) + eTg (k) + ε(k) + d(k) + g(x(k))ud(k) (8.3.15)

where

ef (k) = W̃T
f (k)ϕf (k), (8.3.16)

eg(k) = W̃T
g (k)ϕg(k)uc(k). (8.3.17)

Note that for the system defined in (8.3.15), the input uc(k) ∈ Rmx1, ϕf (k) ∈ Rmnx1 where
ϕi(k) ∈ Rnx1; i = 1, · · · ,m, and ϕg(k) ∈ Rmnxn, in which each ϕi(k) ∈ Rnxn; i = 1, · · · ,m.
The error in dynamics for the weight update laws are given for this region as

W̃f (k + 1) = (I − αϕf (k)ϕ
T
f (k))W̃f (k)− αϕf (k)(kvr(k) + eg(k)

+g(x(k))ud(k) + ε(k) + d(k))T (8.3.18)

and

W̃g(k + 1) = (I − βϕg(k)ϕ
T
g (k))W̃g(k)− βϕg(k)(kvr(k) + ef (k)

+g(x(k))ud(k) + ε(k) + d(k))T . (8.3.19)

Substituting (8.3.15), (8.3.18), and (8.3.19) in (8.3.11) and simplifying one obtains

�J = −rT (k)[I − kT
v kv]r(k) + 2η(kvr(k))

T (g(x)ud(k) + ε(k) + d(k))

(1 + η)(g(x)ud(k) + ε(k) + d(k))T (g(x)ud(k) + ε(k) + d(k))

−(1− η) ‖ (ef (k) + eg(k))− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

+
η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k)

+d(k))T (kvr(k) + g(x)ud(k) + ε(k) + d(k)) (8.3.20)

where

η = α ‖ ϕf (k) ‖2 +β ‖ ϕg(k) ‖2 . (8.3.21)

Equation (8.3.20) can be rewritten as

�J = −(1− a1k
2
vmax) ‖ r(k) ‖2 +2a2kvmax ‖ r(k) ‖ (g(x)ud(k) + ε(k) + d(k)) +

a3(g(x)ud(k) + ε(k) + d(k))T (g(x)ud(k) + ε(k) + d(k))

−(1− η) ‖ (ef (k) + eg(k))

− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2, (8.3.22)

where

a1 = 1 + η +
η

(1− η)
, (8.3.23)

a2 = η +
η

(1− η)
, (8.3.24)

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 373

a3 = 1 + η +
η

(1− η)
. (8.3.25)

Now applying the condition on the function g(x) on a compact set, one can conclude that

‖ g(x) ‖≤ C01 + C12 ‖ r(k) ‖ (8.3.26)

with C01, C12 computable constants. Now in this region, the bound on ud(k) can be
obtained as

‖ ud(k) ‖ ≤ ‖ u(k)− uc(k) ‖
≤ ‖ (ur(k)− uc(k))

2
eγ(|uc(k)|−s) ‖ . (8.3.27)

In this region since | uc(k) |≤ s, and the other input ur(k) is given by (8.2.31), the bound
in (8.3.27) can be obtained as a constant since all the terms on the right side are bounded
and this bound is denoted by

‖ ud(k) ‖≤ C2. (8.3.28)

Now the bound for g(x)ud(k) is obtained as

‖ g(x)ud(k) ‖ ≤ C2(C01 + C12 ‖ r(k) ‖)
≤ C0 + C1 ‖ r(k) ‖ . (8.3.29)

Using the bound presented in (8.3.29) for g(x)ud(k), the first difference of the Lyapunov
function (8.3.22) is rewritten as

�J = −(1− a1k
2
vmax) ‖ r(k) ‖2 +2a2kvmax ‖ r(k) ‖ (C0 + C1 ‖ r(k) ‖ +εN + dM)

+a3(C0 + C1 ‖ r(k) ‖ +εN + dM)T (C0 + C1 ‖ r(k) ‖ +εN + dM)

−(1− η) ‖ (ef (k) + eg(k))

− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2, (8.3.30)

with the bound for ε(k) obtained as

‖ ε(k) ‖ ≤‖ εf ‖ + ‖ εguc(k) ‖
≤ (εNf + sεNg)

≤ εN . (8.3.31)

Simplifying (8.3.30), one obtains

�J = −(1− a4) ‖ r(k) ‖2 +2a5 ‖ r(k) ‖ +a6

−(1− η) ‖ (ef (k) + eg(k))

− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2, (8.3.32)

where

a4 = a1k
2
vmax + 2a2C1kvmax + a3C1, (8.3.33)

a5 = a2kvmax(εN + dM + C0) + a3C1(εN + dM) + a3C0C1, (8.3.34)

and

a6 = a3C
2
0 + 2a3C0(εN + dM) + (εN + dM)2. (8.3.35)

374 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

The second term in (8.3.32) is always negative as long as the condition (8.3.4) through
(8.3.7) hold. Since a4, a5 and a6 are positive constants, �J ≤ 0 as long as (8.3.4) through
(8.3.7) hold and

‖ r(k) ‖> δr1 (8.3.36)

where

δr1 >
1

(1− a4)
[a3 +

√
a2
5 + a6(1− a4)]. (8.3.37)

|∑∞
k=k0

�J(k) |=| J(∞)−J(0) |< ∞ since �J ≤ 0 as long as (8.3.4) through (8.3.7) hold.

The definition of J and inequality (8.3.36) imply that every initial condition in the set χ
and will evolve entirely within χ. In other words, whenever the tracking error ‖ r(k) ‖ is
outside the region defined by (8.3.36), J(r(k), W̃f (k), W̃g(k)) will decrease. This further
implies that the tracking error r(k) is UUB for all k ≥ 0 and it remains to show that the
weight estimation errors, W̃f (k) and W̃g(k) or equivalently Ŵf (k) and Ŵg(k) are bounded.

Generally in order to show the boundedness of the weight estimation errors, one uses
the error in weight updates (8.3.18) and (8.3.19), tracking error bound (8.3.36), the PE
condition and Lemma presented in Chapter 7. Using (8.3.18) and (8.3.19) it can be realized
that the output of each neural network is driving the other. Therefore, the boundedness
of the tracking error, the PE condition and Lemma in Chapter 7 are necessary but not
sufficient. If the initial weight estimation errors for both NN are considered to be bounded,
then applying the bound for the tracking error (8.3.36), the PE condition and Lemma in
Chapter 7, one can show that the weight estimation errors W̃f (k) and W̃g(k) or equivalently
Ŵf (k) and Ŵg(k) are bounded. This concludes the boundedness of both tracking error
and weight estimates for both NN in this region. On the other hand, a similar and elegant
way to show the boundedness of tracking error and weight estimates is to apply passivity
theory. The proof using passivity theory is shown in Section 8.5.
Region II:| ĝ(x) |≤ g

¯
and | uc(k) |> s.

Since the input uc(k) may not be defined in this region, because of notational simplicity,
we will use it in the form of either ĝ(x(k))uc(k) or uc(k)e

−γ(|uc(k)|−s). Therefore, in this
region, the tracking error system given in (8.3.13) is rewritten as

r(k + 1) = kvr(k) + eTf (k) + g(x)ud(k) + εf (k) + d(k), (8.3.38)

where

g(x)ud(k) = g(x)u(k)− ĝ(x(k))uc(k). (8.3.39)

Note the extremum of the function ye−γy for ∀y > 0 can be found as a solution to the
following equation

∂(y−γy)

∂y
= (1− γy)e−γy = 0, (8.3.40)

which is y = 1
γ
, and it is a maximum. Evaluating the function uc(k)e

−γuc(k) yields an

upper bound for uc(k) =
1
γe

and this bound is used in the forthcoming set of equations.
Let us compute the bound for g(x)uc(k) and ĝ(x)uc(k). Consider the following cases

in this region when | uc(k) |≤ s and | uc(k) |> s. The bound on u(k) from (8.2.27) can be
written for this region as

| u(k) |≤ ur(k)− uc(k)

2
e−γ(|uc(k)|−s). (8.3.41)

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 375

Using (8.2.31) for ur(k), Equation (8.3.41) can be rewritten as

| u(k) |≤ 1

2
(
μ

g
¯

| uc(k) | + | uc(k) |)e−γ(|uc(k)|−s). (8.3.42)

If | uc(k) |≤ s, then eγs ≤ 2, Equation (8.3.42) can be written as

| u(k) |≤ d1, (8.3.43)

where

d1 = (
μ

g
¯

s+ d0s), (8.3.44)

bounded above by some positive constant. On the other hand, if | uc(k) |> s, Equation
(8.3.42) can be expressed as

| u(k) |≤ d1, (8.3.45)

where

d1 =
1

2
(
μ

g
¯

1

γe
+ d0

1

γe
). (8.3.46)

Note here for simplicity the upper bound for | u(k) | is denoted as d1 for both cases. Now
the bound for g(x)u(k) can be obtained as

‖ g(x)u(k) ‖≤ C0 + C1 ‖ r(k) ‖, (8.3.47)

where C0 = d1C01 and C1 = d1C12. Similarly the bound for ĝ(x)uc(k) can be deduced as

‖ ĝ(x)uc(k) ‖ ≤ g
¯
s If | uc(k) |≤ s,

≤ g
¯
γe

If | uc(k) |> s, (8.3.48)

which is denoted as C2. Using the individual upper bounds of g(x)u(k) and ĝ(x)uc(k), the
upper bound for | g(x)ud(k) | can be obtained as

| g(x)ud(k) |=| g(x)u(k)− ĝuc(k) |≤ C3 + C4 ‖ r(k) ‖, (8.3.49)

where C3 = C0 + C2 and C4 = C1. Now using the Lyapunov function (8.3.10), the first
difference (8.3.11) after manipulation can be obtained for this region as

�J = −r(k)T (I − kT
v kv)r(k) + 2(kvr(k) + g(x)ud(k) + εf (k) + d(k))T (g(x)ud(k)

+εf (k) + d(k))

+
1

(1− αϕT
f (k)ϕf (k))

(kvr(k) + g(x)ud(k) + εf (k) + d(k))T (g(x)ud(k)

+εf (k) + d(k))

−(1− η) ‖ ef (k)− η

(1− η)
(kvr(k) + g(x)ud(k) + εf (k) + d(k)) ‖2, (8.3.50)

where η is given in (8.3.9). Substituting for g(x)ud(k) from (8.3.49) in (8.3.50) and rear-
ranging terms in (8.3.50) results in

�J = −(1− b0) ‖ r(k) ‖2 +2b1 ‖ r(k) ‖ +b2

−(1− η) ‖ ef (k)− η

(1− η)
(kvr(k) + g(x)ud(k) + εf (k) + d(k)) ‖2,(8.3.51)

376 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

where

b0 = k2
vmax + 2C4(C4 + kvmax) +

(C4 + kvmax)
2

(1− α ‖ ϕf (k) ‖)2 , (8.3.52)

b1 = C3(C4 + kvmax) + C3C4 + (C4 + kvmax)(εNf + dM) +

C3(C4 + kvmax)

(1− α ‖ ϕf (k) ‖2) +
(C4 + kvmax)(εNf + dM)

(1− α ‖ ϕf (k) ‖2) , (8.3.53)

b2 = 2C2
3 + 2C3(εNf + dM) + (εNf + dM)2

C2
3 + 2C3(εNf + dM) + (εNf + dM)2

(1− α ‖ ϕf (k) ‖2) (8.3.54)

and

‖ εf (k) ‖≤ εNf . (8.3.55)

The second term in (8.3.51) is always negative as long as the conditions (8.3.4) through
(8.3.7) hold. Since b0, b1 and b2 are positive constants, �J ≤ 0 as long as

‖ r(k) ‖> δr2, (8.3.56)

with

δr2 =
1

(1− b0)
[b1 +

√
b21 + b2(1− b0)]. (8.3.57)

One has | ∑∞
k=k0

�J(k) |=| J(∞) − J(0) |< ∞ since �J ≤ 0 as long as (8.3.4) through

(8.3.7) hold. The definition of J and inequality (8.3.56) imply that every initial condition
in the set χ will evolve entirely within χ. In other words, whenever the tracking error
‖ r(k) ‖ is outside the region defined by (8.3.56), J(r(k), W̃f (k), W̃g(k)) will decrease.
This further implies that the tracking error r(k) is UUB for all k ≥ 0 and it remians to
show that the weight estimation errors W̃f (k), or equivalently Ŵf (k), are bounded.

In order to show the boundedness of the weight estimation errors, one uses the error in
weight updates (8.3.18) for f(·), the tracking error bound (8.3.56), the PE condition and
Lemma in Chapter 7. Since the weight estimates for ĝ(x) is not updated in this region,
the boundedness of the weight estimates for ĝ(x) need not to be shown. However, to show
the boundedness of the weight estimates for f̂(x), the dynamics relative to the error in
weight estimates using (8.3.18) for this region are given by

W̃f (k + 1) = (I − αϕf (k)ϕ
T
f (k))W̃f (k)− αϕf (k)(kvr(k) + C3 + C4 ‖ r(k) ‖

+εf (k) + d(k))T , (8.3.58)

where the tracking error r(k) is shown to be bounded. Applying the PE condition and
Lemma described in Chapter 7, the boundedness of weight estimation errors W̃f (k) or
equivalently Ŵf (k) are guaranteed. Let us denote the bound by δf2. This concludes the
boundedness of both tracking error and weight estimates for both NN in this region.
Reprise:

Combining the results from region I and II, one can readily set δr = max (δr1, δr2), δf =
max (δf1, δf2), and δg. Thus for both regions, if ‖ r(k) ‖> δr, then �J ≤ 0 and u(k) is
bounded. Let us denote (‖ r(k) ‖, ‖ W̃f (k) ‖, ‖ W̃g(k) ‖) by a new coordinate variables
(ξ1, ξ2, ξ3). Define the region

Ξ : ξ|ξ1 < δr, ξ2 < δf , ξ3 < δg,

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 377

then there exists an open set

Ω : ξ|ξ1 < δr, ξ2 < δf , ξ3 < δg,

where δi > δi implies that Ξ ⊂ Ω. In other words, we have proved that whenever ξi > δi,
then J(ξ) will not increase and will remain in the region Ω which is an invariant set.
Therefore all the signals in the closed-loop system remain bounded. This concludes the
proof. �

In applications, the right-hand sides of (8.3.36) or (8.3.56), (8.3.18) or (8.3.58)
and (8.3.19) may be taken as practical bounds on the norms of the error r(k) and
the weight estimation errors W̃f (k) and W̃g(k). Since the target weight values are

bounded, it follows that the NN weights, Ŵf (k) and Ŵg(k), provided by the tuning
algorithms are bounded; hence the control input is bounded.

Note from (8.3.36) or (8.3.56) that the tracking error increases with the NN
reconstruction error bound εN and the disturbance bound dM , yet small tracking
errors (but not arbitrary small) may be achieved by selecting small gains kv. In
other words, placing the closed-loop poles closer to the origin inside the unit circle
forces smaller tracking errors. Again as in Chapter 7, selecting kvmax = 0 results
in a deadbeat controller, but it should be avoided as it is not robust.

It is important to note that the problem of initializing the net weights (referred
to as symmetric breaking (Mpitsos and Burton 1992)) occurring in other techniques
in the literature does not arise, since when Ŵf (0) and Ŵg(0) are taken as zero
the PD term kvr(k) stabilizes the plant on an interim basis for a restricted class
of nonlinear systems such as robotic systems. Thus, the NN controller requires no
off-line learning phase.

8.3.2 Projection Algorithm

The adaptation gains α > 0 and β > 0, are constant parameters in the update laws
presented in (8.3.18) and (8.3.19). These update laws correspond to the delta rule,
also referred to as the Widrow-Hoff rule(Mpitsos and Burton 1992). This reveals
that the update tuning mechanisms employing the delta rule have a major drawback.
In fact, using (8.3.4), the upper bound on the adaptation gain for g(x(k)) can be
obtained as

β <
1

‖ ϕg(k) ‖2 , (8.3.59)

since ϕg(k) ∈ �N2 , with N2 the number of hidden-layer neurons. It is evident that
the upper bound on the adaptation gain β depends upon the the number of hidden-
layers neurons. Specifically, if there are N2 hidden-layer neurons and the maximum
value of the each hidden-node output is taken as unity (as for the sigmoid), then
the bounds on the adaptation gain to assure stability of the closed-loop system are
given by

0 < β <
1

N2
. (8.3.60)

In other words, the upper bound on the adaptation gain for the case of delta rule
decreases with an increase in the number of hidden-layer nodes, so that learning

378 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

must slow down for guaranteed performance. The phenomenon of large NN requiring
very slow learning rates has often been encountered in the practical NN literature
(Mpitsos and Burton 1992) but never explained adequately (Jagannathan and Lewis
1996a).

This major drawback can be easily overcome by modifying the update rule at each
layer to obtain a projection algorithm (Goodwin and Sin 1984). To wit, replace the
constant adaptation gain at each layer by

β =
ξ

ζ+ ‖ ϕg(k) ‖2 , (8.3.61)

where
ζ > 0, (8.3.62)

and

0 < ξ < 1, (8.3.63)

are constants. Note that ξ is now the new adaptation gain and it is always true that

ξ

ζ+ ‖ ϕg(k) ‖2 ‖ ϕg(k) ‖2 < 1,

(8.3.64)

hence guaranteeing (8.3.4) for every N2. Similarly, using (8.3.4) and (8.3.6), it can
be shown that the adaptation gain α should satisfy α < 1

‖ϕf (k)‖2 as in (8.3.5).

Note that now for guaranteed closed-loop stability, it is necessary that the hidden-
layer outputs ϕf (k) and ϕg(k) be PE. Equations (8.3.18) and (8.3.19) are nothing
but the delta-rule-based weight tuning algorithms for the one-layer case. Then, the
PE condition is required to guarantee boundedness of the weight estimates. However,
it is very difficult to verify the PE of the hidden-layer output functions ϕf (k) and
ϕg(k), and this problem is compounded due to the presence of hidden-layers in the
case of multilayered neural network. In the next section, improved weight tuning
paradigms are presented so that PE is not required.

8.3.3 Weight Updates not Requiring Persistence of Excitation

Approaches such as σ-modification (Polycarpou and Ioannou 1991) or ε-modification
(Narendra and Annaswamy 1987) are available for the robust adaptive control of
continuous systems wherein the persistency of excitation condition is not needed. On
the other hand, modification to the standard weight tuning mechanisms in discrete-
time to avoid the necessity of PE is also investigated in Jagannathan and Lewis
(1996b) and Jagannathan (1996a).

In Jagannathan (1996b) an approach similar to ε-modification was derived for
discrete-time NN for feedback linearization. The following theorem from that pa-
per shows the tuning algorithms that do not require persistence of excitation. The
controller derived therein is given in Table 8.3.2.

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 379

Table 8.3.2: Discrete-Time Controller Using One-layer Neural Net: PE not Required

u(k) = uc(k) +
ur(k)− uc(k)

2
eγ(|uc(k)|−s), I = 1,

= ur(k)− ur(k)− uc(k)

2
e−γ(|uc(k)|−s), I = 0.

The NN weight tuning for f(x(k)) is given by

Ŵf (k + 1) = Ŵf (k) + αϕf (k)r
T (k + 1)− δ ‖ I − αϕf (k)ϕ

T
f (k) ‖ Ŵf (k)

and the NN weight tuning for g(x(k)) is provided by

Ŵg(k + 1) = Ŵg(k) + βϕg(k)r
T (k + 1)− ρ ‖ I − βϕg(k)ϕ

T
g (k) ‖, I = 1,

= Ŵg(k), I = 0

with α =
ξf

ζf+‖ϕf (k)‖2 and β =
ξg

ζg+‖ϕg(k)‖2 where ζf > 0, ζg > 0 and 0 < ξf < 1, 0 <

ξg < 1 denoting learning rate parameters or adaptation gains.

Theorem 8.3.2 (One-Layer Discrete-Time NN Feedback Lin. without PE) :
Assume the hypotheses presented in Theorem 8.3.1, and consider the modified weight

tuning algorithms provided for f(x(k)) by :

Ŵf (k + 1) = Ŵf (k) + αϕf (k)r
T (k + 1)

−δ ‖ I − αϕf (k)ϕ
T
f (k) ‖ Ŵf (k) (8.3.65)

and the NN weight updates for g(x(k)) are provided by

Ŵg(k + 1) = Ŵg(k) + βϕg(k)r
T (k + 1)− ρ ‖ I − βϕg(k)ϕ

T
g (k) ‖ Ŵg(k), I = 1,

= Ŵg(k), I = 0, (8.3.66)

with α > 0, β > 0, δ > 0 and ρ > 0 design parameters. Then the filtered tracking error
r(k) and the NN weight estimates Ŵf (k) and Wg(k) are UUB, with the bounds specifically
given by Equations (8.3.89) or (8.3.110), (8.3.93) or (8.3.114) and (8.3.97) provided the
following conditions hold:

(1) β ‖ ϕg(k)uc(k) ‖= β ‖ ϕg(k) ‖2< 1, (8.3.67)

(2) α ‖ ϕf (k) ‖2< 1, (8.3.68)

(3) η +max(P1, P3, P4) < 1 (8.3.69)

(4) 0 < δ < 1, (8.3.70)

(5) 0 < ρ < 1, (8.3.71)

(6) max(a2, b0) < 1, (8.3.72)

with P1, P3, and P4 constants which depend upon η, δ and ρ where

η = α ‖ ϕf (k) ‖2 +β ‖ ϕg(k)uc(k) ‖2= α ‖ ϕf (k) ‖2 +β ‖ ϕg(k) ‖2, I = 1,

= α ‖ ϕf (k) ‖2, I = 0, (8.3.73)

380 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

and a2, b0 design parameters chosen using the gain matrix kv.
Note: The parameters α, β and η depend upon the trajectory.

Proof:
Region I: | ĝ(x(k)) |≥ g

¯
and | uc(k) |≤ s.

Select the Lyapunov function candidate (8.3.10) whose first difference is given by
(8.3.11). The error in dynamics for the weight update laws are given for this region
as

W̃f (k + 1) = (I − αϕf (k)ϕ
T
f (k))W̃f (k)− αϕf (k)(kvr(k) + eg(k) + g(x)ud(k)

− +ε(k) + d(k))T + δ ‖ I − αϕf (k)ϕ
T
f (k) ‖ Ŵf (k) (8.3.74)

and

W̃g(k + 1) = (I − βϕg(k)ϕ
T
g (k))W̃g(k)− βϕg(k)(kvr(k) + ef (k) + g(x)ud(k)

− +ε(k) + d(k))T + ρ ‖ I − βϕg(k)ϕ
T
g (k) ‖ Ŵg(k) (8.3.75)

Substituting (8.3.74) and (8.3.75), in (8.3.11) and combining, rewriting and completing
the squares and simplifying we get

�J = −r(k)T [I − (2 + η)kT
v kv]r(k) + 2(2 + η)(kvr(k))

T (g(x)ud(k) + ε(k) + d(k))

+(2 + η)(g(x)ud(k) + ε(k) + d(k))T (g(x)ud(k) + ε(k) + d(k))

+2P2 ‖ kvr(k) + g(x)ud(k) + ε(k) + d(k) ‖ +2η(g(x)ud(k))
T (ε(k) + d(k))

+2ηε(k)d(k)− (1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2

−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖ −1

η
‖ I − αϕf (k)ϕ

T
f (k) ‖2 [δ(2− δ) ‖ W̃f (k) ‖2

−2δ(1− δ) ‖ W̃f (k) ‖ Wfmax − δ2W 2
fmax]

− 1

β
‖ I − βϕg(k)ϕ

T
g (k) ‖2 [ρ(2− ρ) ‖ W̃g(k) ‖2

−2ρ(1− ρ) ‖ W̃g(k) ‖ Wgmax − ρ2W 2
gmax],

(8.3.76)

where η is given in (8.3.69) and

P1 = 2(δ ‖ I − αϕf (k)ϕf (k)
T ‖ +ρ ‖ I − βϕg(k)ϕg(k)

T ‖). (8.3.77)

P2 = 2(δ ‖ I − αϕf (k)ϕf (k)
T ‖ Wfmaxϕfmax + ρ ‖ I − βϕg(k)ϕg(k)

T ‖ Wgmaxϕgmax).
(8.3.78)

P3 = (η + δ ‖ I − αϕf (k)ϕf (k)
T ‖)2, (8.3.79)

and
P4 = (η + ρ ‖ I − βϕg(k)ϕg(k)

T ‖)2. (8.3.80)

Now in this region, the bound on ud(k) can be obtained as

‖ ud(k) ‖ ≤ ‖ u(k)− uc(k) ‖
≤ ‖ ur(k)− uc(k)

2
eγ(|uc(k)|−s) ‖ . (8.3.81)

In this region, since | uc(k) |≤ s, and the auxiliary input ur(k) is given by (8.2.31), the
bound in (8.3.81) can be taken as a constant since all the terms on the right side are
bounded and this bound is denoted as

‖ ud(k) ‖≤ C2. (8.3.82)

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 381

Then the bound for g(x)ud(k) can be written as (8.3.29). Using the bound for g(x)ud(k)
and substituting in (8.3.76), and completing the squares for ‖ W̃f (k) ‖ and ‖ W̃g(k) ‖ we
obtain

�J ≤ −(1− a2) ‖ r(k) ‖2 +2a3 ‖ r(k) ‖ +a4

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2
−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

− 1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 δ(2− δ)[‖ W̃f (k) ‖ − (1− δ)

(2− δ)
W 2

fmax]
2

− 1

β
‖ I − βϕg(k)ϕ

T
g (k) ‖2 ρ(2− ρ)[‖ W̃g(k) ‖ − (1− ρ)

(2− ρ)
Wgmax]

2 (8.3.83)

where

a2 = (2 + η)k2
vmax + 2(1 + η)C1kvmax + (2 + η)C2

1 + 2kvmaxC1 (8.3.84)

a3 = (1 + η)kvmax(εN + dM + C0) + P2kvmax + P2C1 + ηC1(εN + dM)(8.3.85)

+
1

2
(2 + η)C1(εN + dM + C0) + 2kvmax(εN + dM + C0) (8.3.86)

a44 = 2P2(εN + dM + C0) + 2ηC0(εN + dM)

+(2 + η)(εN + dM + C0)
2 + 2ηεNdM (8.3.87)

and

a4 = a44 +
1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 δ2

(2− δ
W 2

fmax

+
1

β
‖ I − βϕg(k)ϕ

T
g (k) ‖2 ρ2

(2− ρ)
W 2

gmax (8.3.88)

All the terms in (8.3.83) are always negative except the first term as long as the condition
(8.3.67) through (8.3.72) hold. Since a2, a3 and a4 are positive constants, �J ≤ 0 as long
as (8.3.67) through (8.3.72) hold with

‖ r(k) ‖> δr1 (8.3.89)

where

δr1 =
1

(1− a2)
[a3 +

√
a2
3 + a4(1− a2)]. (8.3.90)

Similarly, completing the squares for ‖ r(k) ‖, ‖ W̃g(k) ‖ using (8.3.76) yields

�J = −(1− a2)[‖ r(k) ‖ − a3

(1− a2)
]2

−(1− η − P3) ‖ ef (k) ‖2
−(1− η − P4) ‖ eg(k) ‖2 −2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

− 1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 δ(2− δ)[‖ W̃f (k) ‖ − (1− δ)

(2− δ)
Wfmax − a4]

2

− 1

β
‖ I − βϕg(k)ϕ

T
g (k) ‖ ρ(2− ρ)[‖ W̃g(k) ‖

− (1− ρ)

(2− ρ)
Wgmax]

2 (8.3.91)

382 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

where

a4 = δ2W 2
fmax +

α

‖ I − αϕf (k)ϕT
f (k) ‖2

[a44 +
a2
3

(1− a2)

+
1

β
‖ I − βϕg(k)ϕ

T
g (k) ‖2 ρ2

(2− ρ)
W 2

gmax].

(8.3.92)

Then �J ≤ 0 as long as (8.3.67) through (8.3.72) hold and the quadratic term for W̃f (k)
in (8.3.91) is positive, which is guaranteed when

‖ W̃f (k) ‖> δf1 (8.3.93)

where

δf1 =
1

(2− δ)
[(1− δ) +

√
(1− δ)2 + a4(2− δ)]. (8.3.94)

Similarly, completing the squares for ‖ r(k) ‖, ‖ W̃f (k) ‖ using (8.3.76) yields

�J = −(1− a2)[‖ r(k) ‖ − a3

(1− a2)
]2

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2
−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

− 1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 δ(2− δ)[‖ W̃f (k) ‖ − (1− δ)

(2− δ)
Wfmax]

2

− 1

β
‖ I − βϕg(k)ϕ

T
g (k) ‖2 ρ(2− ρ)[‖ W̃g(k) ‖ − (1− ρ)

(2− ρ)
Wgmax − a4]

(8.3.95)

where

a4 = ρ2W 2
gmax +

β

‖ I − βϕg(k)ϕT
g (k) ‖2 [a44 +

a2
3

(1− a2)
+

1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2

δ2

(2− δ)
W 2

fmax] (8.3.96)

Then �J ≤ 0 as long as (8.3.67) through (8.3.72) hold and the quadratic term for W̃g(k)
in (8.3.95) is positive, which is guaranteed when

‖ W̃g(k) ‖> δg (8.3.97)

where

δg =
1

(2− ρ)
[(1− ρ) +

√
(1− ρ)2 + a4(2− ρ)]. (8.3.98)

We have shown upper bounds for the tracking error and the NN weight estimation errors
for this region for all | uc(k) |≤ s.

Region II: | ĝ(x(k)) |< g
¯
and | uc(k) |> s.

Select the Lyapunov function candidate (8.3.10) whose first difference is given by
(8.3.11). The tracking error system in (8.2.27) can be rewritten as

r(k + 1) = kvr(k) + eTf (k) + g(x)ud(k) + εf (k) + d(k) (8.3.99)

8.3. SINGLE-LAYER NN FOR FEEDBACK LINEARIZATION 383

where

g(x)ud(k) = g(x)u(k)− ĝ(x)uc(k) (8.3.100)

For the case of modified weight tuning (8.3.74) through (8.3.75) in this region, let us denote
the bound given in (8.3.29) as d1. The bound for ĝuc(k) can be obtained as

| ĝ(x)uc(k) | ≤ g
¯
s, | uc(k) |≤ s

≤ g
¯
γe

, | uc(k) |> s, (8.3.101)

whose upper bound in either case is denoted by C2. Using the individual upper bounds,
the upper bound for g(x)ud(k) can be obtained as (8.3.49).

Consider the first difference of the Lyapunov function, substitute the bounds for
g(x)ud(k), complete the squares and rearrange terms to obtain

�J = −(1− b0) ‖ r(k) ‖2 +2b1 ‖ r(k) ‖ +b2

−(1− η) ‖ ef (k)

− (η + δ ‖ I − αϕf (k)ϕ
T
f (k) ‖)

(1− η)
(kvr(k) + g(x)ud(k) + εf (k) + d(k)) ‖2

− 1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 [δ(2− δ) ‖ W̃f (k) ‖2

−2δ(1− δ) ‖ W̃f (k) ‖ Wfmax − δ2W 2
fmax], (8.3.102)

where

b0 = a0k
2
vmax + 2a0C4Kvmax + a0C

2
4 , (8.3.103)

b1 = a0kvmax(C3 + εNf + dM) + a0(C3 + εNf + dM)C4(C3 + εNf + dM) (8.3.104)

b2 = a0(C3 + εNf + dM)2

+2δ ‖ I − αϕf (k)ϕ
T
f (k) ‖ (C3 + εNf + dM)Wfmaxϕfmax, (8.3.105)

a0 = 1 + αϕT
f (k)ϕf (k) +

(αϕf (k)ϕ
T
f (k) + 2δ ‖ I − αϕf (k)ϕ

T
f (k) ‖)2

(1− αϕT
f (k)ϕf (k))

(8.3.106)

and

‖ εf (k) ‖≤ εNf . (8.3.107)

The second term in (8.3.102) is always negative as long as the conditions (8.3.67) through
(8.3.72) hold. Completing the squares for ‖ W̃f (k) ‖ results in

�J = −(1− b0) ‖ r(k) ‖2 +2b1 ‖ r(k) ‖ +b3

−(1− η) ‖ ef (k)−
(η + δ ‖ I − αϕf (k)ϕ

T
f (k) ‖)

(1− η)
(kvr(k) + g(x)ud(k)

+εf (k) + d(k)) ‖2

− 1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 δ(2− δ)[‖ W̃f (k) ‖

− (1− δ)

(2− δ)
Wfmax]

2, (8.3.108)

384 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

with

b3 = b2 +
1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 δ

(2− δ)
W 2

fmax. (8.3.109)

Since b0, b1 and b3 are positive constants in (8.3.108) and the second and third terms are
always negative, �J ≤ 0 as long as

‖ r(k) ‖> δr2 (8.3.110)

where

δr2 =
1

(1− b0)
[b1 +

√
b21 + b3(1− b0)]. (8.3.111)

Similarly completing the squares for ‖ r(k) ‖ using (8.3.102) yields

�J = −(1− b0)[‖ r(k) ‖ − b1
(1− b0)

]2

−(1− η) ‖ ef (k)−
(η + δ ‖ I − αϕf (k)ϕ

T
f (k) ‖)

(1− η)
(kvr(k) + g(x)ud(k)

+εf (k) + d(k)) ‖2

− 1

α
‖ I − αϕf (k)ϕ

T
f (k) ‖2 δ(2− δ)[‖ W̃f (k) ‖

−2
(1− δ)

(2− δ)
‖ W̃f (k) ‖ Wfmax − b4], (8.3.112)

with

b4 =
1

(2− δ)
[

α

‖ I − αϕf (k)ϕT
f (k) ‖2

b21
(1− b0)

+ δ2Wfmax]. (8.3.113)

Since b0, b1 and b4 are positive constants in (8.3.112) and the second and third terms are
always negative, �J ≤ 0 as long as

‖ W̃f (k) ‖> δf2, (8.3.114)

where

δf2 =
1

(2− δ)
[(1− δ) +

√
(1− δ)2 + b4(2− δ)]. (8.3.115)

|∑∞
k=k0

�J(k) |=| J(∞) − J(0) |< ∞ since �J ≤ 0 as long as (8.3.67) through (8.3.72)

hold. The definition of J and inequalities (8.3.110) and (8.3.114) imply that every intial
conditon in the set χ will evolve entirely within χ. Thus according to the standard Lya-
punov extension, it can be concluded that the tracking error r(k) and the error in weight
updates are UUB.
Reprise:

Combining the results from region I and II, one can readily set δr = max(δr1, δr2), δf =
max(δf1, δf2), and δg.

Thus for both regions, if ‖ r(k) ‖> δr, then �J ≤ 0 and u(k) is bounded. Let us
denote (‖ r(k) ‖, ‖ W̃f (k) ‖, ‖ W̃g(k) ‖) by new coordinate variables (ξ1, ξ2, ξ3). Define the
region

Ξ : ξ|xi1 < δr, ξ2 < δf , ξ3 < δg,

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 385

then there exists an open set

Ω : ξ|ξ1 < δr, ξ < δf , ξ3 < δg,

where δi > δi implies that Ξ ⊂ Ω. In other words, it was shown that whenever ξi > δi then
V (ξ) will not increase and will remain in the region Ω which is a invariant set. Therefore all
the signals in the closed-loop system remain uniformly ultimately bounded. This concludes
the proof. �

Remarks:
1. For practical purposes Equations (8.3.89) or (8.3.110), (8.3.93) or (8.3.114)

and (8.3.97) can be considered as bounds for r(k), W̃f (k) and W̃g(k) in both regions.
2. The NN reconstruction errors and the bounded disturbances are all embodied

in the constants given by δr, δf and δg. Note that the bound on the tracking error
may be kept small if the closed-loop poles are placed closer to the origin.

3. If the switching parameter s is chosen small, it will limit the control input and
results in a large tracking error which results in undesirable closed-loop performance.
Large value of s results in the saturation of the control input u(k).

4. Uniform ultimate boundedness of the closed-loop system is shown without
making assumptions on the initial weights. Persistency of excitation condition on
the input signals is not required and the certainty equivalence principle is not used.
The NN can be easily initialized as Ŵf (k) = 0, and Ŵg(k) > g−1(g

¯
). In addition,

the NN presented here do not need off-line learning phase. No assumptions such as
the existence of an invariant set, region of attraction, or a feasible region is needed.

Note that the NN reconstruction error bound εN and the bounded disturbances
dM increase the bounds on ‖ r(k) ‖ and ‖ W̃f (k) ‖ and ‖ Wg(k) ‖ in a very
interesting way. Note that small tracking error bounds, but not arbitrarily small,
may be achieved by placing the closed-loop poles inside the unit circle and near the
origin through the selection of the largest eigenvalue, kvmax. On the other hand, the
NN weight error estimates are fundamentally bounded by Wfmax, and Wgmax the
known bound on ideal weights Wf and Wg. The parameter δ and ρ offers a design

trade-off between the relative eventual magnitudes of ‖ r(k) ‖ and ‖ W̃f (k) ‖ and

‖ W̃g(k) ‖; a smaller δ yields a smaller ‖ r(k) ‖ and a larger ‖ W̃f (k) ‖, and vice

versa. For the tuning weights ‖ W̃g(k) ‖, similar effects are observed.
The effect of adaptation gains α and β at each layer on the weight estimation

errors, W̃f (k) and W̃g(k), and tracking error, r(k), can be easily observed by using
the bounds presented in (8.3.93) or (8.3.114) and (8.3.97). Large values of α and
β force smaller tracking error but larger weight estimation errors.

In contrast, a small value of α and β force larger tracking and smaller weight
estimation errors.

8.4 MULTILAYER NEURAL NETWORKS FOR FEEDBACK LIN-
EARIZATION

A family of multilayer NN weight tuning paradigms that guarantee the stability
of the closed-loop system (8.2.28) is presented in this section. It is required to
demonstrate that the tracking error r(k) is suitably small and that the NN weights
Ŵ1f (k), Ŵ2f (k), Ŵ3f(k), and Ŵ1g(k), Ŵ2g(k), Ŵ3g(k) remain bounded. To proceed

386 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Table 8.4.1: Discrete-Time Controller Using Multilayer Neural Net: PE Required

The control input is

u(k) = uc(k) +
ur(k)− uc(k)

2
eγ(|uc(k)|−s), I = 1,

= ur(k)− ur(k)− uc(k)

2
e−γ(|uc(k)|−s), I = 0.

The NN weight tuning for f(x(k)) is given by

Ŵif (k + 1) = Ŵif (k) + αifϕif (k)(ŷif (k) +Bifkvr(k))
T ; i = 1, 2,

Ŵ3f (k + 1) = Ŵ3f (k) + α3fϕ3f (k)r
T (k + 1)

and the NN weight tuning for g(x(k)) is provided by

Ŵig(k + 1) = Ŵig(k) + βigϕig(k)(ŷig(k) +Bigkvr(k))
T ; i = 1, 2,

Ŵ3g(k + 1) = Ŵ3g(k) + β3gϕ3g(k)r
T (k + 1), I = 1,

= Ŵ3g(k), I = 0,

with αif > 0; i = 1, 2, 3 and βig > 0; i = 1, 2, 3 denoting constant learning rate
parameters or adaptation gains.

further, the machinery presented in the Lemma and definition of Chapter 7 is
needed.

8.4.1 Weight Updates Requiring Persistence of Excitation

In the following theorem we present a discrete-time weight tuning algorithm given
in Table 8.4.1, based on the filtered tracking error. The algorithm guarantee that
both the tracking error and the error in the weight estimates are bounded if a PE
condition holds. (This PE requirement is relaxed in Theorem 8.4.2).

Theorem 8.4.1 (Multilayer Discrete-Time NN Controller Requiring PE) :
Let the desired trajectory xnd(k) be bounded and the NN functional reconstruction

error bound εNf and εNg with the disturbance bound dM be known constants. Take the
control input for (8.1.1) as (8.2.29) with weight tuning for f(x(k)) provided by

Ŵif (k + 1) = Ŵif (k) + αif ϕ̂if (k)(ŷif (k) +Bifkvr(k))
T (8.4.1)

Ŵ3f (k + 1) = Ŵ3f (k) + α3f ϕ̂3f (k)r
T (k + 1) (8.4.2)

and the weight tuning for g(x(k) is expressed as

Ŵig(k + 1) = Ŵig(k) + βigϕ̂ig(k)(ŷig(k) +Bigkvr(k))
T (8.4.3)

Ŵ3g(k + 1) = Ŵ3g(k) + β3gϕ̂3g(k)r
T (k + 1) (8.4.4)

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 387

where

ŷif (k) = ŴT
if (k)ϕ̂(k), i = 1, 2, (8.4.5)

ŷig(k) = ŴT
ig(k)ϕ̂(k), i = 1, 2, (8.4.6)

‖ Bif ‖≤ κif ; i = 1, 2

and

‖ Big ‖≤ κig; i = 1, 2 (8.4.7)

with αif > 0; ∀i = 1, 2, 3 and βig > 0; ∀i = 1, 2, 3 denoting constant learning rate parame-
ters or adaptation gains.

Assume that the initial error in weight estimates for both NN are bounded and let
the hidden-layer output vector, ϕ̂1f (k), ϕ̂2f (k), ϕ̂3f (k) and ϕ̂3g(k)uc(k), ϕ̂1g(k), ϕ̂2g(k) be
persistently exciting. Then the filtered tracking error r(k) and the error in weight esti-
mates, Ŵ1f (k), Ŵ2f (k), Ŵ3f (k), and Ŵ1g(k), Ŵ2g(k), Ŵ3g(k) are UUB, with the bounds
specifically given by (8.4.34) or (8.4.46) with (8.4.24) and (8.4.26) or (8.4.48), (8.4.25) with
(8.4.26) and (8.4.27) provided the following conditions hold:

(1) αif ‖ ϕ̂if (k) ‖2< 2, i = 1, 2, (8.4.8)

(2) αig ‖ ϕ̂ig(k) ‖2< 2, i = 1, 2, (8.4.9)

(3) β3g ‖ ϕ3g(k)uc(k) ‖2= β3g ‖ ϕ̂3g(k) ‖2< 1, (8.4.10)

(4) α3f ‖ ϕ̂3f (k) ‖< 1, (8.4.11)

(5) η < 1, (8.4.12)

(6) max(a10, b6) < 1, (8.4.13)

where η is given as

η = α3f ‖ ϕ̂3f (k) ‖2 +β3g ‖ ϕ̂3g(k)uc(k) ‖2 (8.4.14)

for I = 1, and for I = 0, the parameter η is defined as

η = α3f ‖ ϕ̂3f (k) ‖2 (8.4.15)

with a10 and b6 design parameters chosen using the gain matrix kvmax and the relationship
presented during the proof.

Note:The design parameters αif , βig; ∀i = 1, 2, 3 and η depend upon the trajectory.
Proof:

(Note, in the proof g(x(k)) is also referred to as g(x).) Define the Lyapunov function
candidate

J = rT (k)r(k) +

i=3∑
i=1

[
1

αif
tr(W̃T

if (k)W̃if (k)) +
1

βig
tr(W̃T

ig(k)W̃ig(k))]. (8.4.16)

The first difference is given by

�J = rT (k + 1)r(k + 1)− rT (k)r(k) +

i=3∑
i=1

(
1

αif
tr(W̃T

if (k + 1)W̃if (k + 1)

−W̃T
if (k)W̃if (k))

1

βig
tr(W̃T

ig(k + 1)W̃ig(k + 1)− W̃T
ig(k)W̃ig(k))). (8.4.17)

388 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Region I:| ĝ |≥ g
¯
and | uc |≤ s.

The filtered error dynamics (8.2.28) can be rewritten as

r(k + 1) = kvr(k) + (f(x(k))− f̂(x(k))) + (g(x(k))− ĝ(x(k)))uc(k)

+d(k) + g(x(k))ud(k) (8.4.18)

where ud(k) = u(k)− uc(k). Substituting (8.2.10) and (8.2.11) in (8.4.18), one obtains

r(k + 1) = kvr(k) + W̃T
3f (k)ϕ̂3f (k) + W̃T

3g(k)ϕ̂3g(k)uc(k) + ε(k)

+d(k) + g(x(k))ud(k), (8.4.19)

where

ε(k) = WT
3f ϕ̃3f (k) + εf (k) +WT

3gϕ̃3guc(k) + εg(k)uc(k). (8.4.20)

Equation (8.4.18) can be rewritten as

r(k + 1) = kvr(k) + eTf (k) + eTg (k) + ε(k) + d(k) + g(x(k))ud(k) (8.4.21)

where

ef (k) = W̃T
3f (k)ϕ̂3f (k), (8.4.22)

eg(k) = W̃T
3g(k)ϕ̂3g(k)uc(k). (8.4.23)

The error in dynamics for the weight update laws are given for this region as

W̃if (k + 1) = (I − αif ϕ̂if (k)ϕ̂
T
if (k))W̃if (k)

−αif ϕ̂if (k)(yif +Bifkvr(k))
T ; i = 1, 2 (8.4.24)

W̃ig(k + 1) = (I − βigϕ̂ig(k)ϕ̂
T
ig(k))W̃ig(k)

−βigϕ̂ig(k)(yig +Bigkvr(k))
T ; i = 1, 2 (8.4.25)

W̃3f (k + 1) = (I − α3f ϕ̂3f (k)ϕ̂
T
3f (k))W̃3f (k)− α3f ϕ̂3f (k)

(kvr(k) + eg(k) + g(x(k))ud(k) + ε(k) + d(k))T (8.4.26)

and

W̃3g(k + 1) = (I − β3gϕ̂3g(k)ϕ̂
T
3g(k))W̃3g(k)− β3gϕ̂3g(k)(kvr(k) + ef (k)

+g(x(k))ud(k) + ε(k) + d(k))T .

(8.4.27)

Substituting (8.4.21) and (8.4.24) through (8.4.27) in (8.4.17), and simplifying one
obtains

�J = −(1− a4) ‖ r(k) ‖2 +2a5 ‖ r(k) ‖ +a6

−(1− η) ‖ (ef (k) + eg(k))− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2,

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ ŷif (k)−

(1− αif ϕ̂
T
if (k)ϕ̂if (k))

(2− αif ϕ̂T
if (k)ϕ̂if (k))

(yif +Bifkvr(k)) ‖2

−
i=2∑
i=1

(2− βigϕ̂
T
ig(k)ϕ̂ig(k)) ‖ ŷig(k)− (1− βigϕ̂

T
ig(k)ϕ̂ig(k))

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

(yig +Bigkvr(k)) ‖2

+a7 ‖ r(k) ‖2 +a8 ‖ r(k) ‖ +a9 (8.4.28)

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 389

where

a7 =

i=2∑
i=1

[
1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

k2
vmaxκ

2
if +

1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

k2
vmaxκ

2
ig] (8.4.29)

a8 =

i=2∑
i=1

[
1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

kvmaxWifmaxϕifmaxκif +

1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

kvmaxWigmaxϕigmaxκig] (8.4.30)

a9 =

i=2∑
i=1

[
1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

ϕ2
ifmaxW

2
ifmax

+
1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

ϕ2
igmaxW

2
igmax] (8.4.31)

with a1, a2, a3, a4, a5, a6 presented in (8.3.23), (8.3.24), (8.3.25), (8.3.33), (8.3.34), and
(8.3.35) respectively. The parameter η is given by

η = α3f ‖ ϕ̂3f (x(k)) ‖2 +β3g ‖ ϕ̂3g(x(k)) ‖2 (8.4.32)

and

εN = 2W3fmaxϕ3fmax + εfmax + s(2W3gmaxϕ3gmax + εgmax). (8.4.33)

The terms in the Equation (8.4.28) are always negative as long as the conditions (8.4.8)
through (8.4.13) hold. Since a4, a5 and a6 are positive constants, �J ≤ 0 as long as (8.4.8)
through (8.4.13) hold and

‖ r(k) ‖> δr1 (8.4.34)

where

δr1 >
1

(1− a10)
[a11 +

√
a2
11 + a12(1− a10)] (8.4.35)

with a10 = a4 + a7, a11 = a5 + a8, a12 = a6 + a8. Then, | ∑∞
k=k0

�J(k) |=| J(∞) −
J(0) |< ∞ since �J ≤ 0 as long as (8.4.8) through (8.4.13) hold. The definition of J and
inequality (8.4.34) imply that every initial condition in the set χ will evolve entirely within
χ. In other words, whenever the tracking error ‖ r(k) ‖ is outside the region defined by
(8.4.34), J(r(k), W̃if (k), W̃ig(k); ∀i = 1, 2, 3) will decrease. This further implies that the
tracking error r(k) is UUB for all k ≥ 0 and it remains to show that the weight estimation
errors, W̃if (k); ∀i = 1, 2, 3 and W̃ig(k); ∀i = 1, 2, 3 or equivalently Ŵif (k); ∀i = 1, 2, 3 and
Ŵig(k); ∀i = 1, 2, 3 are bounded.

Generally in order to show the boundedness of the weight estimation errors, one uses
the error in weight updates (8.4.24) through (8.4.27), tracking error bound (8.4.34), the
PE condition and Lemma presented in Chapter 7. Using (8.4.24) and (8.4.25), applying
the PE condition, the tracking error bound, and Lemma in Chapter 7, the boundedness
of the error in weight estimates of the hidden layers for both NN W̃if (k), W̃ig(k); i = 1, 2
or equivalently, weight estimates of the hidden layers, Ŵif (k), Ŵig(k); i = 1, 2.

On the other hand, using (8.4.26) and (8.4.27) it can be realized that the output of
each neural network is driving the other. Therefore, the boundedness of the tracking error,

390 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

the PE condition and Lemma in Chapter 7 are necessary but not sufficient to prove the
error in weight estimates of the output layers for both NN W̃if (k), W̃ig(k); i = 3.

If the initial weight estimation errors for both NN are considered to be bounded,
then applying the bound for the tracking error (8.4.34), the PE condition and Lemma
in Chapter 7, one can show that the weight estimation errors W̃3f (k) and W̃3g(k) or
equivalently Ŵ3f (k) and Ŵ3g(k) are bounded. This concludes the boundedness of both
tracking error and weight estimates for both NN in this region. On the other hand, a
similar and elegant way to show the boundedness of tracking error and weight estimates
is to apply passivity theory. The proof using passivity theory is shown in Section 8.5.
Region II:| ĝ(x) |≤ g

¯
and | uc(k) |> s.

The filtered tracking error dynamics can be written as

r(k + 1) = kvr(k) + ef (k) + g(x)ud(k) + ε(k) + d(k) (8.4.36)

where

ε(k) = WT
3f (k)ϕ̃3f (k) + εf (k). (8.4.37)

Now using the Lyapunov function (8.4.16), the first difference (8.4.17), after substituting
for g(x)ud(k) from (8.3.49) in (8.4.17) and manipulating accordingly, one can obtain

�J = −(1− b0) ‖ r(k) ‖2 +2b1 ‖ r(k) ‖ +b2

−(1− η) ‖ ef (k)− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2,

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ ŷif (k)−

(1− αif ϕ̂
T
if (k)ϕ̂if (k))

(1− αif ϕ̂T
if (k)ϕ̂if (k))

(yif +Bifkvr(k)) ‖2

+b3 ‖ r(k) ‖2 +b4 ‖ r(k) ‖ +b5 (8.4.38)

where

b0 = k2
vmax + 2C4(C4 + kvmax) +

(C4 + kvmax)
2

(1− α3f ‖ ϕ3f (k) ‖)2 , (8.4.39)

b1 = C3(C4 + kvmax) + C3C4 + (C4 + kvmax)(εN + dM) +
C3(C4 + kvmax)

(1− α3f ‖ ϕ3f (k) ‖2) +

(C4 + kvmax)(εN + dM)

(1− α3f ‖ ϕ3f (k) ‖2) (8.4.40)

b2 = 2C2
3 + 2C3(εN + dM) + (εN + dM)2

+
C2

3 + 2C3(εN + dM) + (εN + dM)2

(1− α3f ‖ ϕ3f (k) ‖2) (8.4.41)

‖ ε(k) ‖≤ εN (8.4.42)

b3 =

i=2∑
i=1

1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

k2
vmaxκ

2
if (8.4.43)

b4 =

i=2∑
i=1

1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

(kvmaxWifmaxϕifmaxκif) (8.4.44)

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 391

b5 =

i=2∑
i=1

1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

(ϕ2
ifmaxW

2
ifmax) (8.4.45)

with η given by (8.4.32).
The terms in (8.4.38) are always negative as long as the conditions (8.4.8) through

(8.4.13) hold. Since b0, b1 and b2 are positive constants, �J ≤ 0 as long as

‖ r(k) ‖> δr2, (8.4.46)

with

δr2 =
1

(1− b6)
[b7 +

√
b27 + b8(1− b6)]. (8.4.47)

with b6 = b0 + b3, b7 = b1 + b4, b8 = b2 + b5. Then |∑∞
k=k0

�J(k) |=| J(∞)− J(0) |< ∞
since �J ≤ 0 as long as (8.4.8) through (8.4.13) hold. The definition of J and inequality
(8.4.46) imply that every initial condition in the set χ will evolve entirely within χ. In
other words, whenever the tracking error ‖ r(k) ‖ is outside the region defined by (8.4.46),
J(r(k), W̃if (k), W̃ig(k); ∀i = 1, 2, 3) will decrease. This further implies that the tracking
error r(k) is UUB for all k ≥ 0 and it remains to show that the weight estimation errors,
W̃1f (k), W̃2f (k), W̃3ff(k) or equivalently Ŵ1f (k), Ŵ2f (k), Ŵ3f (k) are bounded.

In order to show the boundedness of the weight estimation errors, one uses the error
in weight updates (8.4.24) and (8.4.26) for f(·), the tracking error bound (8.4.46), the PE
condition and Lemma in Chapter 7. Since the weight estimates for ĝ(x) is not updated
in this region, the boundedness of the weight estimates for ĝ(x) need not to be shown.
However, to show the boundedness of the weight estimates for f̂(x), the dynamics relative
to the error in weight estimates using (8.4.24) and (8.4.26) for this region are given by

W̃if (k + 1) = (I − αif ϕ̂if (k)ϕ̂if (k)
T)W̃if (k)

−αif ϕ̂if (k)(yif +Bifkvr(k))
T , i = 1, 2, (8.4.48)

W̃3f (k + 1) = (I − α3f ϕ̂3f (k)ϕ̂3f (k)
T)W̃3f (k)− α3f ϕ̂3f (k)(kvr(k)

+C3 + C4 ‖ r(k) ‖ +ε(k) + d(k))T ,

(8.4.49)

where the tracking error r(k) is shown to be bounded. Applying the PE condition and
Lemma described in Chapter 7, the boundedness of weight estimation errors W̃1f (k),
W̃2f (k), W̃3f (k) or equivalently Ŵ1f (k), Ŵ2f (k), Ŵ3f (k) are guaranteed. Let us denote
the bound by δf2. This concludes the boundedness of both tracking error and weight
estimates for both NN in this region.
Reprise:

Combining the results from region I and II, one can readily set δr = max (δr1, δr2), δf =
max (δf1, δf2), and δg. Thus for both regions, if ‖ r(k) ‖> δr, then �J ≤ 0 and u(k) is
bounded. Let us denote (‖ r(k) ‖, ‖ W̃if (k) ‖, ‖ W̃ig(k) ‖) by new coordinate variables
(ξ1, ξ2, ξ3). Define the region

Ξ : ξ|ξ1 < δr, ξ2 < δf , ξ3 < δg,

then there exists an open set

Ω : ξ|ξ1 < δr, ξ2 < δf , ξ3 < δg,

where δi > δi implies that Ξ ⊂ Ω. In other words, we have proved that whenever ξi > δi,
then J(ξ) will not increase and will remain in the region Ω which is an invariant set.
Therefore all the signals in the closed-loop system remain bounded. This concludes the
proof. �

392 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Example 8.4.1 (NN Control of Continuous-Time Nonlinear System) :
To illustrate the performance of the NN controller, a continuous-time nonlinear system

is considered and the objective is to control this feedback linearizable MIMO system by
using a three-layer NN controller. Note that it is extremely difficult to discretize a nonlinear
system and therefore offer stability proofs. Note that the NN controllers derived herein
require no a priori knowledge of the dynamics of the nonlinear systems, unlike conventional
adaptive control nor is any initial learning phase needed.

Consider the nonlinear system described by

Ẋ1 = X2

Ẋ2 = F (X1, X2) +G1(X1, X2)U (8.4.50)

where X1 = [x1, x2]
T , X2 = [x3, x4]

T , and the input vector is given by U = [u1, u2]
T and

the nonlinear function in (8.4.50) is described by F (X1, X2) = [M(X1)]
−1G(X1, X2), with

M(X1) =

[
(b1 + b2)a

2
1 + b2a

2
2 + 2b2a1a2cos(x2) b2a

2
2 + b2a1a2cos(x2)

b2a
2
2 + b2a1a2cos(x2) b2a

2
2

]
(8.4.51)

G(X1, X2) =

[
−b2a1a2(2x3x4 + x2

4)sin(x2) + 9.8(b1 + b2)a1cos(x1) + 9.8b2a2cos(x1 + x2)
b2a1a2x

2
1sin(x2) + 9.8b2a2cos(x1 + x2)

]
(8.4.52)

and
G1(X1, X2) = M−1(X1, X2). (8.4.53)

The parameters for the nonlinear system were selected as a1 = a2 = 1, b1 = b2 = 1.
Desired sinusoidal, sin(2πt

25
), and cosine inputs, cos(2πt

25
), were preselected for the axes 1

and 2 respectively. The continuous-time gains of the PD controller were chosen as kv =
diag(20, 20) with Λ = diag(5, 5) and a sampling interval of 10 ms was considered. Three-
layer NN were selected with 10 hidden-layer nodes. Sigmoidal activation functions were
employed in all the nodes in the hidden layer. The initial conditions for X1 were chosen
to be [0.5, 0.1]T , and the weights for F (·) were initialized to zero whereas the weights for
G(·) were initialized to identity matrix. No off-line learning is performed initially to train
the networks. Fig. 8.4.1 presents the tracking response of the neural network controller
with delta-rule weight tuning (8.4.1) through (8.4.4), with α3 = 0.1, αi = 1.0; ∀i = 1, 2
and β3 = 0.1, βi = 1.0; ∀i = 1, 2. From the figure, it can be seen that the delta rule-based
weight tuning performs impressively. �

8.4.2 Weight Updates not Requiring Persistence of Excitation

Approaches such as σ-modification (Polycarpou and Ioannou 1991) or ε-modification
(Narendra and Annaswamy 1987) are available for the robust adaptive control of
continuous systems wherein the persistency of excitation condition is not needed. On
the other hand, modification to the standard weight tuning mechanisms in discrete-
time to avoid the necessity of PE is also investigated in Jagannathan and Lewis
(1996a) using multilayered NN to a specific class of nonlinear systems.

In Jagannathan (1996b) an approach similar to ε-modification was derived for
discrete-time NN for feedback linearization. The following theorem from that pa-
per shows the tuning algorithms that do not require persistence of excitation. The
controller derived is detailed in Table 8.4.2.

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 393

Figure 8.4.1: Response of NN controller with delta-rule based weight tuning. (a)
Actual and desired joint angles. (b) Neural network outputs

394 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Table 8.4.2: Discrete-Time Controller Using Multilayer Neural Net: PE not Re-
quired

The control input is

u(k) = uc(k) +
ur(k)− uc(k)

2
eγ(|uc(k)|−s), I = 1,

= ur(k)− ur(k)− uc(k)

2
e−γ(|uc(k)|−s), I = 0.

The NN weight tuning for f(x(k)) is given by

Ŵif (k + 1) = Ŵif (k) + αif ϕ̂if (k)(ŷif (k) +Bifkvr(k))
T

−δif ‖ I − αif ϕ̂if (k)ϕ̂
T
if (k) ‖; i = 1, 2,

Ŵ3f (k + 1) = Ŵ3f (k) + α3f ϕ̂3f (k)r
T (k + 1)

−δ3f ‖ I − α3f ϕ̂3f (k)ϕ̂
T
3f (k) ‖

and the NN weight tuning for g(x(k)) is provided by

Ŵig(k + 1) = Ŵig(k) + βigϕ̂ig(k)(ŷig(k) +Bigkvr(k))
T

−ρig ‖ I − βigϕ̂ig(k)ϕ̂
T
ig(k) ‖; i = 1, 2,

Ŵ3g(k + 1) = Ŵ3g(k) + β3gϕ̂3g(k)r
T (k + 1),

−ρ3g ‖ I − β3gϕ̂3g(k)ϕ̂
T
3g(k) ‖; I = 1,

= Ŵ3g(k), I = 0,

with αif > 0; i = 1, 2, 3, βig > 0; i = 1, 2, 3, δif ; i = 1, 2, 3 and ρig; i = 1, 2, 3
denoting constant learning rate parameters or adaptation gains.

Theorem 8.4.2 (Multilayer NN Feedback Linearization without PE) :
Assume the hypotheses presented in Theorem 8.4.1, and consider the modified weight

tuning algorithms provided for f(x(k)) by :

Ŵif (k + 1) = Ŵif (k) + αif ϕ̂if (k)(ŷif (k) +Bifkvr(k))
T −

δif ‖ I − αif ϕ̂if (k)ϕ̂
T
if (k) ‖ Ŵif (k); i = 1, 2 (8.4.54)

Ŵ3f (k + 1) = Ŵ3f (k) + α3f ϕ̂3f (k)r
T (k + 1)−

δ3f ‖ I − α3f ϕ̂3f (k)ϕ̂
T
3f (k) ‖ Ŵf (k) (8.4.55)

and the NN weight updates for g(x(k)) provided by

Ŵig(k + 1) = Ŵig(k) + αigϕ̂ig(k)(ŷig(k) +Bigkvr(k))
T −

ρig ‖ I − αigϕ̂ig(k)ϕ̂
T
ig(k) ‖ Ŵig(k); i = 1, 2 (8.4.56)

Ŵ3g(k + 1) = Ŵ3g(k) + β3gϕ̂3g(k)r
T (k + 1)

−ρ3g ‖ I − β3gϕ̂3g(k)ϕ̂
T
g (k) ‖ Ŵ3g(k), I = 1,

= Ŵ3g(k), I = 0, (8.4.57)

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 395

with αig > 0; i = 1, 2, 3, βig > 0; i = 1, 2, 3, δig > 0; i = 1, 2, 3 and ρig > 0; i = 1, 2, 3
design parameters. Then the filtered tracking error r(k) and the NN weight estimates
Ŵif (k); i = 1, 2, 3 and Ŵig(k); i = 1, 2, 3 are UUB, with the bounds specifically given by
Equations (8.4.86) or (8.4.101), (8.4.92) or (8.4.105) and (8.4.96) provided the following
conditions hold:

(1) β3g ‖ ϕ̂3g(k)uc(k) ‖= β3g ‖ ϕ̂3g(k) ‖2< 1, (8.4.58)

(2) αif ‖ ϕ̂if (k) ‖2< 2; i = 1, 2, (8.4.59)

(3) βig ‖ ϕ̂ig(k) ‖2< 2; i = 1, 2, (8.4.60)

(4) η +max(P1, P3, P4) < 1 (8.4.61)

(5) 0 < δig < 1, ∀i = 1, 2, 3, (8.4.62)

(6) 0 < ρig < 1, ∀i = 1, 2, 3, (8.4.63)

(7) max(a5, b6) < 1, (8.4.64)

with P1, P3, and P4 constants which depend upon η, δ and ρ where

η = α3f ‖ ϕ̂3f (k) ‖2 +β3g ‖ ϕ̂3g(k)uc(k) ‖2= α3f ‖ ϕ̂3f (k) ‖2 +β3g ‖ ϕ̂3g(k) ‖2, I = 1,

= α3f ‖ ϕ̂3f (k) ‖2, I = 0, (8.4.65)

and a5 and b6 design parameters chosen using the gain matrix kv.
Proof:

Region I: | ĝ(x(k)) |≥ g
¯
and | uc(k) |≤ s.

Select the Lyapunov function candidate (8.4.16) whose first difference is given by
(8.4.17). The error in dynamics for the weight update laws are given for this region
as

W̃if (k + 1) = (I − αif ϕ̂if (k)ϕ̂
T
if (k))W̃if (k)− αif ϕ̂if (k)(yif +Bifkvr(k))

T

−δif ‖ I − αif ϕ̂if (k)ϕ̂
T
if (k) ‖ Ŵif (k); i = 1, 2 (8.4.66)

W̃ig(k + 1) = (I − βigϕ̂ig(k)ϕ̂
T
ig(k))W̃ig(k)− βigϕ̂ig(k)(yig +Bigkvr(k))

T

−ρig ‖ I − βigϕ̂ig(k)ϕ̂
T
ig(k) ‖ Ŵig(k); i = 1, 2 (8.4.67)

W̃3f (k + 1) = (I − α3f ϕ̂3f (k)ϕ̂
T
3f (k))W̃3f (k)− α3f ϕ̂3f (k)(kvr(k) + eg(k)

+g(x(k))ud(k) + ε(k) + d(k))T

−δ3f ‖ I − α3f ϕ̂3f (k)ϕ̂
T
3f (k) ‖ (8.4.68)

and

W̃3g(k + 1) = (I − β3gϕ̂3g(k)ϕ̂
T
3g(k))W̃3g(k)− β3gϕ̂3g(k)(kvr(k) + ef (k)

+g(x(k))ud(k) + ε(k) + d(k))T

−ρ3g ‖ I − α3gϕ̂3g(k)ϕ̂
T
3g(k) ‖ . (8.4.69)

Substituting (8.4.66) through (8.4.69) in (8.4.17), combining, substituting for g(x)ud(k)
from (8.3.29), rewriting and completing the squares for ‖ W̃if (k) ‖; i = 1, 2, 3, and ‖
W̃ig(k) ‖; i = 1, 2, 3 one obtains

�J ≤ −(1− a2) ‖ r(k) ‖2 +2a3 ‖ r(k) ‖ +a4

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2

396 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

+

i=3∑
i=1

1

αif
‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖2 tr[δ2ifŴ

T
if (k)Ŵif (k) + 2δifW̃

T
if (k)Ŵif (k)]

+

i=3∑
i=1

1

βig
‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖2 tr(ρ2igŴ

T
ig(k)Ŵig(k) + 2δigW̃

T
ig(k)Ŵig(k))

−
I=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃T

if (k)ϕ̂if (k)− 1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)(yif +Bifkvr(k)) ‖2

+P5 ‖ r(k) ‖2 +2P6 ‖ r(k) ‖ +P7 (8.4.70)

where

a2 = (2 + η)k2
vmax + 2(1 + η)C1kvmax + (2 + η)C2

1 + 2kvmaxC1 (8.4.71)

a3 = (1 + η)kvmax(εN + dM + C0) + P2kvmax + P2C1 + ηC1(εN + dM)

+
1

2
(2 + η)C1(εN + dM + C0) + 2kvmax(εN + dM + C0) (8.4.72)

a44 = 2P2(εN + dM + C0) + 2ηC0(εN + dM)

+(2 + η)(εN + dM + C0)
2 + 2ηεNdM (8.4.73)

and

a4 = a44 +
1

α3f
‖ I − α3f ϕ̂3f (k)ϕ̂3f (k)

T ‖2 δ23f
(2− δ3f)

W 2
3fmax

+
1

β3g
‖ I − β3gϕ̂3g(k)ϕ̂3g(k)

T ‖2

ρ23g
(2− ρ3g)

W 2
3gmax (8.4.74)

P1 = 2(δ3f ‖ I − α3f ϕ̂3f (k)ϕ̂3f (k)
T ‖ +ρ3g ‖ I − β3gϕ̂3g(k)ϕ̂3g(k)

T ‖). (8.4.75)

P2 = 2(δ3f ‖ I − α3f ϕ̂3f (k)ϕ̂
T
3f (k) ‖ W3fmaxϕ̃3fmax + ρ3g ‖ I − β3gϕ̂3g(k)ϕ̂

T
3g(k) ‖

W3gmaxϕ̃3gmax). (8.4.76)

P3 = (η + δ3f ‖ I − α3f ϕ̂3f (k)ϕ̂
T
3f (k) ‖)2, (8.4.77)

and
P4 = (η + ρ3g ‖ I − β3gϕ̂3g(k)ϕ̂

T
3g(k) ‖)2. (8.4.78)

P5 = (2δif ‖ I − αif ϕ̂if (k)ϕ̂
T
if (k) ‖ +(αif ϕ̂

T
if (k)ϕ̂if (k) +

(1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)2

(2− αif ϕ̂T
if (k)ϕ̂if (k))

) ‖ ϕ̂if (k) ‖2‖ Wif ‖2

(2δig ‖ I − βigϕ̂ig(k)ϕ̂
T
ig(k) ‖ +[βigϕ̂

T
ig(k)ϕ̂ig(k) +

((1− βiϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)2

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

) ‖ ϕ̂ig(k) ‖2‖ Wig ‖2

(8.4.79)

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 397

P6 = (αif ϕ̂
T
if (k)ϕ̂if (k) +

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)2

(2− αif ϕ̂T
if (k)ϕ̂if (k))

+

δif ‖ I − αif ϕ̂if (k)ϕ̂
T
if (k) ‖)κifkvmax

(βigϕ̂
T
ig(k)ϕ̂ig(k) +

((1− βigϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)2

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

+

ρif ‖ I − βigϕ̂g(k)ϕ̂
T
ig(k) ‖)κigkvmax (8.4.80)

P7 = αif ϕ̂
T
if (k)ϕ̂if (k) +

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)2

(2− αif ϕ̂T
if (k)ϕ̂if (k))

κ2
ifk

2
vmax

βigϕ̂
T
ig(k)ϕ̂ig(k) +

((1− βigϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)2

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

κ2
igk

2
vmax

(8.4.81)

with η is given in (8.4.65). Equation (8.4.70) can be rewritten as

�J ≤ −(1− a5) ‖ r(k) ‖2 +2a6 ‖ r(k) ‖ +a7

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2
−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃T

if (k)ϕ̂if (k)− 1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)(yif +Bifkvr(k)) ‖2

−
i=2∑
i=1

(2− βigϕ̂
T
ig(k)ϕ̂ig(k)) ‖ W̃T

ig(k)ϕ̂ig(k)− 1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

((1− βigϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)(yif +Bifkvr(k)) ‖2

−tr(ẐT
f (k)C1f Ẑf (k)− 2Ẑf (k)C2f Z̃f)

−tr(ẐT
g (k)C1gẐg(k)− 2Ẑg(k)C2gZ̃g) (8.4.82)

where a5 = a2 + P5, a6 = a3 + P6, a7 = P7 + a4.
Rewriting Equation (8.4.82) one obtains

�J ≤ −(1− a5) ‖ r(k) ‖2 +2a6 ‖ r(k) ‖ +a7

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2
−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃T

if (k)ϕ̂if (k)− 1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)(yif +Bifkvr(k)) ‖2

−
i=2∑
i=1

(2− βigϕ̂
T
ig(k)ϕ̂ig(k)) ‖ W̃T

ig(k)ϕ̂ig(k)− 1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

((1− βigϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)(yif +Bifkvr(k)) ‖2

398 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

−(2C2fmin − C1fmax)[‖ Z̃f (k) ‖2 −2
(C1fmin + C2fmin)

(2C2fmin − C1fmax)
‖ Z̃f (k) ‖ ZMf −

C1fmax

(2C2fmin − C1fmax)
Z2

Mf]− (2C2gmin − C1gmax)[‖ Z̃g(k) ‖2 −

2
(C1gmin + C2gmin)

(2C2gmin − C1gmax)
‖ Z̃g(k) ‖ ZMg − C1gmax

(2C2gmin − C1gmax)
Z2

Mg] (8.4.83)

where C1f = diag(δ2if
1

αif
‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖2) and C2f = diag(δif

1
αif

‖ I −
αif ϕ̂if (k)ϕ̂

T
if (k) ‖2). Similarly, C1g = diag(δ2ig

1
αig

‖ I − αigϕ̂ig(k)ϕ̂
T
ig(k) ‖2) and C2g =

diag(δig
1

αig
‖ I − αigϕ̂ig(k)ϕ̂

T
ig(k) ‖2). Completing the squares for Z̃f (k) and Z̃g(k) in

(8.4.83) one obtains

�J ≤ −(1− a5) ‖ r(k) ‖2 +2a6 ‖ r(k) ‖ +a8

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2
−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃T

if (k)ϕ̂if (k)− 1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)(yif +Bifkvr(k)) ‖2

−
i=2∑
i=1

(2− βigϕ̂
T
ig(k)ϕ̂ig(k)) ‖ W̃T

ig(k)ϕ̂ig(k)− 1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

((1− βigϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)(yif +Bifkvr(k)) ‖2

−(2C2fmin − C1fmax)[‖ Z̃f (k) ‖ − (C1fmin + C2fmin)

(2C2fmin − C1fmax)
ZMf]

2

−(2C2gmin − C1gmax)[‖ Z̃g(k) ‖ − (C1gmin + C2gmin)

(2C2gmin − C1gmax)
ZMg]

2 (8.4.84)

where

a8 = a7 +
C1fmax

(2C2fmin − C1fmax)
Z2

Mf +
(C1fmin + C2fmin)

(2C2fmin − C1fmax)
Z2

Mf

C1gmax

(2C2gmin − C1gmax)
Z2

Mg +
(C1gmin + C2gmin)

(2C2gmin − C1gmax)
Z2

Mg. (8.4.85)

All the terms in (8.4.84) are always negative except the first term as long as the conditions
(8.4.58) through (8.4.64) hold. Since a5, a6 and a8 are positive constants, �J ≤ 0 as long
as (8.4.58) through (8.4.64) hold with

‖ r(k) ‖> δr1 (8.4.86)

where

δr1 =
1

(1− a5)
[a6 +

√
a2
6 + a8(1− a5)]. (8.4.87)

Similarly, completing the squares for ‖ r(k) ‖, ‖ Z̃g(k) ‖ using (8.4.83) yields

�J ≤ −(1− a5)[‖ r(k) ‖ − a6

(1− a5)
]2

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 399

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2
−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃T

if (k)ϕ̂if (k)− 1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)(yif +Bifkvr(k)) ‖2

−
i=2∑
i=1

(2− βigϕ̂
T
ig(k)ϕ̂ig(k)) ‖ W̃T

ig(k)ϕ̂ig(k)− 1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

((1− βigϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)(yif +Bifkvr(k)) ‖2

−(2C2fmin − C1fmax)[‖ Z̃f (k) ‖ − (C1fmin + C2fmin)

(2C2fmin − C1fmax)
‖ Z̃f (k) ‖ ZMf − a10]

−(2C2gmin − C1gmax)[‖ Z̃g(k) ‖ − (C1gmin + C2gmin)

(2C2gmin − C1gmax)
ZMg]

2 (8.4.88)

where

a10 =
(C1fmin + C2fmin)

2

(2C2fmin − C1fmax)
ZMf (8.4.89)

a11 =
C1fmax

(2C2fmin − C1fmax)
Z2

Mf +
(C1gmin + C2gmin)

2

(2C2gmin − C1gmax)
Z2

Mg. (8.4.90)

Then �J ≤ 0 as long as (8.4.58) through (8.4.64) hold and the quadratic term for Z̃f (k)
in (8.4.88) is positive, which is guaranteed when

‖ Z̃f (k) ‖> δf1 (8.4.91)

where

δf1 = a10 +
√

a2
10 + a11. (8.4.92)

Similarly, completing the squares for ‖ r(k) ‖, ‖ Z̃f (k) ‖ using (8.4.83) yields

�J ≤ −(1− a5)[‖ r(k) ‖ − a6

(1− a5)
]2

−(1− η − P3) ‖ ef (k) ‖2 −(1− η − P4) ‖ eg(k) ‖2
−2(1− η − P1) ‖ ef (k) ‖‖ eg(k) ‖
− ‖ (

√
P3ef (k) +

√
P4eg(k))− (kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃T

if (k)ϕ̂if (k)− 1

(2− αif ϕ̂T
if (k)ϕ̂if (k))

((1− αif ϕ̂
T
if (k)ϕ̂if (k))− δif ‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖)(yif +Bifkvr(k)) ‖2

−
i=2∑
i=1

(2− βigϕ̂
T
ig(k)ϕ̂ig(k)) ‖ W̃T

ig(k)ϕ̂ig(k)− 1

(2− βigϕ̂T
ig(k)ϕ̂ig(k))

((1− βigϕ̂
T
ig(k)ϕ̂ig(k))− ρig ‖ I − βigϕ̂ig(k)ϕ̂

T
ig(k) ‖)(yif +Bifkvr(k)) ‖2

−(2C2gmin − C1gmax)[‖ Z̃g(k) ‖ − (Cgfmin + C2gmin)

(2C2gmin − Cgfmax)
‖ Z̃g(k) ‖ ZMg − a10]

−(2C2fmin − C1fmax)[‖ Z̃f (k) ‖ − (C1fmin + C2fmin)

(2C2fmin − C1fmax)
ZMf]

2 (8.4.93)

400 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

where

a10 =
(C1gmin + C2gmin)

2

(2C2gmin − C1gmax)
ZMg (8.4.94)

a11 =
C1gmax

(2C2gmin − C1gmax)
Z2

Mg +
(C1fmin + C2fmin)

2

(2C2fmin − C1fmax)
Z2

Mf . (8.4.95)

Then �J ≤ 0 as long as (8.4.58) through (8.4.64) hold and the quadratic term for Z̃g(k)
in (8.4.93) is positive, which is guaranteed when

‖ Z̃g(k) ‖> δg1 (8.4.96)

where

δg1 = a10 +
√

a2
10 + a11. (8.4.97)

We have shown upper bounds for the tracking error and the NN weight estimation errors
for this region for all | uc(k) |≤ s.
Region II: | ĝ(x) |≤ g

¯
and | uc(k) |> s.

The filtered tracking error dynamics can be written for this region as (8.4.36). Now
using the Lyapunov function (8.4.16), the first difference (8.4.17), after substituting for
g(x)ud(k) from (8.3.49) in (8.4.17) and manipulating accordingly, one can obtain

�J = −(1− b0) ‖ r(k) ‖2 +2b1 ‖ r(k) ‖ +b2

−(1− η) ‖ ef (k)− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2,

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ ŷif (k)−

(1− αif ϕ̂
T
if (k)ϕ̂if (k))

(1− αif ϕ̂T
if (k)ϕ̂if (k))

(yif +Bifkvr(k)) ‖2

+b3 ‖ r(k) ‖2 +b4 ‖ r(k) ‖ +b5

+

i=3∑
i=1

1

αif
‖ I − αif ϕ̂if (k)ϕ̂

T
if (k) ‖2 [δ2ifŴ

T
if (k)Ŵif (k) + 2δifW̃ifŴif (k)] (8.4.98)

where b0, b1, b2, b3, b4, b5 are presented in (8.4.39) through (8.4.45), with η given by (8.4.65).

�J = −(1− b6) ‖ r(k) ‖2 +2b7 ‖ r(k) ‖ +b8

−(1− η) ‖ ef (k)− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ ŷif (k)−

(1− αif ϕ̂
T
if (k)ϕ̂if (k))

(1− αif ϕ̂T
if (k)ϕ̂if (k))

(yif +Bifkvr(k)) ‖2

−(2C2fmin − C1fmax)[‖ Z̃f (k) ‖2 −2
(C1fmin + C2fmin)

(2C2fmin − C1fmax)
‖ Z̃f (k) ‖ ZMf −

C1fmax

(2C2fmin − C1fmax)
Z2

Mf] (8.4.99)

with b6 = b0 + b3, b7 = b2 + b4, b8 = b2 + b5.
Complete the squares for ‖ Zf (k) ‖ using (8.4.99) to obtain

�J = −(1− b6) ‖ r(k) ‖2 +2b7 ‖ r(k) ‖ +b9

−(1− η) ‖ ef (k)− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2,

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 401

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ ŷif (k)−

(1− αif ϕ̂
T
if (k)ϕ̂if (k))

(1− αif ϕ̂T
if (k)ϕ̂if (k))

(yif +Bifkvr(k)) ‖2

−(2C2fmin − C1fmax)[‖ Z̃f (k) ‖ − (C1fmin + C2fmin)

(2C2fmin − C1fmax)
ZMf]

2 (8.4.100)

The terms in (8.4.100) are always negative as long as the conditions (8.4.58) through
(8.4.64) hold. Since b6, b7 and b9 are positive constants, �J ≤ 0 as long as

‖ r(k) ‖> δr2, (8.4.101)

where

δr2 =
1

(1− b6)
[b7 +

√
b27 + b9(1− b6)]. (8.4.102)

with

b9 = b8 +
(2C1fmax + C2fmax)

(2C2fmin − C1fmax)
Z2

Mf . (8.4.103)

Similarly, completing the squares for ‖ r(k) ‖ in (8.4.99) one obtains

�J = −(1− b6)[‖ r(k) ‖ − b7
(1− b6)

]2

−(1− η) ‖ ef (k)− η

(1− η)
(kvr(k) + g(x)ud(k) + ε(k) + d(k)) ‖2,

−
i=2∑
i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ ŷif (k)−

(1− αif ϕ̂
T
if (k)ϕ̂if (k))

(1− αif ϕ̂T
if (k)ϕ̂if (k))

(yif +Bifkvr(k)) ‖2

−(2C2fmin − C1fmax)[‖ Z̃f (k) ‖2 −2
(C1fmin + C2fmin)

(2C2fmin − C1fmax)
‖ Z̃f (k) ‖ ZMf

− C1fmax

(2C2fmin − (C1fmax)
Z2

Mf

− 1

(2C2fmin − C1fmax)
(Z2

M + b8 +
b27

(1− b6)
]. (8.4.104)

The terms in (8.4.104) are always negative as long as the conditions (8.4.58) through
(8.4.64) hold except the last term. �J ≤ 0 as long as

‖ Z̃f ‖> δf2, (8.4.105)

with

δf2 = b9 +
√

b29 + b10 (8.4.106)

with

b9 =
(2C1fmin + C2fmin)

(2C2fmin − C1fmax)
Z2

Mf (8.4.107)

and

b10 =
C1fmax

(2C2fmin − (C1fmax)
Z2

Mf − 1

(2C2fmin − C1fmax)
(Z2

M + b8 +
b27

(1− b6)
)

(8.4.108)

402 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

One has | ∑∞
k=k0

�J(k) |=| J(∞) − J(0) |< ∞ since �J ≤ 0 as long as (8.4.58)

through (8.4.64) hold. The definition of J and inequalities (8.4.101) and (8.4.105) imply
that every intial conditon in the set χ will evolve entirely within χ. Thus according to the
standard Lyapunov extension, it can be concluded that the tracking error r(k) and the
error in weight updates are UUB.
Reprise:

Combining the results from region I and II, one can readily set δr = max (δr1, δr2), δf =
max (δf1, δf2), and δg. Thus for both regions, if ‖ r(k) ‖> δr, then �J ≤ 0 and u(k) is
bounded. Let us denote (‖ r(k) ‖, ‖ W̃f ‖, ‖ W̃g ‖) by new coordinate variables (ξ1, ξ2, ξ3).
Define the region

Ξ : ξ|ξ1 < δr, ξ2 < δf , ξ3 < δg,

then there exists an open set

Ω : ξ|ξ1 < δr, ξ2 < δf , ξ3 < δg,

where δi > δi implies that Ξ ⊂ Ω. In other words, we have proved that whenever ξi > δi,
then J(ξ) will not increase and will remain in the region Ω which is an invariant set.
Therefore all the signals in the closed-loop system remain bounded. This concludes the
proof. �

Example 8.4.2 (Control Using NN Tuning not Requiring PE) :
For Example 8.4.1, the response of the neural network controller with the improved

weight tuning (8.4.54) through (8.4.57) and projection algorithm is presented in Fig. 8.4.2.
The design parameters Γi; i = 1, 2, 3 and ρi; i = 1, 2, 3 are selected as 0.01. Note that with
the improved weight tuning, the output of the neural network remains bounded because
the weights are guaranteed to remain bounded without the necessity of persistency of
excitation. To study the contribuion of the neural network, Fig. 8.4.3 shows the reponse
of the PD controller with no neural network. It is clear that the addition of the neural
network makes a significant improvement in the tracking performance. �

Example 8.4.3 (NN Control of Discrete-Time Nonlinear System) :
Consider the first-order multi-input/multi-output discrete-time nonlinear system de-

scribed by
X(k + 1) = F (X) +G(X)U(k), (8.4.109)

where X(k) = [x1(k), x2(k)]
T , F (X) =

[
x2(k)

1+x2
1
(k)

x1(k)

1+x2
1
(k)

]
, G(X) =

[
1

1+x2
1
(k)

0

0 1
1+x2

2
(k)

]
and

the input is given by U(k) = [u1(k), u2(k)]
T . The objective is to track a periodic step

input of magnitude two units with a period of 30 s. The elements of the diagonal matrix

were chosen as kv =

[
0.1 0
0 0.1

]
and a sampling interval of 10 ms was considered.

Multi-layer NN were selected with 12 hidden-layer nodes. Sigmoidal activation functions
were employed in all the nodes in the hidden layer. The initial conditions for the plant
were chosen to be [1,−1]T . The weights were initialized to zero for F (·) and identity
matrix for G(·) with an inital threshold value of 3.0. The design parameters Γi; = 1, 2, 3
and ρi = 1, 2, 3 were selected to be 0.01. No learning is performed initially to train
the networks. The design parameters for the projection algorithm were selected to be
ξ3 = 0.5, ξi = 1.0; i = 1, 2 with ζi = 0.001; ∀i = 1, 2, 3 for both NN.

In this example, only results using the improved weight tuning are presented. The
response of the controller with the improved weight tuning (8.4.54) through (8.4.57) is

8.4. MULTILAYER NEURAL NETWORKS FOR FEEDBACK LINEARIZATION 403

Figure 8.4.2: Response of the NN controller with improved weight tuning and pro-
jection algorithm. (a) Actual and desired joint angles. (b) Neural network outputs.

404 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Figure 8.4.3: Response of the PD controller.

shown in Fig. 8.4.4. Note from Fig. 8.4.4, as expected, The performance of the controller
is extremely impressive.

Let us consider the case when a bounded disturbance given by

w(k) =

{
0.0 0 ≤ kTm < 12
0.1 kTm ≥ 12

(8.4.110)

is acting on the plant at the time instant t. Fig. 8.4.5 presents the tracking response of NN
controllers with the improved weight tuning and projection algorithm. The magnitude of
the disturbance can be increased and, however, the value should be bounded. The value
shown in (8.4.110) is employed for simulation purposes only. It can be seen from the figure
that the bounded disturbance induces bounded tracking errors at the output of the plant.
From the results, it can be inferred that the bounds presented and the theoretical claims
were justified through simulation studies both in continuous and discrete-time. �

8.5 PASSIVITY PROPERTIES OF THE NN

In this section, an interesting property of the NN controller is shown. Namely, the
NN controller makes the closed-loop system passive. The practical importance of
this is that additional unknown bounded disturbances do not destroy the stability
and tracking of the system. Passivity was discussed in Chapter 2. Note that the
NN used in the controllers in this chapter are feedforward NN with no dynamics.
However, tuning them on-line turns them into dynamical systems, so that passivity
properties can be defined.

The closed-loop error system (8.2.27) is shown in Fig. 8.5.1 using a one-layer
neural network; note that the NN now is in the standard feedback configuration as
opposed to the NN controller in Fig. 8.2.1, which has both feedback and feedfor-
ward connections. Passivity is essential in a closed-loop system as it guarantees the
boundedness of the signals, and hence suitable peformance, even in the presence of

8.5. PASSIVITY PROPERTIES OF THE NN 405

Figure 8.4.4: Response of the NN controller with improved weight tuning and pro-
jection algorithm. (a) Desired and actual state 1. (b) Desired and actual state
2.

406 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Figure 8.4.5: Response of NN controller with improved weight tuning in the presence
of bounded disturbances. (a) Desired and actual state 1. (b) Desired and actual
state 2.

8.5. PASSIVITY PROPERTIES OF THE NN 407

Figure 8.5.1: The NN closed-loop system using a one-layer neural nework.

additional unforseen bounded disturbances. This equates to robustness of the closed-
loop system. Therefore, in this section the passivity properties of the NN, and of
the closed-loop system, are explored for various weight tuning algorithms.

8.5.1 Passivity Properties of the Tracking Error System

In general, the closed-loop tracking system (8.1.8) can also be expressed as

r(k + 1) = kvr(k) + ζ0(k) (8.5.1)

where
ζ0(k) = f̃(x) + g̃(x)u(k) + d(k). (8.5.2)

The next dissipativity result holds for this system.

Theorem 8.5.1 (Passivity of the Tracking Error System) :
The tracking error system (8.5.1) is state strict passive (SSP) from ζ0(k) to kvr(k)

provided that
kT
v kv < I. (8.5.3)

Proof:
Select a Lyapunov function candidate

J = rT (k)r(k). (8.5.4)

The first difference is given by

�J = rT (k + 1)r(k + 1)− rT (k)r(k). (8.5.5)

Substituting (8.5.1) in (8.5.5) yields

�J = −rT (k)[I − kT
v kv]r(k) + 2rT (k)kvζ0 + ζT0 (k)ζ0(k). (8.5.6)

Note (8.5.6) is in power form defined in Chapter 2 with the first term taken as h(k), a
quadratic function of the state r(k). Hence (8.5.1) is a state strict passive system. �

408 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Even though the closed-loop error system (8.5.1) is state strict passive, the
closed-loop system is not passive unless the weight update laws guarantee the pas-
sivity of the lower block in Fig. 8.5.1. It is usually difficult to demonstrate that the
error in weight updates are passive. However, in the next subsection it is shown
that the delta-rule-based tuning algorithm (8.3.2) and (8.3.3) for a one-layer neural
network yield a passive net.

8.5.2 Passivity Properties of One-layer Neural Network Controllers

It is shown here that the one-layer NN tuning algorithms in Theorem 8.3.1, where
PE is required, make the NN passive, but the tuning algorithms in Theorem 8.3.2,
where PE is not required, make the NN state strict passive (SSP). The implications
for the closed-loop passivity using the NN contoller in Table 8.3.1 and Table 8.3.2
are then discussed.

The next result details the passivity properties engendered by the tuning rules in
Table 8.3.1.

Theorem 8.5.2 (One-Layer NN Passivity for Tuning with PE) :
The weight tuning algorithms (8.3.18) and (8.3.19) make the map from kr(k)+eg(k)+

g(x)ud(k)+ε(k)+d(k)) for the case of (8.3.18) and kvr(k)+ef (k)+g(x)ud(k)+ε(k)+d(k)
for the case of (8.3.19), to −W̃T

f (k)ϕf (k) and −W̃T
g (k)ϕg(k) passive maps.

Proof:
Define the Lyapunov function candidate

J =
1

α
tr[W̃T

f (k)W̃f (k)], (8.5.7)

whose first difference is given by

J =
1

α
tr[W̃T

f (k + 1)W̃f (k + 1)− W̃T
f (k)W̃f (k)]. (8.5.8)

Substituting the weight update law (8.3.18) in (8.5.8) yields

�J = −(2− αϕT
f (k)ϕf (k))(−W̃T

f (k)ϕf (k))
T (−W̃T

f (k)ϕf (k)) +

αϕT
f (k)ϕf (k)(kvr(k) + eg(k) + g(x)ud(k) + ε(k) + d(k))T (kvr(k)

+eg(k) + g(x)ud(k) + ε(k) + d(k))

+2(1− αϕT
f (k)ϕf (k))(−W̃T

f (k)ϕf (k))(kvr(k) + eg(k) + g(x)ud(k)

+ε(k) + d(k)).

(8.5.9)

Note (8.5.9) is in power form defined in Chapter 2 as long as the condition (8.3.4)
holds. This in turn guarantees the passivity of the weight tuning mechanism (8.3.18).

Similarly one can also prove that the error in weight updates presented in (8.3.19)
is passive as long as the the PE condition is satisfied. In fact, if one chooses the first
difference as

J =
1

β
tr[W̃T

g (k + 1)W̃g(k + 1)− W̃T
g (k)W̃g(k)]. (8.5.10)

Using the error in update law (8.3.19) and simplifying one obtains

�J = −(2− βϕT
g (k)ϕg(k))(−W̃T

g (k)ϕg(k))
T (−W̃T

g (k)ϕg(k)) +

αϕT
g (k)ϕg(k)(kvr(k)

8.5. PASSIVITY PROPERTIES OF THE NN 409

+ef (k) + g(x)ud(k) + ε(k) + d(k))T (kvr(k) + ef (k) + g(x)ud(k) + ε(k) + d(k))

+2(1− βϕT
g (k)ϕg(k))(−W̃T

g (k)ϕg(k))(kvr(k) + ef (k) + g(x)ud(k)

+ε(k) + d(k)).

(8.5.11)

�

The next result shows that the modified tuning algorithms in Table 8.3.2 yield
a stronger passivity property for the NN. The proof is an extension of the previous
one.

Theorem 8.5.3 (One-Layer NN Passivity for Tuning Algorithms, no PE) :
The modified weight tuning algorithms (8.3.65) and (8.3.66) make the map from,

(kvr(k) + eg(k) + g(x)ud(k) + ε(k) + d(k)) for the case of (8.3.65) and (kvr(k) + ef (k) +
g(x)ud(k)+ε(k)+d(k)) for the case of (8.3.66), to −W̃T

f (k)ϕf (k) and −W̃T
g (k)ϕg(k) state

strict passive maps. �

It has been shown that the filtered tracking error system (8.2.27) in Fig. 8.5.1
is state strict passive, while the NN weight error block is passive using the tuning
rules in Table 8.3.1. Thus, using standard results (Slotine and Li 1991), it can
be concluded that the closed-loop system is passive. Therefore, according to the
Passivity Theorem one can conclude that the inputs/output signals of each block
are bounded as long as the disturbances are bounded. Though passive, however, the
closed-loop system is not state strict passive so this does not yield boundedness of
the internal states of the lower blocks (e.g. W̃f (k) and W̃g(k)) unless PE holds for
the case of one-layer NN case.

On the other hand, the enhanced tuning rules of Table 8.3.2 yield a SSP weight
tuning block in the figure, so that the closed-loop system is SSP. Thus, the internal
states of the lower blocks (e.g. W̃f (k) and W̃g(k)) are bounded even if PE does
not hold. Thus, the modified tuning algorithms guarantee SSP of the weight tuning
blocks, so that the closed-loop system is SSP. Therefore, internal stability can be
guaranteed even in the absence of PE.

8.5.3 Passivity Properties of Multilayer Neural Network Controllers

It is shown here that the multilayer NN tuning algorithms in Theorem 8.4.1, where
PE is required, make the NN passive, but the tuning algorithms in Theorem 8.4.2,
where PE is not required, make the NN state strict passive (SSP). The implications
for the closed-loop passivity using the NN contoller in Table 8.4.1 and Table 8.4.2
are then discussed.

The next result details the passivity properties engendered by the tuning rules in
Table 8.4.1.

Theorem 8.5.4 (Multilayer NN Passivity, Tuning Algorithms with PE) :
The weight tuning algorithms (8.4.2) and (8.4.4) make the map from kr(k) + eg(k) +

g(x)ud(k)+ ε(k)+d(k)) for the case of (8.4.2) and kvr(k)+ef (k)+g(x)ud(k)+ ε(k)+d(k)
for the case of (8.4.4), to −W̃T

3f (k)ϕ̂3f (x(k)) and −W̃T
3g(k)ϕ̂3g(x(k)) passive maps.

The weight tuning algorithms for the hidden layers (8.4.1) and (8.4.3) make the map
from yif (k)+Bifkvr(k) for the case of (8.4.1) and yig(k)+Bigkvr(k) for the case of (8.4.3),
to W̃T

if (k)ϕ̂if (x(k)) and W̃T
ig(k)ϕ̂ig(x(k)) passive maps.

410 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Proof:
Define the Lyapunov function candidate

J =
1

α3f
tr[W̃T

3f (k)W̃3f (k)], (8.5.12)

whose first difference is given by

J =
1

α3f
tr[W̃T

3f (k + 1)W̃3f (k + 1)− W̃T
3f (k)W̃3f (k)]. (8.5.13)

Substituting the weight update law (8.4.2) in (8.5.13) yields

�J = −(2− α3f ϕ̂
T
3f (k)ϕ̂3f (k))(−W̃T

3f (k)ϕ̂3f (k))
T (−W̃T

3f (k)ϕ̂3f (k))

+α3f ϕ̂
T
3f (k)ϕ̂3f (k)(kvr(k) + eg(k) + g(x)ud(k) + ε(k)

+d(k))T (kvr(k) + eg(k) + g(x)ud(k) + ε(k) + d(k))

+2(1− α3f ϕ̂
T
3f (k)ϕ̂3f (k))(−W̃T

3f (k)ϕ̂3f (k))(kvr(k) + eg(k)

+g(x)ud(k) + ε(k) + d(k)). (8.5.14)

Note (8.5.14) is in power form defined in Chapter 2 as long as conditions (8.4.8) through
(8.4.13) holds. This in turn guarantees the passivity of the weight tuning mechanism
(8.4.2).

Similarly one can also prove that the error in weight updates presented in (8.4.4) is
passive as long as the the PE condition is satisfied. In fact, if one chooses the first difference
as

J =
1

β3g
tr[W̃T

3g(k + 1)W̃3g(k + 1)− W̃T
3g(k)W̃3g(k)]. (8.5.15)

Using the error in update law (8.4.4) and simplifying one obtains

�J = −(2− β3gϕ̂
T
3g(k)ϕ̂3g(k))(−W̃T

3g(k)ϕ̂3g(k))
T (−W̃T

3g(k)ϕ̂3g(k))

+α3gϕ̂
T
3g(k)ϕ̂3g(k)(kvr(k) + ef (k) + g(x)ud(k) + ε(k)

+d(k))T (kvr(k) + ef (k) + g(x)ud(k) + ε(k) + d(k))

+2(1− β3gϕ̂
T
3g(k)ϕ̂3g(k))(−W̃T

3g(k)ϕ̂3g(k))(kvr(k) + ef (k)

+g(x)ud(k) + ε(k) + d(k)).

(8.5.16)

Similarly, it can be shown that the hidden layer updates yield passive NN. The proof can
be obtained from chapter 7. �

The next result shows that the modified tuning algorithms in Table 8.4.2 yield
a stronger passivity property for the NN. The proof is an extension of the previous
one.

Theorem 8.5.5 (Multilayer NN Passivity of Algorithms without PE) :
The modified weight tuning algorithms (8.4.55) and (8.4.57) make the map from,

(kvr(k) + eg(k) + g(x)ud(k) + ε(k) + d(k)) for the case of (8.4.55) and (kvr(k) + ef (k) +
g(x)ud(k) + ε(k) + d(k)) for the case of (8.4.57), to −W̃T

3f (k)ϕ̂3f (k) and −W̃T
3g(k)ϕ̂3g(k)

state strict passive maps.
The weight tuning algorithms for the hidden layers (8.4.54) and (8.4.56) make the

map from yif (k) + Bifkvr(k) for the case of (8.4.54) and yig(k) + Bigkvr(k) for the case
of (8.4.56), to W̃T

if (k)ϕif (x(k)) and W̃T
ig(k)ϕig(x(k)) passive maps. �

8.6. CONCLUSIONS 411

It has been shown that the filtered tracking error system (8.2.27) in Fig. 8.5.1 and
(8.2.28) is state strict passive, while the NN weight error block is passive using the
tuning rules in Table 8.4.1. Thus, it can be concluded that the closed-loop system
is passive. Therefore, according to the Passivity Theorem one can conclude that
the inputs/output signals of each block are bounded as long as the disturbances are
bounded. Though passive, however, the closed-loop system is not state strict passive
so this does not yield boundedness of the internal states of the lower blocks (e.g.
W̃f (k) and W̃g(k)) unless PE holds.

On the other hand, the enhanced tuning rules of Table 8.4.2 yield a SSP weight
tuning block in the figure, so that the closed-loop systems is SSP. Thus, the internal
states of the lower blocks (e.g. W̃f (k) and W̃g(k)) are bounded even if PE does
not hold. Thus, the modified tuning algorithms guarantee SSP of the weight tuning
blocks, so that the closed-loop system is SSP. Therefore, internal stability can be
guaranteed even in the absence of PE. Similar analysis can be extended to multilayer
case as well.

8.6 CONCLUSIONS

In Chapter 7 we showed how to design NN controllers that use discrete-time updates
for Brunovsky form systems having known control influence coefficient. If one sam-
ples a continuous-time system, however, the discrete-time system is generally of the
form x(k + 1) = f(x(k)) + g(x(k))u(k), with both f(x(k)) and g(x(k)) unknown.
In this chapter we showed how to use two neural networks to estimate both f(·)
and g(·). This causes great problems, for to keep the control signals bounded, one
must guarantee that the NN estimate for g(x(k)) never goes to zero. This was ac-
complished by using a switching sort of tuning law for the NN that estimates g(·).
Two families of controllers were derived— one using linear-in-the-parameter NN
and another using multilayer NN.

8.7 REFERENCES

Åström, K. J., and B. Wittenmark, Adaptive Control, Addison-Wesley Company,
Reading, Massachusetts, 1989.

Chen, F.-C., and H.K. Khalil, “Adaptive control of nonlinear discrete-time systems
using neural networks,” IEEE Trans. on Automatic Control, vol. 40, no. 5, pp.
791-801, May 1995.

Cybenko, G., “Approximations by superpositions of sigmoidal activation function”,
Math, Contr., Signals, Syst, vol. 2, no. 4, pp. 303-314, February 1989.

Goodwin, G.C., and K.S. Sin, Adaptive Filtering, Prediction, and Control,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

Jagannathan, S., and F.L.Lewis, “Multilayer discrete-time neural net controller
with guaranteed performance”, IEEE Trans. on Neural Networks, vol. 7, no. 1,
pp. 107-130, January 1996a.

412 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Jagannathan, S., and F.L. Lewis, “Discrete-time neural net controller for a class
of nonlinear dynamical systems,” IEEE Trans. Automat. Control, vol. 41, no. 11,
pp. 1693-1699, Nov. 1996b.

Jagannathan, S., and F.L. Lewis, “Robust implicit self-tuning regulator: conver-
gence and stability,” Automatica, vol. 32, no. 12, pp. 1629-1644, 1996c.

Jagannathan, S.,“Discrete-time adaptive control of feedback linearizable nonlinear
systems”, Proc. IEEE Conf. Decision and Control, pp. 4747-4751, Kobe, December
1996a.

Jagannathan, S., “Adaptive control of unknown feedback linearizable systems in
discrete-time using neural networks”, Proc. of the IEEE Conf. on Robotics and
Automation, vol. 1, pp.258-263, April 96a.

Kanellakopoulos, I., P.V. Kokotovic, and A.S. Morse, “Systematic design of adap-
tive controllers for feedback linearizable systems”, IEEE Trans. on Automatic Con-
trol, vol. 36, pp. 1241-1253, 1991.

Liu, C.C., and F. Chen, “Adaptive control of nonlinear continuous systems Using
neural networks-general relative degree and MIMO cases”, Int. Jounal of Control,
vol.58, pp.317-335, 1991.

Narendra, K.S., and A.M. Annaswamy, “A new adaptive law for robust adapta-
tion without persistent excitation,” IEEE Trans. on Automatic Control, vol.AC-32,
no.2, pp. 134-145, February 1987.

Narendra, K.S., and K.S. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. on Neural Networks, vol. 1, no.1,
pp. 4-27, March 1990.

Mpitsos, G.J., and R.M. Burton, Jr, “Convergence and divergence in neural net-
works: Processing of chaos and biological analogy”, Neural Networks, vol. 5, pp.
605-625, 1992.

Polycarpou, M.M., and P.A. Ioannou, “Identification and control using neural net-
work models: design and stability analysis”, Dept. of Elec. Engg, Tech Report.91-
09-01, September 1991.

Rovithakis, G.A., and M.C. Christodoulou, “Adaptive control of unknown plants
using dynamical neural networks”, IEEE Trans. on Systems, Man, and Cybernet-
ics, vol.24, no. 3, pp.400-411, March 1994.

Sadegh, N., “A perceptron network for functional identification and control of non-
linear systems”, IEEE Trans. on Neural Networks, vol. 4, no. 6, pp. 982-988,
November 1993.

Sanner, R.M., and J.-J. Slotine, “ Gaussian networks for direct adaptive control”,
IEEE Trans. on Neural Networks, vol. 3, no. 6, pp. 837-863, November 1992.

Slotine, J.J., and W. Li, Applied Nonlinear Control, Prentice Hall Inc, Englewood
Cliffs, NJ, 1991.

8.8. PROBLEMS 413

Sontag, E., “Feedback stabilization using two-hidden-layer nets”, IEEE Trans. on
Neural Networks, vol. 3, no. 6, pp. 981-990, November 1992.

Sussmann, H.J., “Uniqueness of the weights for minimal feedforward nets with
given input-output map”, Neural Networks, vol. 5, pp. 589-593, 1992.

Yeşildirek, A., and F.L. Lewis, “Feedback linearization using neural networks”,
Automatica, vol. 31, no. 11, pp. 1659-1664, November 1995.

8.8 PROBLEMS

Section 8.2

Problem 8.2-1 : One-Layer Neural Network. Consider the system described
by

x(k + 1) = f(x(k), x(k − 1)) + 2u(k), (8.8.1)

where f(x(k), x(k − 1)) = x(k)x(k−1)[x(k)+1.0]
1+x2(k)+x(k−1)

. Design a one-layer neural network

controller with and/or without learning phase and by using the developed delta rule-
based weight tuning algorithm and appropriately choosing the adaptation gains. Re-
peat the problem by using the modified update weight tuning method.

Problem 8.2-2 : One-layer Neural Network. For the system described by

x(k + 1) = f(x(k), x(k − 1)) + 2u(k), (8.8.2)

where f(x(k), x(k − 1)) = x(k)
1+x(k) + u3(k). Design a one-layer neural network con-

troller with and/or without learning phase and by using the developed delta rule-
based weight tuning algorithm and appropriately choosing the adaptation gains. Re-
peat the problem by using the modified update weight tuning method.

Section 8.4

Problem 8.4-1 : Stability and Convergence for an n-layer NN. Assume
the hypotheses presented for three-layer NN and use the weight updates presented in
(8.4.1)-(8.4.4) and extend the stability and boundedness of tracking error and error
in weight updates for n-layer NN.

Problem 8.4-2 : Stability and Convergence for an n-layer NN. Assume
the hypotheses presented for three-layer NN and use the weight updates presented in
(8.4.54)-(8.4.57) with projection algorithm and show the stability and boundedness
of tracking error and error in weight updates for n-layer NN.

Problem 8.4-3 : The n-Layer NN for Control. Perform a MATLAB simula-
tion using a n-layer NN for the Example 8.4.1. Show the advantage of adding more
layers by picking less number of hidden-layer neurons and layers more than three.
Use both deta-rule and projection algorithm.

414 DISCRETE FEEDBACK LINEARIZATION BY NEURAL NETS

Section 8.5

Problem 8.5-1 : Passivity Properties for an n-layer NN. Show the passivity
properties of the input and hidden layers for a n-layer neural network using delta
rule-based weight tuning.

Problem 8.5-2 : Passivity Properties for an n-layer NN Using Modified
Weight Tuning. Show the passivity properties of the input and hidden layers for
a n-layer neural network using improved weight tuning.

Chapter 9

State Estimation Using
Discrete-Time Neural
Networks

System identification is the process of determining a dynamical model for an un-
known plant that can be used for feedback control purposes. The state estimation
problem involves determining the unknown internal state of a dynamical plant. Sys-
tem identification provides one technique for estimating the states. The area of
system identification has received much attention over the past two decades. It is
now a mature field, and many powerful methods are at the disposal of control en-
gineers. On-line system identification methods used to date are mostly based on
recursive methods such as least squares (Ren and Kumar 1994). However, most of
these techniques are for models that are linear in the parameters. In order to relax
the linearity in the parameters assumption, NN are being widely employed for system
identification since these networks learn complex mappings from a set of examples.
Due to their approximation properties as well as the inherent adaptation features
of these networks, NN present a potentially appealing alternative to modeling of
nonlinear systems. Furthermore, from a practical perspective, the massive paral-
lelism and fast adaptability of neural network implementations provide additional
incentives for further investigation.

Several approaches have been presented in system identification without using
NN (Ljung and Söderström 1983, Goodwin and Sin 1984, Landau 1979, Narendra
and Annaswamy 1989) and using NN (Narendra and Parthasarathy 1990, Poly-
carpou and Ioannou 1991, Sadegh 1993, Sira-Ramirez and Zak 1991, Jagannathan
and Lewis 1996). However, most of the schemes for system identification using
multilayer NN have been demonstrated through empirical studies, or convergence of
the output error is shown in ideal conditions (Narendra and Parthasarathy 1990).
Others (Polycarpou and Ioannou 1991, Sadegh 1993) have shown the stability of the
overall system or convergence of the output error using a linearity in the parameters
assumption.

Important structures in neural network control are the recurrent or dynamic

415

416 STATE ESTIMATION USING DISCRETE NEURAL NETS

neural networks (Rovithakis and Christodoulou 1994), in which the NN has its own
internal dynamics (Narendra and Parthasarathy 1990). Most identification schemes
using both multilayer feedforward and recurrent NN include identifier structures
which do not guarantee the boundedness of the identification error of the system in
nonideal conditions even in an open-loop configuration. In addition, convergence
proofs are only given under some stringent conditions such as initialization of the
NN with stabilizing weights in the neighborhood of a global minimum, which is a very
unrealistic assumption since stabilizing weights are dificult to find. With improper
initialization, many papers report undesirable behavior. Furthermore, the backpropa-
gation tuning algorithm, often used for system identification, requires the evaluation
of sensitivity derivatives along the network signal paths which is usually impossible
in closed-loop uncertain systems since the required Jacobians are unknown.

The main objective of this chapter is to provide techniques for estimating the in-
ternal states of unknown nonlinear systems using dynamical NN (Jagannathan and
Lewis 1996). This will be achieved by identifying the unknown nonlinear dynamics
of the plant. It is noted that solving the state estimation problem involves only a
small subset of the topic of system identification. In order to relax the linearity in
the unknown parameters assumption and show the boundedness of the state estima-
tion errors and identification errors using multilayer NN, novel learning schemes
are investigated to identify four classes of discrete-time systems that are commonly
used in the literature. Here, weights of the multilayer NN are tuned on-line with
no preliminary off-line learning phase needed. The weight tuning mechanisms guar-
antee convergence of the NN weights when initialized at zero, even though there do
not exist ‘ideal weights’ such that the NN perfectly reconstructs a certain required
function that approximates the desired nonlinear system. The identifier structure
ensures good performance (bounded identification error and weight estimates) as
shown through a Lyapunov’s approach, so that convergence to a stable solution is
guaranteed with mild assumptions.

The identifier is composed of a neural network incorporated into a dynamical
system, where the structure comes from error notions standard in the system iden-
tification and control literature. It is shown that the weight tuning algorithm using
the delta rule in each layer yields a passive neural network; this guarantees the
boundedness of all the signals in the system. It is found that the maximum per-
missible rate for the developed tuning algorithm decreases as the NN size increases;
this is a major drawback. A projection algorithm, as used in adaptive control (Ja-
gannathan 1994), is shown to easily correct the problem. The convergence analysis
presented using a three-layer NN is extended to a general n-layer case. For more
details see (Jagannathan 1994).

Once a NN has been tuned to identify a dynamical system, it is of great interest
to determine the structural information contained in the learned NN weights. Struc-
tural information can be very useful in controller design. This can be accomplished
in many ways, including the Volterra series approach in the work of Billings and
coworkers (Billings et al. 1992, Fung et al. 1997) which determines a generalized
frequency response function (GFRF) of a given NN.

9.1. IDENTIFICATION OF NONLINEAR DYNAMICAL SYSTEMS 417

9.1 IDENTIFICATION OF NONLINEAR DYNAMICAL SYSTEMS

The ability of neural networks to approximate large classes of nonlinear functions
makes them prime candidates for the identification of nonlinear plants. Four models
representing multi-input/multi-output (MIMO) nonlinear systems are in common
use (Landau 1979, 1993; Narendra and Parthasarathy 1990). These four models
are in nonlinear autoregressive-moving average (ARMA) form, and cover a very
large range of plants. They are therefore considered here. These four nonlinear
canonical forms are:

x(k + 1) =
n−1∑
i=0

αix(k − i) + g(u(k), u(k − 1), · · · , u(k −m+ 1))

+d(k), (9.1.1)

x(k + 1) = f(x(k), x(k − 1), · · · , x(k − n+ 1)) +

m−1∑
i=0

βiu(k − i)

+d(k), (9.1.2)

x(k + 1) = f(x(k), x(k − 1), · · · , x(k − n+ 1))

+g(u(k), u(k − 1), · · · , u(k −m+ 1)) + d(k),

(9.1.3)

x(k + 1) = f(x(k), x(k − 1), · · · , x(k − n+ 1);u(k), u(k − 1), · · · , u(k −m+ 1))

+d(k),

(9.1.4)

with unknown nonlinear functions f(.) ∈ �n, g(.) ∈ �n, state x(k) ∈ �n, coefficients
αi ∈ �nxn, βi ∈ �nxn, control u(k) ∈ Rn, and d(k) ∈ �n an unknown disturbance
vector acting on the system at the instant k with ‖ d(k) ‖≤ dM a known constant. If
Model I is selected then αi ∈ �nxn are chosen such that the roots of the polynomial
zn −α0z

n−1 − · · · −αn−1 = 0 lie in the interior of the unit circle. The four models
are shown in Fig. 9.1.1.

9.2 IDENTIFIER DYNAMICS FOR MIMO SYSTEMS

Consider MIMO discrete-time nonlinear systems given in multivariable form as
one of the models (9.1.1) through (9.1.4). The problem of identification consists of
setting up a suitably parametrized identification model and adjusting the parameters
of the model so that when subjected to the same input u(k) as the plant, it produces
an output x̂(k) that is close to the actual x(k). Taking the structure of the identifier
the same as that of the plant, the plants given in (9.1.1) through (9.1.4) are identified
respectively by the following estimators:

x(k + 1) =
n−1∑
i=0

αix(k − i) + ĝ(u(k), u(k − 1), · · · , u(k −m+ 1))

+d(k), (9.2.1)

418 STATE ESTIMATION USING DISCRETE NEURAL NETS

Figure 9.1.1: Multilayer neural network identifier models.

9.2. IDENTIFIER DYNAMICS FOR MIMO SYSTEMS 419

x(k + 1) = f̂(x(k), x(k − 1), · · · , x(k − n+ 1))

+

m−1∑
i=0

βiu(k − i) + d(k), (9.2.2)

x(k + 1) = f̂(x(k), x(k − 1), · · · , x(k − n+ 1))

+ĝ(u(k), u(k − 1), · · · , u(k −m+ 1)) + d(k), (9.2.3)

x(k + 1) = f̂(x(k), x(k − 1), · · · , x(k − n+ 1);u(k), u(k − 1), · · · , u(k −m+ 1))

+d(k),

(9.2.4)

with f̂(.) an estimate of f(.) and ĝ(.) an estimate of g(.).

In this work, NN will be used to provide the functional estimates f̂(·) and ĝ(·).
Due to the universal approximation properties of NN there exist static NN that
approximate f(·) and g(·). When embedded in the dynamics (9.2.1)- (9.2.4), the
result is a dynamic or recurrent NN estimator that, for the same initial conditions,
produces the same output as the plant for any specified input. The identification
procedure consists of adjusting the weights of the neural networks in the model using
the weight updates presented in the next section to guarantee internal stability and
closeness of x̂(k) and x(k).

Define the identification error as

e(k) = x(k)− x̂(k). (9.2.5)

Then the error dynamics of (9.1.1) through (9.1.4) and (9.2.5) can be expressed
respectively as

e(k + 1) = g̃(.) + d(k), (9.2.6)

e(k + 1) = f̃(.) + d(k), (9.2.7)

e(k + 1) = f̃(.) + g̃(.) + d(k), (9.2.8)

e(k + 1) = f̃(.) + d(k), (9.2.9)

where the functional estimation errors are given by

f̃(.) = f(.)− f̂(.), (9.2.10)

and
g̃(.) = g(.)− ĝ(.). (9.2.11)

These are error systems wherein the identification error is driven by the functional
estimation error.

In the remainder of this chapter, Equations (9.2.6) through (9.2.9) are used to
focus on selecting NN tuning algorithms that guarantee the stability of the identi-
fication error e(k). Note that (9.2.7) and (9.2.9) are similar except the nonlinear
function in (9.2.9) is a more general function of the state vector, the input vector,
and their delayed values. Denote by X(k) the appropriate argument of f̃(·), which

420 STATE ESTIMATION USING DISCRETE NEURAL NETS

consists of x(k) and previous values in (9.2.7), and also includes u(k) and previous
values in (9.2.9). Then both equations can be represented as

e(k + 1) = f̃(X(k)) + d(k). (9.2.12)

This is the error system resulting from either identifier (9.2.2) or (9.2.4).
Equations (9.2.6) and (9.2.8) are also similar except that f̃ is missing in the

former. For analysis purposes they are both taken as the more general system

e(k + 1) = f̃(X(k)) + g̃(U(k)) + d(k), (9.2.13)

where U(k) denotes u(k) and its previous values. This is the error system resulting
from either identifier (9.2.1) or (9.2.3). Subsequent analysis considers these two
forms of error system.

9.3 MULTILAYER NEURAL NETWORK IDENTIFIER DESIGN

In this section, multilayer NN are used to provide the approximations f̂(·), ĝ(·) in
the identifier systems. Stability analysis is performed by Lyapunov’s direct method
for multilayer NN weight tuning algorithms consisting of a delta rule in each layer.
Note that one NN is needed to approximate f̃(·) in the error system (9.2.12) whereas
two NN are required, one for f̃(·) and one for g̃(·), for (9.2.13).

Assume that there exist some constant ideal weights W1f ,W2f ,W1g,W2g and
W3f ,W3g for three-layer NN so that the nonlinear functions f(.) in (9.2.12) and
(9.2.13) and g(.) in (9.2.13) can be written on a compact set S as

f(X(k)) =WT
3fϕ3f [W

T
2fϕ2f [W

T
1fϕ1f (X(k))]] + εf (k), (9.3.1)

g(U(k)) =WT
3gϕ3g[W

T
2gϕ2g[W

T
1gϕ1g(U(k))]] + εg(k), (9.3.2)

where the functional estimation errors satisfy ‖ εf (k) ‖< εNf and ‖ εg(k) ‖< εNg,
with the bounding constants εNf and εNg known. Unless the net is ‘minimal’, the
‘ideal’ weights may not be unique (Sontag 1992) and (Sussmann 1992). The best
weights may then be defined as those which minimize the supremum norm over
S of ε(k). This issue is not a major concern here, as it is needed to know only
the existence of such ideal weights; their actual values or uniqueness are of no
concern. This assumption is similar to Erzberger’s assumptions in the linear-in-
the- parameters adaptive control. The major difference is that, while Erzberger’s
assumptions often do not hold, the approximation properties of NN guarantee that
the ideal weights do always exist if f(x), g(x) are continuous over a compact set
(Cybenko 1989, Park and Sandberg 1991).

Assumption 9.3.1 (Bounded NN Weights) The ideal weights are bounded by known
positive values so that ‖W1f‖ ≤ W1fmax, ‖W2f‖ ≤ W2fmax, and ‖W3f‖ ≤ W3fmax. Simi-
larly, ‖W1g‖ ≤ W1gmax, ‖W2g‖ ≤ W2gmax, and ‖W3g‖ ≤ W3gmax.

9.3.1 Structure of the NN Controller and Error System Dynamics

Define the NN functional estimates for f(.) and g(.) by

f̂(X(k)) = ŴT
3f (k)ϕ3f (Ŵ

T
2f (k)ϕ2f (Ŵ

T
1f (k)ϕ1f (X(k)))), (9.3.3)

9.3. MULTILAYER NEURAL NETWORK IDENTIFIER DESIGN 421

ĝ(U(k)) = ŴT
3g(k)ϕ3g(Ŵ

T
2g(k)ϕ2g(Ŵ

T
1g(k)ϕ1g(U(k)))), (9.3.4)

with Ŵ3f (k), Ŵ2f (k), Ŵ1f (k), Ŵ3g(k), Ŵ2g(k), Ŵ1g(k) the current values of the
weights as given by the tuning algorithms to be derived. The estimates of the input
layer activation function outputs are denoted ϕ̂1f (k) = ϕ1f (X(k)) and ϕ̂1g(k) =
ϕ1g(U(k)). Then the estimates of the activation function outputs of the hidden and
output layers are denoted by

ϕ̂(i+1)f (k) = ϕ(ŴT
if ϕ̂if (k)); i = 1, · · · , n, (9.3.5)

ϕ̂(i+1)g(k) = ϕ(ŴT
igϕ̂ig(k)); i = 1, · · · , n, (9.3.6)

where n = 3.
Since the standard NN activation functions, including sigmoids, tanh, RBF etc.,

are bounded by known positive values for a given trajectory, one has ‖ ϕ̂1f (k) ‖≤
ϕ1fmax, ‖ ϕ̂2f (k) ‖≤ ϕ2fmax, and ‖ ϕ̂3f (k) ‖≤ ϕ3fmax, ‖ ϕ̂1g(k) ‖≤ ϕ1gmax, ‖
ϕ̂2g(k) ‖≤ ϕ2gmax, and ‖ ϕ̂3g(k) ‖≤ ϕ3gmax.

The NN weight estimation errors are given by

W̃3f (k) =W3f−Ŵ3f (k), W̃2f (k) =W2f−Ŵ2f (k), W̃1f (k) =W1f−Ŵ1f (k), (9.3.7)

and

W̃3g(k) =W3g−Ŵ3g(k), W̃2g(k) =W2g−Ŵ2g(k), W̃1g(k) =W1g−Ŵ1g(k). (9.3.8)

The net layer output errors are defined as

ϕ̃2f (k) = ϕ2f − ϕ̂2f (k), ϕ̃3f (k) = ϕ3f − ϕ̂3f (k). (9.3.9)

and
ϕ̃2g(k) = ϕ2g − ϕ̂2g(k), ϕ̃3g(k) = ϕ3g − ϕ̂3g(k). (9.3.10)

Using the functional estimate of f(.) and g(.) given in (9.3.3) and (9.3.4), the
error Equations (9.2.12) and (9.2.13) can be expressed as

e(k + 1) = ef (k) + δ(k), (9.3.11)

and
e(k + 1) = ef (k) + eg(k) + δ(k), (9.3.12)

where one defines
ef (k) ≡ W̃T

3f (k)ϕ̂3f (k), (9.3.13)

eg(k) ≡ W̃T
3g(k)ϕ̂3g(k), (9.3.14)

and
δ(k) ≡WT

3f ϕ̃3f (k) + εf (k) + d(k), (9.3.15)

δ(k) ≡WT
3f ϕ̃3f (k) +WT

3gϕ̃3g(k) + εf (k) + εg(k) + d(k). (9.3.16)

The proposed controller structure is shown in Fig. 9.3.1. The next step is to
determine the weight updates so that the tracking performance of the identification
error dynamics is guaranteed.

422 STATE ESTIMATION USING DISCRETE NEURAL NETS

Figure 9.3.1: Multilayer neural network identifier structure.

9.3.2 Three-Layer Neural Network Weight Updates

A family of NN weight tuning paradigms that guarantee the stability of the error
systems (9.3.11) and (9.3.12) are presented in this section. It is required to demon-
strate that the identification error e(k) is suitably small and that the NN weight
estimates in (9.3.3), (9.3.4) remain bounded, given a bounded input u(k). The next
result provides NN weight tuning algorithms that guarantee stable identification.
Persistence of excitation (PE) for a multilayer discrete-time NN (Jagannathan and
Lewis 1996) is defined during the proof.

Theorem 9.3.1 (Three-Layer NN Identifier) :
Given an unknown system in one of the four forms (9.1.1) through (9.1.4), select the

estimator from the respective form (9.2.1) through (9.2.4) and let f̂(.), and ĝ(.) if required,
be given by NN as in (9.3.3) and (9.3.4). Let the NN functional reconstruction error and
the disturbance bounds, εNf , εNg, dM , respectively, be known constants. Let NN weight
tuning be provided for the input and hidden layers as

Ŵ1f (k + 1) = Ŵ1f (k)− α1f ϕ̂1f (k)[ŷ1f (k) +B1fe(k)]
T , (9.3.17)

Ŵ2f (k + 1) = Ŵ2f (k)− α2f ϕ̂2f (k)[ŷ2f (k) +B2fe(k)]
T , (9.3.18)

Ŵ1g(k + 1) = Ŵ1g(k)− α1gϕ̂1g(k)[ŷ1g(k) +B1ge(k)]
T , (9.3.19)

Ŵ2g(k + 1) = Ŵ2g(k)− α2gϕ̂2g(k)[ŷ2g(k) +B2ge(k)]
T , (9.3.20)

where ŷif (k) = ŴT
if (k)ϕ̂if (k); ŷig(k) = ŴT

ig(k)ϕ̂ig(k); i = 1, 2, and

‖ Bif ‖≤ κif , i = 1, 2 (9.3.21)

9.3. MULTILAYER NEURAL NETWORK IDENTIFIER DESIGN 423

‖ Big ‖≤ κig, i = 1, 2. (9.3.22)

Let the weight tuning for the output layer be given by

Ŵ3f (k + 1) = Ŵ3f (k) + α3f ϕ̂3f (k)e
T (k + 1) (9.3.23)

Ŵ3g(k + 1) = Ŵ3g(k) + α3gϕ̂3g(k)e
T (k + 1) (9.3.24)

with αif > 0, αig > 0, i = 1, 2, 3 denoting constant learning rate parameters or adaptation
gains.

Let the output vectors of the input, hidden, and output layers, ϕ̂1f (k), ϕ̂2f (k), and
ϕ̂3f (k), ϕ̂1g(k), ϕ̂2g(k), and ϕ̂3g(k) be persistently exciting. Then the identification error
e(k) and the errors in the weight estimates, W̃1f (k), W̃2f (k), W̃3f (k), W̃1g(k), W̃2g(k), and
W̃3g(k), are UUB, with the bounds on e(k) specifically given by (9.3.37), provided the
following conditions hold:
Condition (1);

αif ‖ ϕ̂if (k) ‖2<
{

2 i = 1, 2,
1 i = 3,

(9.3.25)

for the error system (9.3.11) and (9.3.25) plus

αig ‖ ϕ̂ig(k) ‖2< 2, i = 1, 2,

(αif ‖ ϕ̂if (k) ‖2 +αig ‖ ϕ̂ig(k) ‖2) < 1, (9.3.26)

for the error system (9.3.12).
Condition (2);

c0 < 1, (9.3.27)

where c0 is given for the error system (9.3.11) as

c0 =

2∑
i=1

κ2
if

(2− αif ‖ ϕ̂if (k) ‖2) , (9.3.28)

and for the error system (9.3.12) as

c0 =

2∑
i=1

[
κ2
if

(2− αif ‖ ϕ̂if (k) ‖2) +
κ2
if

(2− αif ‖ ϕ̂if (k) ‖2)]. (9.3.29)

Note: The parameters αif , αig; ∀i = 1, · · · , 3 and c0 depend upon the trajectory. Given
a trajectory, the constants αif , αig; ∀i = 1, · · · , 3 with c0, c1 and c2 can be determined.
Proof:

Let Ω and ΩU be subsets of �n and �m respectively such that e(0) ∈ Ω and W̃i(0) ∈
ΓU , ∀i = 1, · · · , 3 and the NN approximation holds. Using the Lyapunov function candidate

J = eT (k)e(k) +

3∑
i=1

[
1

αif
tr(W̃if (k)W̃if (k))], (9.3.30)

define

l2 =
sup

(e, W̃i) ∈ ΩxΩU

[eT (k)e(k) +

3∑
i=1

[
1

αif
tr(W̃T

if (k)W̃if (k))]]. (9.3.31)

Consider �J on the set χ = [(e, W̃i) : J(e, W̃i) ≤ l2].

424 STATE ESTIMATION USING DISCRETE NEURAL NETS

Error System (9.3.11): Define the Lyapunov function candidate as in (9.3.30) and

whose first difference, �J∀(e, W̃i) ∈ χ, is given by

�J = eT (k+1)e(k+1)− eT (k)e(k) +

3∑
i=1

[
1

αif
tr[W̃if (k+1)W̃if (k+1)− W̃T

if (k)W̃if (k)]].

(9.3.32)
Substituting the Equations (9.3.17), (9.3.18), and (9.3.23) yields,

�J ≤ −(1− c0)[‖ e(k) ‖2 −2
c1

(1− c0)
‖ e(k) ‖ − c2

(1− c0)

−[1− α3f ϕ̂
T
3f (k)ϕ̂3f (k)] ‖ ef (k)− α3f ϕ̂3f (k)ϕ̂3f (k)δ(k)

[1− α3f ϕ̂T
3f (k)ϕ̂3f (k)]

‖2

−
2∑

i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃if (k)ϕ̂if (k)−

(1− αif ϕ̂
T
if (k)ϕ̂if (k))

(2− αif ϕ̂T
if (k)ϕ̂if (k))

(WT
if ϕ̂if (k) +Bife(k)) ‖2 (9.3.33)

where

c1 =

2∑
i=1

κif ‖ ϕ̂if (k) ‖ Wifmax

(2− αif ‖ ϕ̂if (k) ‖2) (9.3.34)

and

c2 = [
δ2max

[1− (α3f ‖ ϕ̂3f (k) ‖2 +α3g ‖ ϕ̂3g(k) ‖2)] +
2∑

i=1

‖ ϕ̂if (k) ‖2 W 2
ifmax

(2− αif ‖ ϕ̂if (k) ‖2) (9.3.35)

with
δmax = W3fmaxϕ̃3fmax + εNfmax + dM . (9.3.36)

Since c0, c1, c2 are positive constants, �J ≤ 0 as long as

‖ e(k) ‖> 1

(1− c0)
[c1 +

√
c21 + c2(1− c0)]. (9.3.37)

| ∑∞
k=k0

|=| J(∞) − J(0) |< ∞ since �J ≤ 0 as long as (9.3.25), (9.3.27) and (9.3.37)

hold. The definition of J and inequality (9.3.37) imply that every initial condition in
the set χ will evolve entirely in χ. That is, whenever the identification error e(k) is
outside the region defined (9.3.37), J(e, W̃i) will decrease. This further implies that
‖ e(k) ‖ will not increase and will remain in χ. This demonstrates that the identi-
fication error e(k) is bounded for all k ≥ 0 and it remains to show that the weight
estimates Ŵ1f (k), Ŵ2f (k), Ŵ3f (k), Ŵ1g(k), Ŵ2g(k), and Ŵ3g(k) or equivalently W̃1f (k),
W̃2f (k), W̃3f (k), W̃1g(k), W̃2g(k), and W̃3g(k).

Error System (9.3.12): Let Ω and ΩU be subsets of �n and �m respectively such that

e(0) ∈ Ω and W̃i(0) ∈ ΩU , ∀i = 1, · · · , 3 for both f and g, (here m = 6) and the NN
approximation holds. For the error system (9.3.12), using the Lyapunov function candidate

J = eT (k)e(k) +

3∑
i=1

[
1

αif
tr(W̃T

if (k)W̃if (k)) +
1

αig
tr(W̃T

ig(k)W̃ig(k))], (9.3.38)

define

l2 =
sup

(e, W̃i) ∈ ΩxΩU

[eT (k)e(k) +

3∑
i=1

[
1

αif
tr(W̃T

if (k)W̃if (k)) +
1

αig
tr(W̃T

ig(k)W̃ig(k))].

(9.3.39)

9.3. MULTILAYER NEURAL NETWORK IDENTIFIER DESIGN 425

Consider �J on the set χ = ((e, W̃i); J(e, W̃) ≤ l2). The first difference, �J ∀(e, W̃) ∈ χ,
is

�J ≤ eT (k + 1)e(k + 1)− eT (k)e(k)

+

3∑
i=1

[
1

αif
tr[W̃T

if (k + 1)W̃if (k + 1)W̃T
if (k)W̃if (k)]

+

3∑
i=1

[
1

αig
tr[W̃T

ig(k + 1)W̃ig(k + 1)− W̃T
ig(k)W̃ig(k)] (9.3.40)

Substituting (9.3.17) through (9.3.24) in (9.3.40), one may obtain

�J ≤ −(1− c0)[‖ e(k) ‖2 −2
c1

(1− c0)
‖ e(k) ‖ − c2

(1− c0)
]

−[1− (α3f ‖ ϕ̂3f (k) ‖2 +α3g ‖ ϕ̂3g(k) ‖2)]

‖ (ef (k) + eg(k))− (α3f ϕ̂
T
3f (k)ϕ̂3f (k) + α3gϕ̂

T
3g(k)ϕ̂3g(k)δ(k))

[1− (α3f ϕ̂T
3f (k)ϕ̂3f (k) + α3gϕ̂T

3g(k)ϕ̂3g(k))]
‖2

−
2∑

i=1

(2− αif ϕ̂
T
if (k)ϕ̂if (k)) ‖ W̃T

if (k)ϕ̂if (k)

− (1− αif ϕ̂
T
if (k)ϕ̂if (k))

(2− αif ϕ̂T
if (k)ϕ̂if (k))

(WT
if ϕ̂if (k) +Bife(k)) ‖2

−
2∑

i=1

(2− αigϕ̂
T
ig(k)ϕ̂ig(k)) ‖ W̃T

ig(k)ϕ̂ig(k)

− (1− αigϕ̂
T
ig(k)ϕ̂ig(k))

(2− αigϕ̂T
ig(k)ϕ̂ig(k))

(WT
igϕ̂ig(k) +Bige(k)) ‖2

(9.3.41)

where

c1 = [
δmax

[1− (α3f ‖ ϕ̂3f (k) ‖2 +α3g ‖ ϕ̂3g(k) ‖2)] +
2∑

i=1

κif ‖ ϕ̂if (k) ‖ Wifmax

(2− αif ‖ ϕ̂if (k) ‖2)

+

2∑
i=1

κig ‖ ϕ̂ig(k) ‖ Wigmax

(2− αig ‖ ϕ̂ig(k) ‖2)],

(9.3.42)

and

c2 = [
δ2max

[1− (α3f ‖ ϕ̂3f (k) ‖2 +α3g ‖ ϕ̂3g(k) ‖2)] +
2∑

i=1

‖ ϕ̂if (k) ‖2 W 2
ifmax

(2− αif ‖ ϕ̂if (k) ‖2)

+

2∑
i=1

‖ ϕ̂ig(k) ‖2 W 2
igmax

(2− αig ‖ ϕ̂ig(k) ‖2)],

(9.3.43)

with
δmax = W3fmaxϕ̃3fmax +W3gmaxϕ̃3gmax + εNf + εNg + dM . (9.3.44)

426 STATE ESTIMATION USING DISCRETE NEURAL NETS

Since c0, c1 and c2 are positive constants, �J ≤ 0 as long as (9.3.25), (9.3.26), (9.3.27),
and (9.3.37) are satisfied. In addition |∑∞

k=k0
�J(k) |=| J(∞)−J(0) |< ∞ since �J ≤ 0

as long as (9.3.25), (9.3.26), (9.3.27) and (9.3.37) hold. The definition of J and inequality
(9.3.37) imply that every initial condition in the set χ will evolve entirely within χ. That
is, whenever the identification error ‖ e(k) ‖ is outside the region defined by (9.3.37),
J(e, W̃i) will decrease. This further implies that ‖ e(k) ‖ will not increase and will remain
in χ. This demonstrates that the identification error e(k) is bounded for all k ≥ 0 and
it remains to show that the weight estimates Ŵ1f (k), Ŵ2f , Ŵ3f (k), Ŵ1g(k), Ŵ2g(k) and
Ŵ3g(k) , or equivalently W̃1f (k), W̃2f , W̃3f (k), W̃1g(k), W̃2g(k) and W̃3g(k), are bounded.

The dynamics relative to error in weight estimates using (9.3.17) and (9.3.24) are given
by

W̃1f (k+1) = [I−α1f ϕ̂1f (k)ϕ̂
T
1f (k)]W̃1f (k)+α1f ϕ̂1f (k)[W

T
1f ϕ̂1f (k)+B1fe(k)]

T , (9.3.45)

W̃2f (k+1) = [I−α2f ϕ̂2f (k)ϕ̂
T
2f (k)]W̃2f (k)+α2f ϕ̂2f (k)[W

T
2f ϕ̂2f (k)+B2fe(k)]

T , (9.3.46)

W̃1g(k+1) = [I −α1gϕ̂1g(k)ϕ̂
T
1g(k)]W̃1g(k)+α1gϕ̂1g(k)[W

T
1gϕ̂1g(k)+B1ge(k)]

T , (9.3.47)

W̃2g(k+1) = [I −α2gϕ̂2g(k)ϕ̂
T
2g(k)]W̃2g(k)+α2gϕ̂2g(k)[W

T
2gϕ̂2g(k)+B2gr(k)]

T , (9.3.48)

W̃3f (k + 1) = [I − α3f ϕ̂3f (k)ϕ̂
T
3f (k)]W̃3f (k)− α3f ϕ̂3f (k)[eg(k) + δ(k)]T (9.3.49)

W̃3g(k + 1) = [I − α3gϕ̂3g(k)ϕ̂
T
3g(k)]W̃3g(k)− α3gϕ̂3g(k)[ef (k) + δ(k)]T (9.3.50)

where the identification error is considered to be bounded. Applying the PE condition
(7.2.8) (see Chapter 7), the identification error bound (9.3.37) and Lemma 7.2.1 (see Chap-
ter 7) for the cases of ϕ(k) = ϕ̂i(k); i = 1, 2, the boundedness of W̃1f (k), W̃2f (k), W̃1g(k),
and W̃2g(k), in (9.3.45) through (9.3.48), and hence of Ŵ1f (k), Ŵ2f (k), Ŵ1g(k) and Ŵ2g(k)
are assured. For the case of the error system (9.3.11), the weight updates at the third layer
of the NN are presented in (9.3.49) with eg(k) = 0. Then applying the PE condition sim-
ilar to the input and hidden layers, it is straightforward to guarantee the boundedness of
W̃3f (k) and hence of Ŵ3f (k).

By contrast, for the case of error system (9.3.12) in order to show the boundedness
of the error in weight estimates at the third layer for both NN, the passivity property of
the weight updates are necessary in addition to the PE condition or otherwise, one has
to assume that the initial parameter error estimates for both f(.) and g(.) are bounded.
Assuming that the initial weight estimation errors are bounded for both NN f(.) and
g(.) and applying the PE condition (7.2.8), the identification error bound (9.3.37) and
using (9.3.49) and (9.3.50), one can conclude the boundedness of W̃3f (k) and W̃3g(k) or
equivalently Ŵ3f (k) and Ŵ3g(k).

The most elegant way of showing the boundedness of the identification error and weight
estimates is to employ passivity theory. Assuming that the closed-loop system (9.3.11)
and (9.3.12) with the weight updates (9.3.45) through (9.3.50) are passive, and employing
passivity theorem (Slotine and Li 1991), one can readily conclude the boundedness of the
identification error and the error in weight updates under the PE condition. However,
in the next section, this assumption can be relaxed by showing that in fact the error in
weight updates are passive.

Using the boundedness of both ‖ e(k) ‖ and the error in weight estimates, one can
observe that (e, W̃i) will not increase when both f(.) and g(.) NN are included for the
error system (9.3.12) and only for f(.) in the case of error system (9.3.11) but (e, W̃i) will
remain in χ. Since χ ⊃ ΩxΩU , this concludes the proof. �

9.4. PASSIVITY PROPERTIES OF THE NN 427

Table 9.3.1: Multilayer Neural Net Identifier

The weight tuning is given by:
Input and Hidden Layers:

Ŵif (k + 1) = Ŵif (k)− αif ϕ̂if (k)[ŷif (k) +Bife(k)]
T , i = 1, ·, n− 1,

and

Ŵig(k + 1) = Ŵig(k)− αigϕ̂ig(k)[ŷig(k) +Bige(k)]
T , i = 1, ·, n− 1,

where ŷif (k) = Ŵif (k)ϕ̂if (k), ŷig(k) = Ŵig(k)ϕ̂ig(k), ‖ Bif ‖≤ κif , and ‖ Big ‖≤
κig, i = 1, · · · , n− 1.
Output Layer: tune

Ŵnf (k + 1) = Ŵnf (k) + αnf ϕ̂nf (k)e
T (k + 1),

Ŵng(k + 1) = Ŵng(k) + αngϕ̂ng(k)e
T (k + 1),

with αif > 0, and αig > 0, ∀i = 1, · · · , n denoting learning rate parameters or
adaptation gains.

9.3.2.1 Discussion

Since ‖e(k)‖ cannot increase far beyond the right-hand side of (9.3.37), in applica-
tions this may be taken as a practical bound on the norm of the error e(k). Note
from (9.3.37), that the identification error increases with the NN reconstruction er-
ror bounds and the disturbance bound dM , yet small identification errors, but not
arbitrarily small, may be achieved by selecting c0.

As is typical of the algorithms given in this book, there is no preliminary off-line
learning phase for the NN. Tuning is performed on-line in real-time. The required
terms for tuning are easily evaluated given signals measured in the feedback loop.

The proof is easy to extend to case of general n-layer NN in the approximations
(9.3.3) and (9.3.4) (Jagannathan 1994). The NN tuning scheme for NN identifica-
tion of nonlinear systems is given in Table 9.3.1.

9.4 PASSIVITY PROPERTIES OF THE NN

In this section, an interesting property of the NN identifier is shown— the NN
identifier with tuning algorithms given in Table 9.3.1 makes the closed-loop system
passive. The practical importance of this is that additional unknown bounded dis-
turbances do not destroy the stability and identification properties of the system.
Passivity was discussed in Chapter 2. Note that the NN used in the identifiers in
this chapter are feedforward NN with no dynamics. However, embedding them into
the identifier dynamics turns them into dynamical or recurrent NN. Additional dy-

428 STATE ESTIMATION USING DISCRETE NEURAL NETS

Figure 9.4.1: Neural network closed-loop identifier system.

namics are introduced by tuning the NN on-line. Therefore, passivity properties can
be defined.

The complete closed-loop structure using the NN identifier is given in Fig. 9.4.1.
Note that all blocks appear in standard feedback configuration. Using the fact that
the dynamical NN are passive and invoking the passivity theorem (Slotine and Li
1991) one can easily understand why the errors in the weight estimates of all the
layers are bounded. The next result details the passivity properties engendered by
the tuning rules in Table 9.3.1.

Theorem 9.4.1 (Three-layer NN Passivity Using Tuning Algorithms) :
Given an unknown system in one of the four forms (9.1.1) through (9.1.4), select the

estimator from the respective form (9.2.1) through (9.2.4) and let f̂(.), and ĝ(.) if required,
be given by NN as in (9.3.3) and (9.3.4). Select the NN tuning algorithms specified in
Theorem 9.3.1. Then:

(i) The weight tuning algorithms (9.3.17) through (9.3.20) make the maps fromWT
i ϕ̂i(k)+

Bie(k) to W̃T
i (k)ϕ̂i(k); ∀i = 1, 2 both passive maps for NN.

(ii) The weight tuning algorithms (9.3.23) and (9.3.24) make the map from, eg(k)+δ(k)
for the case of (9.3.11), and ef (k) + δ(k) for the case of (9.3.12), to −W̃T

3f (k)ϕ̂3f (k) and

−W̃T
3g(k)ϕ̂3g(k) a passive map.

Proof: (i) Define the Lyapunov function candidate

J =
1

α1f
tr[W̃1f

T
(k)W̃1f (k)], (9.4.1)

whose first difference is given by

J =
1

α1f
tr[W̃1f

T
(k + 1)W̃1f (k + 1)− W̃1f

T
(k)W̃1f (k)]. (9.4.2)

Substituting the weight update law (9.3.17) in (9.4.2) yields

�J = −(2− α1f ϕ̂
T
1f (k)ϕ̂1f (k))(−W̃T

1f (k)ϕ̂1f (k))
T (−W̃T

1f (k)ϕ̂1f (k)) +

2(1− α1f ϕ̂
T
1f (k)ϕ̂1f (k))(−W̃T

1f (k)ϕ̂1f (k))
T (WT

1f ϕ̂1f (k) +B1fe(k)) +

α1f ϕ̂
T
1f (k)ϕ̂1f (k))(W

T
1f ϕ̂1f (k) +B1fe(k))

T (WT
1f ϕ̂1f (k) +B1fe(k)).

(9.4.3)

Note (9.4.3) is in power form (see Chapter 2) as long as the condition (9.3.25) holds.
This in turn guarantees the passivity of the weight tuning mechanism (9.3.17).

9.5. SIMULATION RESULTS 429

Similarly, it can be demonstrated that the error in weight updates using (9.3.18)
through (9.3.20) are in fact passive.

(ii) Select the Lyapunov function candidate

J =
1

α3f
tr[W̃T

3f (k)W̃3f (k)], (9.4.4)

whose first difference is given by

�J =
1

α3f
tr[W̃T

3f (k + 1)W̃3f (k + 1)− W̃T
3f (k)W̃3f (k)]. (9.4.5)

Use (9.3.23) in (9.4.5) to obtain

�J = −(2− α3f ϕ̂
T
3f (k)ϕ̂3f (k))(−W̃T

3f (k)ϕ̂3f (k))
T (−W̃T

3f (k)ϕ̂3f (k)) +

2(1− α3f ϕ̂
T
3f (k)ϕ̂3f (k))(−W̃T

3f (k)ϕ̂3f (k))
T (eg(k) + δ(k)) +

α3f ϕ̂
T
3f (k)ϕ̂3f (k)(eg(k) + δ(k))T (eg(k) + δ(k)) (9.4.6)

which is in power form (see Chapter 2) for discrete-time systems as long as the condition
(9.3.25) holds.

Similarly, it can be demonstrated that the error in weight updates using (9.3.24) are
in fact passive. �

9.5 SIMULATION RESULTS

Example 9.5.1 (NN Identification of Discrete-Time Nonlinear System) :
Note that no preliminary off-line NN learning phase is needed in this example. In

order to illustrate the performance of the NN identifier, a discrete-time nonlinear system
is considered. Consider therefore the first-order multi-input/multi-output discrete-time
nonlinear system described by

x(k + 1) = f(x(k)) + u(k), (9.5.1)

where x(k) = [x1(k) x2(k)]
T , f(x(k)) =

[
x2(k)

1+x2
1
(k)

x1(k)

1+x2
1
(k)

]
, and u(k) = [u1(k) u2(k)]

T . To

achieve the objective of identifying this nonlinear system, select an estimator of the form
given by (9.2.2), with βi = 0, ∀i > 0 and β0 = I, the identity matrix. The input is a
periodic step input of magnitude two units with a period of 30 s.

A sampling interval of 10 ms was considered. A three-layer NN was selected with two
input, four hidden, and two output nodes. Sigmoidal activation functions were employed
in all the nodes in the hidden layer. The initial conditions for the plant and the model
were chosen to be [2,−2]T and [0.1, 0.6]T . The weights were initialized to zero with an
initial threshold value of 3.0. No learning is performed initially to train the networks.
The elements in the design matrix, Bi, are chosen to be 0.1. Consider the case where
the constant learning rate parameter is replaced with the projection algorithm where the
adaptation gains are selected to be ξ1 = 1.0, ξ2 = 1.0, and ξ3 = 0.7 with ζ1 = ζ2 = ζ3 =
0.001. Let us consider the case when a bounded disturbance given by

w(k) =

{
0.0 0 ≤ kTm < 12
0.5 kTm ≥ 12

(9.5.2)

is acting on the plant at the time instant t. Fig. 9.5.1 presents the tracking response of NN
controllers with the improved weight tuning and projection algorithm. The magnitude of

430 STATE ESTIMATION USING DISCRETE NEURAL NETS

the disturbance can be increased, however, and the value should be bounded. The value
shown in (9.5.2) is employed for simulation purposes only. From the figure it is clear that
the response of the NN identifier is extremely impressive. �

9.6 CONCLUSIONS

In this chapter a general NN identifier was derived that estimates the state for
systems in any one of four standard nonlinear autoregressive-moving average forms.
NN are used to estimate the nonlinear functions appearing in the dynamics so that
the state estimate converges to the actual state in the unknown system. Nonlinear-
in-the-parameters three-layer NN were used, so that the function approximation
property of NN guarantees the existence of the identifier. Passivity properties of the
NN identifier were discussed.

9.7 REFERENCES

Billings, S.A., H.B. Jamaluddin, and S. Chen, “Properties of neural networks with
applications to modelling nonlinear dynamical systems,” Int. J. of Control, vol. 55,
pp. 193-224, 1992.

Cybenko, G., “Approximations by superpositions of sigmoidal activation function”,
Math, Contr., Signals, Syst, vol.2, no.4, pp.303-314, February 1989.

Fung, C.F., S.A. Billings, and H. Zhang, “Generalised transfer functions of neural
networks,” Mech. Systems and Signal Processing, vol. 11, no. 6, pp. 843-868, 1997.

Goodwin, G.C., and K.S. Sin, Adaptive Filtering, Prediction, and Control,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

Jagannathan, S., “Intelligent control of nonlinear dynamical systems using mul-
tilayered neural networks,” Ph.D. Thesis, Dept. of Electrical Engineering, The
University of Texas at Arlington, Arlington, Texas 76019, August 1994.

Jagannathan, S., and F.L. Lewis, “Identification of nonlinear dynamical systems
using multilayered neural networks,” Automatica, vol. 32, no. 12, pp. 1707-1712,
1996.

Landau, I.D., Adaptive Control: The Model Reference Approach, Marcel Dekker,
New York, 1979.

Landau, I.D., “Evolution of adaptive control”, ASME J. Dynamic Syst. Measure-
ments, Contr, vol. 115, pp. 381-391, June 1993.

Ljung, L., and T.Söderström, Theory and Practice of Recursive Identification,
MIT Press, Cambridge, MA, 1983.

Narendra, K.S., and A.M. Annaswamy, Stable Adaptive Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

9.7. REFERENCES 431

Figure 9.5.1: Response of neural network identifier with projection algorithm in the
presence of bounded disturbances. (a) Desired and actual state 1. (b) Desired and
actual state 2.

432 STATE ESTIMATION USING DISCRETE NEURAL NETS

Narendra, K.S., and K.S. Parthasarathy, “Identification and control of dynamical
systems using neural networks”, IEEE Trans. on neural networks, vol. 1, no.1, pp.
4-27, March 1990.

Park, J., and Sandberg, “Universal approximation using radial-basis-function net-
works”, Neural Computation, vol. 3, pp. 246-257, 1991.

Polycarpou, M.M., and P.A. Ioannou, “Identification and control using neural
network models: design and stability analysis”, Dept. of Elec. Engg, Tech. Report
91-09-01, September 1991.

Ren, W., and P.R. Kumar, “Stochastic adaptive prediction and model reference
control”, IEEE Trans. on Automatic Control, vol. 39, no. 10, pp.2047-2060, Oc-
tober 1994.

Rovithakis, G.A., and M.C. Christodoulou, “Adaptive control of unknown plants
Using dynamical neural networks”, IEEE Trans. on Systems, Man, and Cybernet-
ics, vol. 24, no. 3, pp. 400-411, March 1994.

Sadegh, N., “A perceptron network for functional identification and control of non-
linear systems”, IEEE Trans. on Neural Networks, vol. 4, no. 6, pp. 982-988,
November 1993.

Sira-Ramirez, H.J., and S.H. Zak, “The adaptation of perceptrons with applications
to inverse dynamics identification of unknown dynamic systems”, IEEE Trans.
Syst., Man, Cybernetics, vol. 21, no. 3, pp. 534-543, May/June 1991.

Slotine, J.-J.E, and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

Sontag, E., “Feedback stabilization using two-hidden-layer nets”, IEEE Trans. on
Neural Networks, vol. 3, no. 6, pp. 981-990, November 1992.

Sussmann, H.J., “Uniqueness of the weights for minimal feedforward nets with
given input-output map”, Neural Networks, vol. 5, pp. 589-593, 1992.

9.8 PROBLEMS

Section 9.3

Problem 9.3-1 : Multilayer Neural Network. For the system described by

x(k + 1) = f(x(k), x(k − 1)) + u(k), (9.8.1)

where f(x(k), x(k − 1)) = x(k)x(k−1)[x(k)+1.0]
1+x2(k)+x2(k−1) .

Design a multilayer neural network identifier with and/or without learning phase
and by using the developed delta rule-based weight tuning algorithm and appropri-
ately choosing the adaptation gains for a sinusoidal input of a chosen magnitude
and frequency.

9.8. PROBLEMS 433

Problem 9.3-2 : Multilayer Neural Network. For the system described by

x(k + 1) = f(x(k), x(k − 1)) + u(k), (9.8.2)

where f(x(k), x(k− 1)) = x(k)
1+x(k) +u3(k). Design a multilayer neural network iden-

tifier with and/or without learning phase and by using the developed delta rule-based
weight tuning algorithm and appropriately choosing the adaptation gains. Select a
step input of magnitude two units with a period of 30 sec.

Problem 9.3-3 : Stability and Convergence for a n-layer NN. Assume the
hypotheses described for three-layer NN and use the weight updates presented in
(9.3.17)-(9.3.24) and show the stability and boundedness of identification error and
error in weight updates for a n-layer NN.

Problem 9.3-4 : n-Layer NN for Control. Perform a MATLAB simulation
using a n-layer NN for the Example 9.5.1. Show the advantage of adding more
layers by picking less number of hidden-layer neurons and layers more than three.
Use both delta- rule and projection algorithm.

Section 9.4

Problem 9.4-1 : Passivity Properties for a n- layer NN. Show the passivity
properties of the input and hidden layers for a n-layer neural network using delta
rule-based weight tuning.

