

Lewis ffirs.tex V1 - 10/19/2011 5:03pm Page i

OPTIMAL CONTROL

Lewis ffirs.tex V1 - 10/19/2011 5:03pm Page ii

Lewis ffirs.tex V1 - 10/19/2011 5:03pm Page iii

OPTIMAL CONTROL

Third Edition

FRANK L. LEWIS
Department of Electrical Engineering, Automation & Robotics Research

Institute, University of Texas at Arlington, Arlington, Texas

DRAGUNA L. VRABIE
United Technologies Research Renter, East Hartford, Connecticut

VASSILIS L. SYRMOS
Department of Electrical Engineering, University of Hawaii at Manoa,

Honolulu, Hawaii

JOHN WILEY & SONS, INC.

Lewis ffirs.tex V1 - 10/19/2011 5:03pm Page iv

This book is printed on acid-free paper.
Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information about our other products and services, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Lewis, Frank L.
Optimal control / Frank L. Lewis, Draguna L. Vrabie, Vassilis L. Syrmos.—3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-63349-6 (cloth); ISBN 978-1-118-12264-8 (ebk); ISBN 978-1-118-12266-2 (ebk);

ISBN 978-1-118-12270-9 (ebk); ISBN 978-1-118-12271-6 (ebk); ISBN 978-1-118-12272-3 (ebk)
1. Control theory. 2. Mathematical optimization. I. Vrabie, Draguna L. II. Syrmos, Vassilis L. III.
Title.
QA402.3.L487 2012
629.8’312–dc23

2011028234

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Lewis ffirs.tex V1 - 10/19/2011 5:03pm Page v

To Galina, Roma, and Chris, who make every day exciting
—Frank Lewis

To my mother and my grandmother, for teaching me my potential and
supporting my every choice

—Draguna Vrabie

To my father, my first teacher
—Vassilis Syrmos

Lewis ffirs.tex V1 - 10/19/2011 5:03pm Page vi

Lewis ftoc.tex V1 - 10/19/2011 4:11pm Page vii

CONTENTS

PREFACE xi

1 STATIC OPTIMIZATION 1

1.1 Optimization without Constraints / 1
1.2 Optimization with Equality Constraints / 4
1.3 Numerical Solution Methods / 15

Problems / 15

2 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS 19

2.1 Solution of the General Discrete-Time Optimization Problem / 19
2.2 Discrete-Time Linear Quadratic Regulator / 32
2.3 Digital Control of Continuous-Time Systems / 53
2.4 Steady-State Closed-Loop Control and Suboptimal Feedback / 65
2.5 Frequency-Domain Results / 96

Problems / 102

3 OPTIMAL CONTROL OF CONTINUOUS-TIME
SYSTEMS 110

3.1 The Calculus of Variations / 110
3.2 Solution of the General Continuous-Time Optimization

Problem / 112
3.3 Continuous-Time Linear Quadratic Regulator / 135

vii

Lewis ftoc.tex V1 - 10/19/2011 4:11pm Page viii

viii CONTENTS

3.4 Steady-State Closed-Loop Control and Suboptimal Feedback / 154
3.5 Frequency-Domain Results / 164

Problems / 167

4 THE TRACKING PROBLEM AND OTHER
LQR EXTENSIONS 177

4.1 The Tracking Problem / 177
4.2 Regulator with Function of Final State Fixed / 183
4.3 Second-Order Variations in the Performance Index / 185
4.4 The Discrete-Time Tracking Problem / 190
4.5 Discrete Regulator with Function of Final State Fixed / 199
4.6 Discrete Second-Order Variations in the Performance Index / 206

Problems / 211

5 FINAL-TIME-FREE AND CONSTRAINED
INPUT CONTROL 213

5.1 Final-Time-Free Problems / 213
5.2 Constrained Input Problems / 232

Problems / 257

6 DYNAMIC PROGRAMMING 260

6.1 Bellman’s Principle of Optimality / 260
6.2 Discrete-Time Systems / 263
6.3 Continuous-Time Systems / 271

Problems / 283

7 OPTIMAL CONTROL FOR POLYNOMIAL SYSTEMS 287

7.1 Discrete Linear Quadratic Regulator / 287
7.2 Digital Control of Continuous-Time Systems / 292

Problems / 295

8 OUTPUT FEEDBACK AND STRUCTURED CONTROL 297

8.1 Linear Quadratic Regulator with Output Feedback / 297
8.2 Tracking a Reference Input / 313
8.3 Tracking by Regulator Redesign / 327
8.4 Command-Generator Tracker / 331
8.5 Explicit Model-Following Design / 338
8.6 Output Feedback in Game Theory and Decentralized Control / 343

Problems / 351

Lewis ftoc.tex V1 - 10/19/2011 4:11pm Page ix

CONTENTS ix

9 ROBUSTNESS AND MULTIVARIABLE
FREQUENCY-DOMAIN TECHNIQUES 355

9.1 Introduction / 355
9.2 Multivariable Frequency-Domain Analysis / 357
9.3 Robust Output-Feedback Design / 380
9.4 Observers and the Kalman Filter / 383
9.5 LQG/Loop-Transfer Recovery / 408
9.6 H∞ DESIGN / 430

Problems / 435

10 DIFFERENTIAL GAMES 438

10.1 Optimal Control Derived Using Pontryagin’s Minimum Principle
and the Bellman Equation / 439

10.2 Two-player Zero-sum Games / 444
10.3 Application of Zero-sum Games to H∞ Control / 450
10.4 Multiplayer Non-zero-sum Games / 453

11 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE
CONTROL 461

11.1 Reinforcement Learning / 462
11.2 Markov Decision Processes / 464
11.3 Policy Evaluation and Policy Improvement / 474
11.4 Temporal Difference Learning and Optimal Adaptive Control / 489
11.5 Optimal Adaptive Control for Discrete-time Systems / 490
11.6 Integral Reinforcement Learning for Optimal Adaptive Control of

Continuous-time Systems / 503
11.7 Synchronous Optimal Adaptive Control for Continuous-time

Systems / 513

APPENDIX A REVIEW OF MATRIX ALGEBRA 518

A.1 Basic Definitions and Facts / 518Q1

A.2 Partitioned Matrices / 519
A.3 Quadratic Forms and Definiteness / 521
A.4 Matrix Calculus / 523
A.5 The Generalized Eigenvalue Problem / 525

REFERENCES 527

INDEX 535

Lewis ftoc.tex V1 - 10/19/2011 4:11pm Page x

Lewis fpref.tex V1 - 10/19/2011 4:55pm Page xi

PREFACE

This book is intended for use in a second graduate course in modern control
theory. A background in the state-variable representation of systems is assumed.
Matrix manipulations are the basic mathematical vehicle and, for those whose
memory needs refreshing, Appendix A provides a short review.

The book is also intended as a reference. Numerous tables make it easy to find
the equations needed to implement optimal controllers for practical applications.

Our interactions with nature can be divided into two categories: observation
and action. While observing, we process data from an essentially uncooperative
universe to obtain knowledge. Based on this knowledge, we act to achieve our
goals. This book emphasizes the control of systems assuming perfect and com-
plete knowledge. The dual problem of estimating the state of our surroundings is
briefly studied in Chapter 9. A rigorous course in optimal estimation is required
to conscientiously complete the picture begun in this text.

Our intention is to present optimal control theory in a clear and direct fashion.
This goal naturally obscures the more subtle points and unanswered questions
scattered throughout the field of modern system theory. What appears here as
a completed picture is in actuality a growing body of knowledge that can be
interpreted from several points of view and that takes on different personalities
as new research is completed.

We have tried to show with many examples that computer simulations of
optimal controllers are easy to implement and are an essential part of gaining
an intuitive feel for the equations. Students should be able to write simple pro-
grams as they progress through the book, to convince themselves that they have
confidence in the theory and understand its practical implications.

Relationships to classical control theory have been pointed out, and a root-
locus approach to steady-state controller design is included. Chapter 9 presents

xi

Lewis fpref.tex V1 - 10/19/2011 4:55pm Page xii

xii PREFACE

some multivariable classical design techniques. A chapter on optimal control of
polynomial systems is included to provide a background for further study in
the field of adaptive control. A chapter on robust control is also included to
expose the reader to this important area. A chapter on differential games shows
how to extend the optimality concepts in the book to multiplayer optimization in
interacting teams.

Optimal control relies on solving the matrix design equations developed in the
book. These equations can be complicated, and exact solution of the Hamilton-
Jacobi equations for nonlinear systems may not be possible. The last chapter,
on optimal adaptive control, gives practical methods for solving these matrix
design equations. Algorithms are given for finding approximate solutions online
in real-time using adaptive learning techniques based on data measured along the
system trajectories.

The first author wants to thank his teachers: J. B. Pearson, who gave him the
initial excitement and passion for the field; E. W. Kamen, who tried to teach him
persistence and attention to detail; B. L. Stevens, who forced him to consider
applications to real situations; R. W. Newcomb, who gave him self-confidence;
and A. H. Haddad, who showed him the big picture and the humor behind it all.
We owe our main thanks to our students, who force us daily to take the work
seriously and become a part of it.

Acknowledgments

This work was supported by NSF grant ECCS-0801330, ARO grant W91NF-05-
1-0314, and AFOSR grant FA9550-09-1-0278.

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 1

1
STATIC OPTIMIZATION

In this chapter we discuss optimization when time is not a parameter. The discus-
sion is preparatory to dealing with time-varying systems in subsequent chapters.
A reference that provides an excellent treatment of this material is Bryson and
Ho (1975), and we shall sometimes follow their point of view.

Appendix A should be reviewed, particularly the section that discusses matrix
calculus.

1.1 OPTIMIZATION WITHOUT CONSTRAINTS

A scalar performance index L(u) is given that is a function of a control or
decision vector u ∈ Rm. It is desired to determine the value of u that results in
a minimum value of L(u).

We proceed to solving this optimization problem by writing the Taylor series
expansion for an increment in L as

dL = LT
u du + 1

2
duTLuu du + O(3), (1.1-1)

where O(3) represents terms of order three. The gradient of L with respect to u

is the column vector
Lu

�= ∂L

∂u
, (1.1-2)

and the Hessian matrix is

Luu = ∂2L

∂u2
. (1.1-3)

1

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 2

2 STATIC OPTIMIZATION

Luu is called the curvature matrix . For more discussion on these quantities, see
Appendix A.

Note. The gradient is defined throughout the book as a column vector, which
is at variance with some authors, who define it as a row vector.

A critical or stationary point is characterized by a zero increment dL to first
order for all increments du in the control. Hence,

Lu = 0 (1.1-4)

for a critical point.
Suppose that we are at a critical point, so Lu = 0 in (1.1-1). For the critical

point to be a local minimum, it is required that

dL = 1

2
duTLuu du + O(3) (1.1-5)

is positive for all increments du . This is guaranteed if the curvature matrix Luu

is positive definite,
Luu > 0. (1.1-6)

If Luu is negative definite, the critical point is a local maximum; and if Luu is
indefinite, the critical point is a saddle point. If Luu is semidefinite, then higher
terms of the expansion (1.1-1) must be examined to determine the type of critical
point.

The following example provides a tangible meaning to our initial mathematical
developments.

Example 1.1-1. Quadratic Surfaces

Let u ∈ R2 and

L(u) = 1

2
uT

[
q11 q12

q12 q22

]
u + [s1 s2] u (1)

�= 1

2
uTQu + STu. (2)

The critical point is given by

Lu = Qu + S = 0 (3)

and the optimizing control is

u∗ = −Q−1S. (4)

By examining the Hessian
Luu = Q (5)

one determines the type of the critical point.

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 3

1.1 OPTIMIZATION WITHOUT CONSTRAINTS 3

The point u* is a minimum if Luu > 0 and it is a maximum if Luu < 0. If |Q| < 0,
then u* is a saddle point. If |Q| = 0, then u* is a singular point and in this case Luu

does not provide sufficient information for characterizing the nature of the critical point.
By substituting (4) into (2) we find the extremal value of the performance index to be

L∗ �= L(u∗) = 1

2
STQ−1QQ−1S − STQ−1S

= −1

2
STQ−1S. (6)

Let

L = 1

2
uT

[
1 1
1 2

]
u + [0 1] u. (7)

Then

u∗ = −
[

2 −1
1 1

] [
0
1

]
=

[
1

−1

]
(8)

is a minimum, since Luu > 0. Using (6), we see that the minimum value of L is L∗ = − 1
2 .

FIGURE 1.1-1 Contours and the gradient vector.

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 4

4 STATIC OPTIMIZATION

The contours of the L(u) in (7) are drawn in Fig. 1.1-1, where u = [u1 u2]T. The
arrows represent the gradient

Lu = Qu + S =
[

u1 + u2

u1 + 2u2 + 1

]
. (9)

Note that the gradient is always perpendicular to the contours and pointing in the direction
of increasing L(u).

We shall use an asterisk to denote optimal values of u and L when we want to be
explicit. Usually, however, the asterisk will be omitted. �

Example 1.1-2. Optimization by Scalar Manipulations

We have discussed optimization in terms of vectors and the gradient. As an alternative
approach, we could deal entirely in terms of scalar quantities. To demonstrate, let

L(u1, u2) = 1

2
u2

1 + u1u2 + u2
2 + u2, (1)

where u1 and u2 are scalars. A critical point is present where the derivatives of L with
respect to all arguments are equal to zero:

∂L

∂u1
= u1 + u2 = 0,

∂L

∂u2
= u1 + 2u2 + 1 = 0. (2)

Solving this system of equations yields

u1 = 1, u2 = −1; (3)

thus, the critical point is (1, −1). Note that (1) is an expanded version of (7) in
Example 1.1-1, so we have just derived the same answer by another means.

Vector notation is a tool that simplifies the bookkeeping involved in dealing with
multidimensional quantities, and for that reason it is very attractive for our purposes. �

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS

Now let the scalar performance index be L(x , u), a function of the control vector
u ∈ Rm and an auxiliary (state) vector x ∈ Rn. The optimization problem is
to determine the control vector u that minimizes L(x , u) and at the same time
satisfies the constraint equation

f (x, u) = 0. (1.2-1)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 5

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 5

The auxiliary vector x is determined for a given u by the relation (1.2-1). For a
given u, (1.2-1) defines a set of n scalar equations.

To find necessary and sufficient conditions for a local minimum that also
satisfies f (x, u) = 0, we proceed exactly as we did in the previous section, first
expanding dL in a Taylor series and then examining the first- and second-order
terms. Let us first gain some insight into the problem, however, by considering
it from three points of view (Bryson and Ho 1975, Athans and Falb 1966).

Lagrange Multipliers and the Hamiltonian

Necessary Conditions At a stationary point, dL is equal to zero in the first-order
approximation with respect to increments du when df is zero. Thus, at a critical
point the following equations are satisfied:

dL = LT
u du + LT

x dx = 0 (1.2-2)

and

df = fu du + fx dx = 0. (1.2-3)

Since (1.2-1) determines x for a given u , the increment dx is determined
by (1.2-3) for a given control increment du . Thus, the Jacobian matrix fx is
nonsingular and one can write

dx = −f −1
x fu du. (1.2-4)

Substituting this into (1.2-2) yields

dL = (
LT

u − LT
xf −1

x fu

)
du. (1.2-5)

The derivative of L with respect to u holding f constant is therefore given by

∂L

∂u

∣∣∣∣
df=0

= (
LT

u − LT
xf −1

x fu

)T = Lu − f T
u f −T

x Lx, (1.2-6)

where f −T
x means (f −1

x)T. Note that

∂L

∂u

∣∣∣∣
dx=0

= Lu. (1.2-7)

Thus, for dL to be zero in the first-order approximation with respect to arbitrary
increments du when df = 0, we must have

Lu − f T
u f −T

x Lx = 0. (1.2-8)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 6

6 STATIC OPTIMIZATION

This is a necessary condition for a minimum. Before we derive a sufficient
condition, let us develop some more insight by examining two more ways to
obtain (1.2-8). Write (1.2-2) and (1.2-3) as

[
dL

df

]
=

[
LT

x LT
u

fx fu

] [
dx

du

]
= 0. (1.2-9)

This set of linear equations defines a stationary point, and it must have a solution
[dx TduT]T. The critical point is obtained only if the (n + 1) × (n + m) coefficient
matrix has rank less than n + 1. That is, its rows must be linearly dependent so
there exists an n vector λ such that

[1 λT]

[
LT

x LT
u

fx fu

]
= 0. (1.2-10)

Then
LT

x + λTfx = 0, (1.2-11)

LT
u + λTfu = 0. (1.2-12)

Solving (1.2-11) for λ gives

λT = −LT
xf −1

x , (1.2-13)

and substituting in (1.2-12) again yields the condition (1.2-8) for a critical point.
Note. The left-hand side of (1.2-8) is the transpose of the Schur complement

of LT
u in the coefficient matrix of (1.2-9) (see Appendix A for more details).

The vector λ ∈ Rn is called a Lagrange multiplier , and it will turn out to be
an extremely useful tool for us. To give it some additional meaning now, let
du = 0 in (1.2-2), (1.2-3) and eliminate dx to get

dL = LT
x f −1

x df. (1.2-14)

Therefore,
∂L

∂f

∣∣∣∣
du=0

= (
LT

xf −1
x

)T = −λ, (1.2-15)

so that −λ is the partial of L with respect to the constraint holding the control
u constant. It shows the effect on the performance index of holding the control
constant when the constraints are changed.

As a third method of obtaining (1.2-8), let us develop the approach we shall use
for our analysis in subsequent chapters. Include the constraints in the performance
index to define the Hamiltonian function

H(x, u, λ) = L(x, u) + λTf (x, u), (1.2-16)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 7

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 7

where λ ∈ Rn is an as yet undetermined Lagrange multiplier. To determine x, u ,
and λ, which result in a critical point, we proceed as follows.

Increments in H depend on increments in x, u , and λ according to

dH = HT
x dx + HT

u du + HT
λ dλ. (1.2-17)

Note that
Hλ = ∂H

∂λ
= f (x, u), (1.2-18)

so suppose we choose some value of u and demand that

Hλ = 0. (1.2-19)

Then x is determined for the given u by f (x , u) = 0, which is the constraint
relation. In this situation the Hamiltonian equals the performance index:

H |f =0 = L. (1.2-20)

Recall that if f = 0, then dx is given in terms of du by (1.2-4). We should rather
not take into account this coupling between du and dx , so it is convenient to
choose λ so that

Hx = 0. (1.2-21)

Then, by (1.2-17), increments dx do not contribute to dH . Note that this yields
a value for λ given by

∂H

∂x
= Lx + f T

x λ = 0 (1.2-22)

or (1.2-13).
If (1.2-19) and (1.2-21) hold, then

dL = dH = HT
u du, (1.2-23)

since H = L in this situation. To achieve a stationary point, we must therefore
finally impose the stationarity condition

Hu = 0. (1.2-24)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 8

8 STATIC OPTIMIZATION

In summary, necessary conditions for a minimum point of L(x , u) that also
satisfies the constraint f (x , u) = 0 are

∂H

∂λ
= f = 0, (1.2-25a)

∂H

∂x
= Lx + f T

x λ = 0, (1.2-25b)

∂H

∂u
= Lu + f T

u λ = 0, (1.2-25c)

with H (x , u , λ) defined by (1.2-16). The way we shall often use them, these three
equations serve to determine x , λ , and u in that respective order. The last two of
these equations are (1.2-11) and (1.2-12). In most applications determining the
value of λ is not of interest, but this value is required, since it is an intermediate
variable that allows us to determine the quantities of interest, u , x , and the
minimum value of L.

The usefulness of the Lagrange-multiplier approach can be summarized as
follows. In reality dx and du are not independent increments, because of (1.2-4).
By introducing an undetermined multiplier λ, however, we obtain an extra degree
of freedom, and λ can be selected to make dx and du behave as if they were
independent increments. Therefore, setting independently to zero the gradients
of H with respect to all arguments as in (1.2-25) yields a critical point. By
introducing Lagrange multipliers, the problem of minimizing L(x , u) subject
to the constraint f (x , u) = 0 is replaced with the problem of minimizing the
Hamiltonian H (x , u , λ) without constraints .

Sufficient Conditions Conditions (1.2-25) determine a stationary (critical)
point. We are now ready to derive a test that guarantees that this point is a
minimum. We proceed as we did in Section 1.1.

Write Taylor series expansions for increments in L and f as

dL = [
LT

x LT
u

] [
dx

du

]
+ 1

2

[
dxT duT] [

Lxx Lxu

Lux Luu

] [
dx

du

]
+ O(3), (1.2-26)

df = [fx fu]

[
dx

du

]
+ 1

2

[
dxT duT] [

fxx fxu

fux fuu

] [
dx

du

]
+ O(3), (1.2-27)

where

fxu
�= ∂2f

∂u dx

and so on. (What are the dimensions of fxu?) To introduce the Hamiltonian, use
these equations to see that

[
1 λT] [

dL
df

]
= [

HT
x HT

u

] [
dx

du

]
+ 1

2

[
dxT duT] [

Hxx Hxu

Hux Huu

] [
dx

du

]
+ O(3).

(1.2-28)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 9

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 9

A critical point requires that f = 0, and also that dL is zero in the first-order
approximation for all increments dx, du . Since f is held equal to zero, df is also
zero. Thus, these conditions require Hx = 0 and Hu = 0 exactly as in (1.2-25).

To find sufficient conditions for a minimum, let us examine the second-order
term. First, it is necessary to include in (1.2-28) the dependence of dx on du .
Hence, let us suppose we are at a critical point so that Hx = 0, Hu = 0, and
df = 0. Then by (1.2-27)

dx = −f −1
x fu du + O(2). (1.2-29)

Substituting this relation into (1.2-28) yields

dL = 1

2
duT [−f T

u f −T
x I

] [
Hxx Hxu

Hux Huu

] [−f −1
x fu

I

]
du + O(3). (1.2-30)

To ensure a minimum, dL in (1.2-30) should be positive for all increments du .
This is guaranteed if the curvature matrix with constant f equal to zero

Lf
uu

�=Luu|f = [−f T
u f −T

x I
] [

Hxx Hxu

Hux Huu

] [−f −1
x fu

I

]

= Huu − f T
u f −T

x Hxu − Huxf
−1
x fu + f T

u f −T
x Hxxf

−1
x fu (1.2-31)

is positive definite. Note that if the constraint f (x, u) is identically zero for all
x and u , then (1.2-31) reduces to Luu in (1.1-6). If (1.2-31) is negative definite
(indefinite), then the stationary point is a constrained maximum (saddle point).

Examples

To gain a feel for the theory we have just developed, let us consider some
examples. The first example is a geometric problem that allows easy visualization,
while the second involves a quadratic performance index and linear constraint.
The second example is representative of the case that is used extensively in
controller design for linear systems.

Example 1.2-1. Quadratic Surface with Linear Constraint

Suppose the performance index is as given in Example 1.1-1:

L(x, u) = 1

2
[x u]

[
1 1
1 2

] [
x

u

]
+ [0 1]

[
x

u

]
, (1)

where we have simply renamed the old scalar components u1, u2 as x, u , respectively.
Let the constraint be

f (x, u) = x − 3 = 0. (2)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 10

10 STATIC OPTIMIZATION

The Hamiltonian is

H = L + λTf = 1

2
x2 + xu + u2 + u + λ(x − 3), (3)

where λ is a scalar. The conditions for a stationary point are (1.2-25), or

Hλ = x − 3 = 0, (4)

Hx = x + u + λ = 0, (5)

Hu = x + 2u + 1 = 0. (6)

Solving in the order (4), (6), (5) yields x = 3, u = −2, and λ = −1. The stationary point
is therefore

(x, u)∗ = (3,−2). (7)

To verify that (7) is a minimum, find the constrained curvature matrix (1.2-31):

Lf
uu = 2. (8)

FIGURE 1.2-1 Contours of L(x, u), and the constraint f (x, u).

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 11

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 11

This is positive, so (7) is a minimum. The contours of L(x, u) and the constraint (2) are
shown in Fig. 1.2-1.

It is worthwhile to make an important point. The gradient of f (x, u) in the (x, u)
plane is [

fx

fu

]
=

[
1

0

]
, (9)

as shown in Fig. 1.2-1. The gradient of L(x, u) in the plane is

[
Lx

Lu

]
=

[
x + u

x + 2u + 1

]
(10)

(cf. (9) in Example 1.1-1). At the constrained minimum (3, −2), this has a value of
[
Lx

Lu

]
=

[
1
0

]
. (11)

Note that the gradients of f and L are parallel at the stationary point. This means that the
constrained minimum occurs where the constraint (2) is tangent to an elliptical contour
of L. Moving in either direction along the line f = 0 will then increase the value of L. The
value of L at the constrained minimum is found by substituting x = 3, u = −2 into (1)
to be L* = 0.5. Since λ = −1, holding u constant at −2 and changing the constraint by
df (i.e., moving the line in Fig. 1.2-1 to the right by df) will result in an increase in the
value of L(x, u) of dL = −λ df = df (see (1.2-15)). �

Example 1.2-2. Quadratic Performance Index with Linear Constraint

Consider the quadratic performance index

L(x, u) = 1

2
xTQx + 1

2
uTRu (1)

with linear constraint

f (x, u) = x + Bu + c = 0, (2)

where x ∈ Rn , u ∈ Rm , f ∈ Rn , λ ∈ Rn , Q , R, and B are matrices, and c is an n vector.
We assume Q > 0 and R > 0 (with both symmetric). This static linear quadratic (LQ)
problem will be further generalized in Chapters 2 and 3 to apply to time-varying systems.

The contours of L(x , u) are hyperellipsoids, and f (x , u) = 0 defines a hyperplane
intersecting them. The stationary point occurs where the gradients of f and L are parallel.

The Hamiltonian is

H = 1

2
xTQx + 1

2
uTRu + λT(x + Bu + c) (3)

and the conditions for a stationary point are

Hλ = x + Bu + c = 0, (4)

Hx = Qx + λ = 0, (5)

Hu = Ru + BTλ = 0. (6)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 12

12 STATIC OPTIMIZATION

To solve these, first use the stationarity condition (6) to find an expression for u in terms
of λ,

u = −R−1BTλ. (7)

According to (5)
λ = −Qx, (8)

and taking into account (4) results in

λ = QBu + Qc. (9)

Using this in (7) yields

u = −R−1BT(QBu + Qc) (10)

or
(I + R−1BTQB)u = −R−1BTQc,

(R + BTQB)u = −BTQc. (11)

Since R > 0 and BTQB > 0, we can invert R + BTQB and so the optimal control is

u = −(R + BTQB)−1BTQc. (12)

Using (12) in (4) and (9) gives the optimal-state and multiplier values of

x = −(I − B(R + BTQB)−1BTQ)c, (13)

λ = (Q − QB(R + BTQB)−1BTQ)c. (14)

By the matrix inversion lemma (see Appendix A)

λ = (Q−1 + BR−1BT)−1c (15)

if |Q| �= 0.
To verify that control (12) results in a minimum, use (1.2-31) to determine that the

constrained curvature matrix is

Lf
uu = R + BTQB, (16)

which is positive definite by our restrictions on R and Q . Using (12) and (13) in (1) yields
the optimal value

L∗ = 1

2
cT [

Q − QB(R + BTQB)−1BTQ
]
c, (17)

L∗ = 1

2
cTλ, (18)

so that
∂L∗

∂c
= λ. (19)

�

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 13

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 13

Effect of Changes in Constraints

Equation (1.2-28) expresses the increment dL in terms of df, dx , and du . In the
discussion following that equation we let df = 0, found dx in terms of du ,
and expressed dL in terms of du . That gave us conditions for a stationary point
(Hx = 0 and Hu = 0) and led to the second-order coefficient matrix L

f
uu in

(1.2-31), which provided a test for the stationary point to be a constrained
minimum.

In this subsection we are interested in dL as a function of an increment df in
the constraint. We want to see how the performance index L changes in response
to changes in the constraint f if we remain at a stationary point . We are therefore
trying to find stationary points near a given stationary point. See Fig. 1.2-2,
which shows how the stationary point moves with changes in f .

At the stationary point (u , x)* defined by f (x , u) = 0, the conditions
H λ = 0, Hx = 0, and Hu = 0 are satisfied. If the constraint changes by an
increment so that f (x , u) = df , then the stationary point moves to (u + du ,
x + dx). The partials in (1.2-25) change by

dHλ = df = fx dx + fu du, (1.2-32a)

dHx = Hxx dx + Hxu du + f T
x dλ, (1.2-32b)

dHu = Hux dx + Huu du + f T
u dλ. (1.2-32c)

FIGURE 1.2-2 Locus of stationary points as the constraint varies.

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 14

14 STATIC OPTIMIZATION

In order that we remain at a stationary point, the increments dHx and dHu

should be zero. This requirement imposes certain relations between the changes
dx, du , and df , which we shall use in (1.2-28) to determine dL as a function
of df .

To find dx and du as functions of df with the requirement that we remain at
an optimal solution, use (1.2-32a) to find

dx = f −1
x df − f −1

x fu du, (1.2-33)

and set (1.2-32b) to zero to find

dλ = −f −T
x (Hxx dx + Hxu du). (1.2-34)

Now use these relations in (1.2-32c) to obtain

dHu = (
Huu − Huxf

−1
x fu − f T

u f −T
x Hxu + f T

u f −T
x Hxxf

−1
x fu

)
du

+ (
Hux − f T

u f −T
x Hxx

)
f −1

x df = 0

so that

du = − (
Lf

uu

)−1 (
Hux − f T

u f −T
x Hxx

)
f −1

x df
�=−C df. (1.2-35)

Using (1.2-35) in (1.2-33) yields

dx =
[
I + f −1

x fu

(
Lf

uu

)−1 (
Hux − f T

u f −1
x Hxx

)]
f −1

x df

= f −1
x (I + fuC) df. (1.2-36)

Equations (1.2-35) and (1.2-36) are the required expressions for the increments
in the stationary values of control and state as functions of df . If |Lf

uu| �= 0, then
dx and du can be determined in terms of df , and the existence of neighboring
optimal solutions as f varies is guaranteed.

To determine the increment dL in the optimal performance index as a function
of df , substitute (1.2-35) and (1.2-36) into (1.2-28), using Hx = 0, dHu = 0,
since we began at a stationary point (u , x)*. The result is found after some work
to be

dL = −λT df + 1

2
dfT

(
f −T

x Hxxf
−1
x − CTLf

uuC
)

df + O(3). (1.2-37)

From this we see that the first and second partial derivatives of L*(x , u) with
respect to f (x, u) under the restrictions dHx = 0, dHu = 0 are

∂L∗

∂f

∣∣∣∣
Hx,Hu

= −λ, (1.2-38)

∂2L∗

∂f 2

∣∣∣∣
Hx,Hu

= f −T
x Hxxf

−1
x − CTLf

uuC. (1.2-39)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 15

PROBLEMS 15

Equation (1.2-38) allows a further interpretation of the Lagrange multiplier; it
indicates the rate of change of the optimal value of the performance index with
respect to the constraint.

1.3 NUMERICAL SOLUTION METHODS

Analytic solutions for the stationary point (u , x)* and minimal value L* of
the performance index cannot be found except for simple functions L(x, u) and
f (x, u). In most practical cases, numerical optimization methods must be used.
Many methods exist, but steepest descent or gradient (Luenberger 1969, Bryson
and Ho 1975) methods are probably the simplest.

The steps in constrained minimization by the method of steepest descent are
(Bryson and Ho 1975)

1. Select an initial value for u .
2. Determine x from f (x , u) = 0.
3. Determine λ from λ = −f −T

x Lx .
4. Determine the gradient vector Hu = Lu + f T

u λ.
5. Update the control vector by �u = −αHu, where K is a positive scalar

constant (to find a maximum use �u = αHu).
6. Determine the predicted change in the value of L, �L = HT

u �u =
−αHT

u Hu. If �L is sufficiently small, stop. Otherwise, go to step 2.

There are many variations to this procedure. If the step-size constant K is too
large, then the algorithm may overshoot the stationary point (u , x)* and con-
vergence may not occur. The step size should usually be reduced as (u , x)*
is approached, and several of the existing variations differ in the approach to
adapting K .

Many software routines are available for unconstrained optimization. The
numerical solution of the constrained optimization problem of minimizing
L(x, u) subject to f (x , u) = 0 can be obtained using the MATLAB function
constr.m available under the Optimization Toolbox. This function takes in the
user-defined subroutine funct.m , which computes the value of the function, the
constraints, and the initial conditions.

PROBLEMS

Section 1.1

1.1-1. Find the critical points u* (classify them) and the value of L(u*) in
Example 1.1-1 if

a. Q =
[−1 1

1 −2

]
, ST = [0 1].

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 16

16 STATIC OPTIMIZATION

b. Q =
[−1 1

1 2

]
, ST = [0 1].

Sketch the contours of L and find the gradient Lu.

1.1-2. Find the minimum value of

L(x1, x2) = x2
1 − x1x2 + x2

2 + 3x1. (1)

Find the curvature matrix at the minimum. Sketch the contours, showing the
gradient at several points.

1.1-3. Failure of test for minimality. The function f (x, y) = x2 + y4 has a
minimum at the origin.
a. Verify that the origin is a critical point.
b. Show that the curvature matrix is singular at the origin.
c. Prove that the critical point is indeed a minimum.

Section 1.2

1.2-1. Ship closest point of approach. A ship is moving at 10 miles per hour
on a course of 30◦ (measured clockwise from north, which is 0◦). Find its closest
point of approach to an island that at time t = 0 is 20 miles east and 30 miles
north of it. Find the distance to the island at this point. Find the time of closest
approach.

1.2-2. Shortest distance between two points. Let P1 = (x 1, y1) and P2 =
(x 2, y2) be two given points. Find the third point P3 = (x 3, y3) such that
d1 = d2 is minimized, where d1 is the distance from P3 to P1 and d2 is the
distance from P3 to P2.

1.2-3. Meteor closest point of approach. A meteor is in a hyperbolic orbit
described with respect to the earth at the origin by

x2

a2
− y2

b2
= 1. (1)

Find its closest point of approach to a satellite that is in such an orbit that it has
a constant position of (x 1, y1). Verify that the solution indeed yields a minimum.

1.2-4. Shortest distance between a parabola and a point. A meteor is moving
along the path

y = x2 + 3x − 6. (1)

A space station is at the point (x , y) = (2, 2).
a. Use Lagrange multipliers to find a cubic equation for x at the closest point of

approach.

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 17

PROBLEMS 17

b. Find the closest point of approach (x , y), and the distance from this point
to (2, 2).

1.2-5. Rectangles with maximum area, minimum perimeter
a. Find the rectangle of maximum area with perimeter p. That is, maximize

L(x, y) = xy (1)

subject to
f (x, y) = 2x + 2y − p = 0. (2)

b. Find the rectangle of minimum perimeter with area a2. That is, minimize

L(x, y) = 2x + 2y (3)

subject to
f (x, y) = xy − a2 = 0. (4)

c. In each case, sketch the contours of L(x, y) and the constraint. Optimization
problems related like these two are said to be dual .

1.2-6. Linear quadratic case. Minimize

L = 1

2
xT

[
1 0
0 2

]
x + 1

2
uT

[
2 1
1 1

]
u

if

x =
[

1
3

]
=

[
2 2
1 0

]
u.

Find x*, u*, λ*, L*.

1.2-7. Linear quadratic case. In the LQ problem define the Kalman gain

K
�=(BTQB + R)−1BTQ (1)

a. Express u*, λ*, x*, and L* in terms of K .
b. Let

S0
�=Q − QB(BTQB + R)−1BTQ (2)

so that L∗ = cTS0c/2. Show that

S0 = Q(I − BK) = (I − BK)TQ(I − BK) + KTRK. (3)

Hence, factor L* as a perfect square. (Let
√

Q and
√

R be the square roots
of Q and R.)

Lewis c01.tex V1 - 10/18/2011 3:39pm Page 18

18 STATIC OPTIMIZATION

c. Show that

S0 = (Q−1 + BR−1BT)−1. (4)

1.2-8. Geometric mean less than or equal to arithmetic mean
a. Show that the minimum value of x 2y2z 2 on the sphere x 2 + y2 + z 2 = r2 is

(r2/3)3.
b. Show that the maximum value of x 2 + y2 + z 2 on the sphere x 2y2z 2 =

(r2/3)3 is r2.
c. Generalize part a or b and so deduce that, for ai > 0,

(a1a2 · · · an)
1/n ≤ (a1 + a2 + · · · + an)/n.

Note: The problems in parts a and b are dual (Fulks 1967).

1.2-9. Find the point nearest the origin on the line 3x + 2y + z = 1,
x + 2y − 3z = 4.

1.2-10. Rectangle inside Ellipse
a. Find the rectangle of maximum perimeter that can be inscribed inside an

ellipse. That is, maximize 4(x + y) subject to constraint x 2/a2 + y2/b2 = 1.
b. Find the rectangle of maximum area 4xy that can be inscribed inside an ellipse.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 19

2
OPTIMAL CONTROL
OF DISCRETE-TIME SYSTEMS

We are now ready to extend the methods of Chapter 1 to the optimization of
a performance index associated with a system developing dynamically through
time. It is important to realize that we shall be making a fairly subtle change of
emphasis. In Chapter 1, the focus of our attention was initially on the performance
index, and we introduced the notion of constraints as the discussion proceeded. In
this and subsequent chapters we are forced to begin with the constraint equations,
since these represent the dynamics of the system. These constraint relations are
fixed by the physics of the problem. The performance index is selected by the
engineer as it represents the desired behavior of the dynamical system.

In Section 2.1 we derive the general solution of the optimization problem for
discrete-time systems. In Section 2.2 we discuss the very important special case
of linear systems with a quadratic performance index. We first discuss the case of
fixed final state, which yields an open-loop control, followed by the situation of
free final state, which yields a closed-loop control. In Section 2.3 we show how
to apply these results to the digital control of continuous-time systems.

Some connections with classical root-locus design are given in Section 2.5.

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME
OPTIMIZATION PROBLEM

Problem Formulation

Let the plant be described by the very general nonlinear discrete-time dynamical
equation

xk+1 = f k(xk, uk) (2.1-1)

19

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 20

20 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

with initial condition x0. The superscript on function f indicates that, in general,
the system, and thus its model, can have time-varying dynamics. Let the state xk

be a vector of size n and the control input uk be a vector of size m . Equation
(2.1-1) represents the constraint, since it determines the state at time k + 1 given
the control and state at time k . Clearly, f is a vector of n functions.

Let an associated scalar performance index, specified by the engineer, be given
in the general form

Ji = φ(N, xN) +
N−1∑
k=i

Lk(xk, uk), (2.1-2)

where [i, N] is the time interval, on a discrete time scale with a fixed sample
step, over which we are interested in the behavior of the system. φ(N, xN) is a
function of the final time N and the state at the final time, and Lk(xk, uk) is a
generally time-varying function of the state and control input at each intermediate
time k in [i, N].

The optimal control problem is to find the control u∗
k on the interval [i, N]

(i.e., u∗
k,∀k ∈ [i, N]) that drives the system (2.1-1) along a trajectory x∗

k such
that the value of the performance index (2.1-2) is optimized.

Here we note that relative to the meaning that it is attached to the performance
index, the optimization problem can be either a minimization or a maximization
problem. For the case that the performance index represents the costs accrued
during the operation of the system over the time interval [i, N], the optimal
control input is determined to minimize the performance index, while in the
situation related to accumulation of value over the time interval [i, N], the optimal
control input is determined to minimize the performance index (2.1-2). As in most
industrial applications the optimal control problem deals with minimization of
control errors as well as of control effort, without reducing the generality of the
formulation, herein we will treat the optimal control problem as a minimization
problem.

Example 2.1-1. Some Useful Performance Indices

To clarify the problem formulation, it is worthwhile to discuss some common performance
indices that we can select for the given system (2.1-1).

a. Minimum-time Problems

Suppose we want to find the control uk to drive the system from the given initial state x0

to a desired final state x ∈ Rn in minimum time. Then we could select the performance
index

J = N =
N−1∑
k=0

1 (1)

and specify the boundary condition
xN = x. (2)

In this case one can consider either φ = N and L = 0, or equivalently φ = 0 and L = 1.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 21

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME OPTIMIZATION PROBLEM 21

b. Minimum-fuel Problems

To find the scalar control uk to drive the system from x0 to a desired final state x at a
fixed time N using minimum fuel, we could use

J =
N−1∑
k=0

|uk|, (3)

since the fuel burned is proportional to the magnitude of the control vector. Then φ = 0
and Lk = |uk|. The boundary condition xN = x would again apply.

c. Minimum-energy Problems

Suppose we want to find uk to minimize the energy of the final state and all intermediate
states, and also that of the control used to achieve this. Let the final time N again be
fixed. Then we could use

J = 1

2
sxT

NxN + 1

2

N−1∑
k=0

(
qxT

k xk + ruT
k uk

)
, (4)

where q , r , and s are scalar weighting factors. Then φ = 1
2 sxT

NxN and L = 1
2

(
qxT

k xk +
ruT

k uk

)
are quadratic functions.

Minimizing the energy corresponds in some sense to keeping the state and the control
close to zero. If it is more important to us that the intermediate state be small, then we
should choose q large to weight it heavily in J , which we are trying to minimize. If it is
more important that the control energy be small, then we should select a large value of r .
If we are more interested in a small final state, then s should be large.

For more generality, we could select weighting matrices Q, R, S instead of scalars.
The performance index can in this case be represented as

J = 1

2
xT

NSxN + 1

2

N−1∑
k=0

(
xT

k Qxk + uT
k Ruk

)
. (5)

�
At this point, several things should be clearly understood. First, the system

dynamics (2.1-1) are given by the physics of the problem, while the performance
index (2.1-2) is what we choose to achieve the desired system response. Second,
to achieve different control objectives, different types of performance indices J
are selected. Finally, the optimal control problem is characterized by compro-
mises and trade-offs , with different weighting factors in J resulting in different
balances between conformability with performance objectives and magnitude of
the required optimal controls.

In practice, it is usually necessary to do a control design with a trial per-
formance index J, compute the optimal control u∗

k , and then run a computer
simulation to see how the system responds to this u∗

k . If the response is not
acceptable, the entire process is repeated using another J with different state and
control weightings. After several repetitions have been done to find an acceptable
u∗

k , this final version of u∗
k is applied to the actual system.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 22

22 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Problem Solution

Let us now solve the optimal control problem for the general nonlinear sys-
tem (2.1-1) with associated performance index (2.1-2). To determine the optimal
control sequence u∗

i , u
∗
i+1, , u

∗
N−1 minimizing J , we proceed basically as we

did in Chapter 1, using the powerful Lagrange-multiplier approach. Since there is
a constraint function f k(xk, uk) specified at each time k in the interval of interest
[i, N], we also require a Lagrange multiplier at each time. Each constraint has
an associated Lagrange multiplier .

Thus, let λk ∈ Rn, and append the constraint (2.1-1) to the performance index
(2.1-2) to define an augmented performance index J ′ by

J ′ = φ(N, xN) +
N−1∑
k=i

[
Lk(xk, uk) + λT

k+1

(
f k(xk, uk) − xk+1

)]
. (2.1-3)

Note that we have associated with f k the multiplier λk+1, not λk . This is done
with the benefit of hindsight, as it makes the solution neater.

Defining the Hamiltonian function as

Hk(xk, uk) = Lk(xk, uk) + λT
k+1f

k(xk, uk), (2.1-4)

we can write

J ′ = φ(N, xN) − λT
NxN + Hi(xi, ui) +

N−1∑
k=i+1

[
Hk(xk, uk) − λT

k xk

]
, (2.1-5)

where some minor manipulations with indices have been performed. Note that
the Hamiltonian is defined slightly differently than in Chapter 1, since we did
not include xk+1 in Hk . Furthermore, a Hamiltonian is defined at each time k .

We now want to examine the increment in J ′ due to increments in all the
variables xk, λk , and uk . We assume the final time N is fixed. According to the
Lagrange-multiplier theory, at a constrained minimum this increment dJ ′ should
be zero. Therefore, write

dJ ′ = (φxN
− λN)TdxN + (

Hi
xi

)T
dxi + (

Hi
ui

)T
dui

+
N−1∑

k=i+1

[(
Hk

xk
− λk

)T
dxk + (

Hk
uk

)T
duk

] +
N∑

k=i+1

(
Hk−1

λk
− xk

)T
dλk, (2.1-6)

where

Hk
xk

�= ∂Hk

∂xk

and so on. Necessary conditions for a constrained minimum are thus given by

xk+1 = ∂Hk

∂λk+1
, k = i, . . . , N − 1, (2.1-7a)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 23

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME OPTIMIZATION PROBLEM 23

λk = ∂Hk

∂xk

, k = i, . . . , N − 1, (2.1-7b)

0 = ∂Hk

∂uk

, k = i, . . . , N − 1, (2.1-7c)

which arise from the terms inside the summations and the coefficient of dui , and
(

∂φ

∂xN

− λN

)T

dxN = 0, (2.1-8a)

(
∂H i

∂xi

)T

dxi = 0. (2.1-8b)

Examining (2.1-3) and (2.1-4) one can see that λi does not appear in J ′. We
have defined it in such a manner that the lower index in (2.1-7b) can be taken
as i , instead of i + 1, solely as a matter of neatness.

These conditions are certainly not intuitively obvious, so we should discuss
them a little to see what they mean. First, compare (2.1-7) with the conditions for
a static minimum (1.2-25). They are very similar, except that our new conditions
must hold at each time k in the interval of interest [i, N − 1], since xk , uk, and
λk are now sequences. Equation (2.1-7c) is called the stationarity condition .

Writing (2.1-7) explicitly in terms of Lk and f k using (2.1-4) yields the formu-
lation in Table 2.1-1. Equality (2.1-9a) is just the constraint, or system, equation.
It is a recursion for the state xk that develops forward in time. Evidently, (2.1-9b)
is a recursion for λk that develops backward in time! The (fictitious) Lagrange
multiplier is thus a variable that is determined by its own dynamical equation. It
is called the costate of the system, and (2.1-9b) is called the adjoint system. The
system (2.1-9a) and the adjoint system (2.1-9b) are coupled difference equations.
They define a two-point boundary-value problem, since the boundary conditions
required for solution are the initial state xi and the final costate λN . These prob-
lems are, in general, extremely difficult to solve. We consider some examples
later.

The stationarity condition (2.1-9c) allows the optimal control uk to be
expressed in terms of the costate. We therefore have a rather curious situation:
we do not really care what λk is, but this method of solution requires us to find
λk as an intermediate step in finding the optimal control.

We have not yet discussed (2.1-8). The first of these equations holds only
at final time k = N , whereas the second holds only at initial time k = i. They
are not dynamical recursions like (2.1-7a) and (2.1-7b). These two equations
specify the split boundary conditions needed to solve the recursions (2.1-9). Two
possibilities exist for each of these equations.

If the initial state xi is fixed , then dxi = 0, so that (2.1-8b) holds regardless
of the value of Hi

xi
. In the case of free initial state, dxi is not zero, so (2.1-8b)

demands that
∂H i

∂xi

= 0. (2.1-10)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 24

24 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

TABLE 2.1-1 Discrete Nonlinear Optimal Controller

System model:
xk+1 = f k(xk, uk), k > i

Performance index:

Ji = φ(N, xN) +
N−1∑
k=i

Lk(xk, uk)

Hamiltonian:
Hk = Lk + λT

k+1f
k

Optimal controller
State equation:

xk+1 = ∂Hk

∂λk+1
= f k(xk, uk) (2.1-9a)

Costate equation:

λk = ∂Hk

∂xk

=
(

∂f k

∂xk

)T

λk+1 + ∂Lk

∂xk

(2.1-9b)

Stationarity condition:

0 = ∂Hk

∂uk

=
(

∂f k

∂uk

)T

λk+1 + ∂Lk

∂uk

(2.1-9c)

Boundary conditions: (
∂Li

∂xi

+
(

∂f i

∂xi

)T

λi+1

)T

dxi = 0

(
∂φ

∂xN

− λN

)T

dxN = 0

In our applications the system starts at a known initial state xi . Thus, the first

Q1

case holds, dxi = 0, and there is no constraint on the value of Hi
xi

. We therefore
ignore (2.1-8b) and use as the initial condition the given value of xi .

We do need to deal with two possibilities for the final state xN . In the case of a
fixed final state we use the desired value of xN as the terminal condition. Then xN

is not free to be varied in determining the optimal solution and dxN = 0, so that
(2.1-8a) holds. On the other hand, if we are not interested in a particular value for
the final state, then xN can be varied in determining the optimal solution. In this
case dxN is not zero. For this free-final-state situation, (2.1-8a) demands that

λN = ∂φ

∂xN
. (2.1-11)

Then, the terminal condition is the value (2.1-11) of the final costate λN .
In summary, the initial condition for the two-point boundary-value problem

(2.1-9) is the known value of xi . The final condition is either a desired value
of xN or the value (2.1-11) of λN . These comments will become clearer as we
proceed.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 25

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME OPTIMIZATION PROBLEM 25

An Example

To develop some feel for the theory we have just derived, let us consider an
example. We shall see that the solution of the optimal control problem is not
straightforward even in the simplest cases, because of the two-point nature of
the state and costate equations, but that once the solution is obtained it imparts
a great deal of intuition about the control of the system.

We also show how to run software simulations to test our optimal control
designs.

Example 2.1-2. Optimal Control for a Scalar Linear System

Consider the simple linear dynamical system

xk+1 = axk + buk, (1)

where lowercase a and b are used to emphasize that we are dealing with the scalar case.
Let the given initial condition be x0. Suppose the interval of interest is [0, N] and that
we are concerned with minimizing control energy so that

J0 = r

2

N−1∑
k=0

u2
k (2)

for some scalar weighting factor r .
Let us discuss two cases, corresponding to two ways in which we might want the

system to behave.

a. Fixed Final State

First, suppose we want to make the system end up at time k = N in exactly the particular
(reference) state rN :

xN = rN . (3)

To find the optimal control sequence u0, u1, . . . , uN−1 (note that xN does not depend on
uN) that drives (1) from the given x0 to the desired xN = rN while minimizing (2), we
can use Table 2.1-1. First, let us compute (2.1-9). The Hamiltonian is

Hk = Lk + λT
k+1f

k = r

2
u2

k + λk+1(axk + buk), (4)

so the conditions (2.1-9) are

xk+1 = ∂Hk

∂λk+1
= axk + buk, (5)

λk = ∂Hk

∂xk

= aλk+1, (6)

0 = ∂Hk

∂uk

= ruk + bλk+1. (7)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 26

26 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Solving the stationarity condition (7) for uk in terms of the costate yields

uk = −b

r
λk+1. (8)

If we can find the optimal λk , we can therefore use (8) to find the optimal control. To find
λk , eliminate uk in (5) using (8). Then

xk+1 = axk − b2

r
λk+1 = axk − γ λk+1, (9)

where

γ
�= b2

r
(10)

is the ratio of “control effect” to control weighting.
Equation (6) is a simple homogeneous difference equation, with solution given by

λk = aN−kλN . (11)

This is all well and good, but we do not know λN . To find it, proceed as follows. Use
(11) in (9) to get

xk+1 = axk − γ aN−k−1λN . (12)

This can be viewed as a difference equation with a forcing function of −γ λNaN−k−1, so
the solution in terms of x0 is

xk = akx0 −
k−1∑
i=0

ak−i−1(γ λNaN−i−1)

= akx0 − γ λNaN+k−2
k−1∑
i=0

a−2i . (13)

Using the formula for the sum of a geometric series we have

xk = akx0 − γ λNaN+k−2 1 − a−2k

1 − a−2

= akx0 − γ λNaN−k 1 − a2k

1 − a2
. (14)

The state at time k is thus a linear combination of the known initial state and the as
yet unknown final costate. To find λN , we need to make use of the boundary conditions
(2.1-8).

Since x0 is fixed, dx0 = 0 and (2.1-8b) is satisfied. Since we are also demanding
the fixed final state (3), we have dxN = 0 so that (2.1-8a) is satisfied. In words, the
algorithm cannot vary either x0 or xN in determining the constrained minimum for this
problem.

According to (14), the final state is expressed in terms of the unknown λN as

xN = aNx0 − γ (1 − a2N)

1 − a2
λN = aNx0 − �λN, (15)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 27

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME OPTIMIZATION PROBLEM 27

where

�
�= γ (1 − a2N)

1 − a2
= b2(1 − a2N)

r(1 − a2)
. (16)

(Defining auxiliary variables is a good trick for making our results look neater than they
actually are!) Solving for λN in terms of the given x0 and the known desired xN = rN

yields

λN = − 1

�
(rN − aNx0). (17)

Note that aNx0 is the final state of the plant (1) in the case of zero input. The final costate
λN is thus proportional to the desired final state rN minus the final state aNx0, which the
system would reach by itself with no control; it makes sense that the control required to
drive x0 to xN = rN should depend on this difference!

At this point, we can determine the costate to be, using (11),

λk = − 1

�

(
rN − aNx0

)
aN−k (18)

and the optimal control to be, using (8),

u∗
k = b

r�

(
rN − aNx0

)
aN−k−1. (19)

This is the solution to our problem, and u∗
k , for k = 0, 1, . . . , N − 1 will drive x0 to

xN = rN while minimizing the control energy (2).
It is worthwhile to examine u∗

k a little bit. Note that (19) can be written

u∗
k = 1 − a2

b(1 − a2N)

(
rN − aNx0

)
aN−k−1, (20)

so that in the case of fixed final state the optimal control is independent of the control
weighting r . It should also be stressed that u∗

k given by (19) is an open-loop control . It
depends on the initial and final states, but not on intermediate values xk of the state. This
is discussed further in Section 2.2.

For completeness, let us determine the optimal state trajectory x∗
k and performance

index J ∗
0 under the influence of u∗

k . Substituting (20) in (1) yields

x∗
k+1 = ax∗

k + 1 − a2

1 − a2N

(
rN − aNx0

)
aN−k−1. (21)

The first observation worthy of note is that the optimal state trajectory x∗
k is independent

of both r and b!
Equation (21) is a dynamical system with forcing function given by the second term,

so its solution is

x∗
k = akx0 + 1 − a2

1 − a2N

(
rN − aNx0

) k−1∑
i=0

ak−i−1aN−i−1. (22)

Using the formula for the sum of a geometric series and simplifying yields

x∗
k = akx0 + (

rN − aNx0
) 1 − a2k

1 − a2N
aN−k (23)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 28

28 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

or

x∗
k = (1 − a2(N−k))akx0 + (1 − a2k)aN−krN

1 − a2N
. (24)

Note that x∗
0 = x0 and x∗

N = rN as required. In fact, x∗
k is a time-varying linear combination

of x0 and rN containing proportionately less of x0 and more of rN as k increases from
0 to N .

The optimal performance index is found by using (20) in (2):

J ∗
0 = r

2

(1 − a2)2

b2(1 − a2N)2
(rN − aNx0)

2
N−1∑
k=0

a2(N−k−1). (25)

Using the formula for the sum of a geometric series and simplifying results in

J ∗
0 = 1

2�
(rN − aNx0)

2. (26)

Thus, the farther the plant zero-input response aNx0 is from the desired final state rN , the
larger the cost J ∗

0 .

b. Free Final State

Suppose that we still desire the system to end up in state rN at time xN, but we decide to
choose quite a different method for ensuring this. We do not need xN to be exactly equal
to rN , we only need xN to be close to rN . Let us, therefore, make the difference xN − rN

small by including it in the performance index, so that (2) becomes

J0 = 1

2
(xN − rN)2 + r

2

N−1∑
k=0

u2
k. (27)

Now the optimal control will attempt to make |xN − rN | small while also using low
control energy. (As we shall see, this will not guarantee that xN will exactly equal rN .)
In this case

φ = 1
2 (xN − rN)2, (28)

but fk and Lk are not changed. The Hamiltonian is still given by (4), and conditions (2.1-9)
are still (5)–(7). This means that all of our work in part a up through (15) is unchanged by
adding to J the final-state weighting term. The only change is in the boundary conditions
(2.1-8).

Since xN is not constrained to take on an exact value, it can be varied in determining
the optimal control. Hence, dxN �= 0, and so according to (2.1-8a) we must have

λN = ∂φ

∂xN
= xN − rN . (29)

The final costate is now related to the final state xN and the desired final state rN by (29);
this is our new terminal condition for the solution of (6) and (9). The initial condition is
still the given value of xi .

Returning to part a and picking up at equation (15), we must now use (29) (instead of
(3)) to see that at the final time

xN = aNx0 − �(xN − rN). (30)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 29

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME OPTIMIZATION PROBLEM 29

Solving for xN gives

xN = �rN + aNx0

1 + �
, (31)

which should be compared to (17). Thus, fixing xN by (3) allowed us to solve for the
final costate in part a, while here the terminal relation (29) has allowed us to solve for
the final state in terms of x0 and the desired rN .

According to (29) and (31),

λN = −(rN − aNx0)

1 + �
, (32)

so the costate is given by (11) as

λk = −(rN − aNx0)

1 + �
aN−k (33)

(cf. (18)), and the optimal control is given by (8) as

u∗
k = b

r(1 + �)
(rN − aNx0)a

N−k−1. (34)

This is the optimal control that solves our free-final-state problem. Note that, unlike (19),
the control (34) does depend on r .

In the limit as r → 0, we are concerned less and less about the control energy we use
since u2

k is weighted less and less heavily in J0. In this case the free-final-state control
(34) tends to the fixed-final-state control (19) (which is independent of r). Therefore, the
less we are concerned about control energy (i.e., the smaller we make r in (27)), the closer
the final state xN comes to the desired rN . This illustrates quite nicely the characteristic
trade-off of optimal control that we discussed earlier.

As we let r go to infinity, meaning that we are expressing more concern about the
control energy by weighting it more heavily in J0, the optimal control goes to zero. For
completeness, let us determine the optimal state trajectory and performance index under
the influence of (34). Substitute (34) into (1) to get

x∗
k+1 = ax∗

k + b2

r(1 + �)
(rN − aNx0)a

N−k−1. (35)

Solving and manipulating yields

x∗
k = [(1 − a2)/γ + (1 − a2(N−k))]akx0 + (1 − a2k)aN−krN

(1 − a2)/γ + (1 − a2N)
. (36)

Note that x∗
0 = x0, but

x∗
N = [(1 − a2)/γ]aNx0 + (1 − a2N)rN

(1 − a2)/γ + (1 − a2N)
. (37)

As r → 0, we have γ → ∞, so that x∗
N approaches the desired rN . In fact, if γ → ∞,

then the entire optimal state trajectory (36) approaches (24).

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 30

30 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

To find the optimal value of the performance index, use (34) in (2) and simplify to
obtain

J ∗
0 = �

2(1 + �)2
(rN − aNx0)

2. (38)

As r → 0, we have � → ∞, so that this approaches the fixed-final-state cost (26).

c. Computer Simulation

In practical situations, the optimal control should be simulated to ensure that it results
in acceptable system behavior before it is applied to the physical system. This is easy to
do. Figure 2.1-1 shows a computer program in MATLAB to simulate the plant (1) with
fixed-final-state optimal control (19). We are using an initial state of x0 = 0 and a desired
final state of rN = 10. Figure 2.1-2 shows a computer program in MATLAB to simulate
the plant (1) with free-final-state optimal control (19). Figure 2.1-3 shows the optimal
state trajectory x∗

k for the fixed-final-state (i.e., r = 0) and for the free final state control
with several values of weighting r , system parameters a = .99, b = .1, and N = 100.
Figure 2.1-4 shows the corresponding optimal control sequences u∗

k . As expected, xN

approaches rN and the control energy increases as r becomes small.

Q2

function [x, u] =scoptco_fixed (a, b, r, N, x0, rN)
% Simulation of Optimal Control for Scalar Systems
% Fixed Final State Case
x(1) =x0;
alam= (1-a ˆ (2*N)) / (1-a ˆ 2); alam=alam*b ˆ 2;
u(1) =b*(rN-x(1)*a ˆ N)*a ˆ N/ (alam);
u(1) =u(1) / a;
for k=1:N
% Update the Plant State
x(k+1)=a*x(k) +b*u(k);
% Update the Optimal Control Input
u(k+1) =u(k) /a;
end

FIGURE 2.1-1 MATLAB simulation of fixed-final-state optimal control.

function [x, u]=scoptco_free (a, b, r, N, x0, rN)
% Simulation of Optimal Control for Scalar Systems
% Free Final State Case
x(1) =x0;
alam=(1–a ˆ (2*N)) / (1–a ˆ 2); alam=alam*b ˆ 2/r;
u(1) =b*(rN–x(1)*a ˆ N)*a ˆ N/ (r*(alam+1));
u(1) =u(1) /a;
for k=1:N
% Update the Plant State
x(k+1) =a*x(k) +b*u(k);
% Update the Optimal Control Input
u(k+1) =u(k) /a;
end

FIGURE 2.1-2 MATLAB simulation of free-final-state optimal control.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 31

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME OPTIMIZATION PROBLEM 31

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

iteration number k

op
tim

al
 s

ta
te

 tr
aj

ec
to

ry
 x

*
r = 0
r = 0.1
r = 0.5
r = 1
r = 10

FIGURE 2.1-3 State trajectories for the fixed-final-state problem (r = 0) and for the
free-final-state problem for several values of r .

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

iteration number k

op
tim

al
 c

on
tr

ol
 in

pu
t u

*

r = 0
r = 0.1
r = 0.5
r = 1
r = 10

FIGURE 2.1-4 Optimal control functions corresponding to Fig. 2.1-3.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 32

32 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Using these simulation results, we can select r and the corresponding control u∗
k to

yield an acceptable state trajectory and control energy for our particular application. This
control is then used on the actual system. �

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR

Table 2.1-1 provides the solution to the optimal control problem for nonlinear
systems with very general performance indices, but explicit expressions for the
optimal control are difficult to deduce. In this section we consider the extremely
important special case of linear systems with quadratic performance indices.
These performance indices can be considered as (n + m)-dimensional quadratic
surfaces, where n and m are the dimensions of the state and control vectors.
The linear system is a hyperplane that intersects the quadratic surface and moves
through the space as a function of time. This section is therefore the culmination
of the natural progression begun by Examples 1.2-1 and 1.2-2.

We shall discover that very refined solutions can be given in two instances:
the fixed-final-state situation, which leads to an open-loop control strategy, and
the free-final-state situation, which leads to a closed-loop strategy.

The State and Costate Equations

Let the plant to be controlled be described by the linear equation

xk+1 = Akxk + Bkuk, (2.2-1)

with xk ∈ Rn and uk ∈ Rm. The associated performance index is the quadratic
function

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(xT
k Qkxk + uT

k Rkuk), (2.2-2)

defined over the time interval of interest [i, N]. Note that both the plant and the
cost-weighting matrices can, in general, be time-varying. The initial plant state is
given as xi . We assume that Qk , Rk, and SN are symmetric positive semidefinite
matrices and that |Rk| �= 0 for all k .

The objective is to find the control sequence ui, ui+1, . . . , uN−1 that minimizes
Ji . To solve this linear quadratic (LQ) regulator problem, we begin with the
Hamiltonian function

Hk = 1
2

(
xT

k Qkxk + uT
k Rkuk

) + λT
k+1(Akxk + Bkuk). (2.2-3)

Then Table 2.2-1 presents the state and costate equations

xk+1 = ∂Hk

∂λk+1
= Akxk + Bkuk (2.2-4)

λk = ∂Hk

∂xk

= Qkxk + AT
k λk+1 (2.2-5)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 33

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 33

TABLE 2.2-1 Discrete Linear Quadratic Regulator (Final State Free)

System model:
xk+1 = Akxk + Bkuk, k > i

Performance index:

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(xT
k Qkxk + uT

k Rkuk)

Assumptions:
SN ≥ 0, Qk ≥ 0, Rk > 0, and all three are symmetric

Optimal feedback control:

Sk = AT
k [Sk+1 − Sk+1Bk(B

T
k Sk+1Bk + Rk)

− 1BT
k Sk+1]Ak + Qk,

k < N, SN given

Kk = (BT
k Sk+1Bk + Rk)

−1BT
k Sk+1Ak, k < N

uk = −Kkxk, k < N

J ∗
i = 1

2xT
i Sixi

and the stationarity condition

0 = ∂Hk

∂uk

= Rkuk + BT
k λk+1. (2.2-6)

According to (2.2-6),
uk = −R−1

k BT
k λk+1, (2.2-7)

so the optimal control sequence is determined if we can find the costate sequence.
A block diagram of the optimal controller appears in Fig. 2.2-1. We see, however,
that it cannot be implemented in this form, since it is not causal.

−Rk
−1

λk+1 λk
Bk

T

Ak
T

Qk

z−1+
+

z +
+

uk xk

Ak

Bk

FIGURE 2.2-1 State–costate formulation of the discrete linear quadratic optimal con-
troller.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 34

34 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Using (2.2-7) to eliminate uk in (2.2-4) gives

xk+1 = Akxk − BkR
−1
k BT

k λk+1. (2.2-8)

At this point we drop the subscripts on the plant and weighting matrices to
simplify the notation.

The coupled state and costate equations can be written as the single unforced
system [

xk+1

λk

]
=

[
A −BR−1BT

Q AT

] [
xk

λk+1

]
. (2.2-9)

Relative to the coefficient matrix describing (2.2-9) we must make an important
observation. For this we introduce the following definition. A 2n × 2n matrix H

is said to be of Hamiltonian type if it satisfies

JHJ = HT

where J =
[

0 −In

In 0

]
.

It can be easily verified that the coefficient matrix in (2.2-9) is of Hamiltonian
type and we shall refer to it as the discrete Hamiltonian matrix . The unforced
system (2.2-9) will be known as the discrete Hamiltonian system. This system is
difficult to solve since part of it develops forward and part backward in time.

If |A| �= 0 (which is the case whenever it is obtained by sampling a continuous
system), then we can write (2.2-8) as the backward recursion

xk = A−1xk+1 + A−1BR−1BTλk+1. (2.2-10)

Using this in (2.2-5) allows us to write (2.2-9) in the modified form
[
xk

λk

]
=

[
A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

] [
xk+1

λk+1

]
. (2.2-11)

This equation develops purely backward in time, so if we can determine xN and
λN , then we can find xk and λk and hence the optimal control. Unfortunately,
we are given x0, not λN .

Although we do not use equation (2.2-11) here, we discuss it again in
Section 2.4, where we see that, in the time-invariant case, optimal controls can
be computed from the eigenvectors of its coefficient matrix!

The costate equation (2.2-5) is an adjoint system for the plant (2.2-4). Let us
discuss this notion to develop some more intuition on the relation between the
state and the costate.

First suppose that uk = 0 and Qk = 0, and for simplicity let i = 0. Then the
state and costate equations are

xk+1 = Axk

λk = ATλk+1,

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 35

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 35

with solutions
xk = Akx0, (2.2-12)

λk = (
AT)N−k

λN . (2.2-13)

Therefore,
λT

k xk = λT
N(A)N−kAkx0 = λT

NANx0.

According to (2.2-12) and (2.2-13) this means that for all k ∈ [0, N]

λT
k xk = λT

0x0 = λT
NxN, (2.2-14)

so that in the case of zero intermediate-state weighting (Qk = 0) and zero input
uk , the inner product of the state and the costate is invariant with time. Consid-
ering xk and λk as vectors in n space, we have

λT
k xk = |λk| · |xk| · cos θk, (2.2-15)

where | · | represents magnitude and θk is the angle between the vectors. As the
state xk develops through time, the magnitude and angle of the costate vary so
that (2.2-15) is constant for all k .

To solve the optimal control problem, we need to solve for the costate λk and
then use (2.2-7). To do this, we must use the boundary conditions (2.1-8). We
know the initial state. We shall consider two special cases for the final condition
(2.1-8a).

Before we do so, it is quite instructive to determine the value of the cost Ji

when the control input uk is zero.

Zero-input Cost and the Lyapunov Equation

Let the input uk to the plant (2.2-1) be zero. We want to determine the value of
the cost Ji in this uncontrolled situation.

Up to this point we have taken the initial time i as fixed, and k has been the
variable time index, but it is now necessary to make a subtle shift of emphasis.
In this subsection we want to find Ji as a function of i when uk = 0 over [i, N].
To do this, we first let i equal the final time N and determine JN . Then we
increment i backward and find JN−1, JN−2, and so on. This amounts to taking
i as our variable time index, considering successively longer time intervals with
the final time N as the fixed quantity. The following discussion will make it clear
why we wrote Ji and SN in (2.2-2) as explicit functions of i and N , respectively.

To begin, note that
JN = 1

2xT
NSNxN. (2.2-16)

Now, let i = N − 1, uk = 0 and write

JN−1 = 1
2xT

NSNxN + 1
2xT

N−1QN−1xN−1. (2.2-17)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 36

36 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Use the plant dynamics (2.2-1) to see that

JN−1 = 1
2xT

N−1(A
T
N−1SNAN−1 + QN−1)xN−1. (2.2-18)

To make this look like (2.2-16), define a new intermediate variable (an n × n

matrix) by
SN−1 = AT

N−1SNAN−1 + QN−1. (2.2-19)

Then
JN−1 = 1

2xT
N−1SN−1xN−1. (2.2-20)

It is clear that we can repeat this procedure for i = N − 2, N − 3, . . . because
(2.2-16) and (2.2-20) have the same form. The result is that we define an entirely
new intermediate sequence of n × n matrices by the backward recursion

Sk = AT
k Sk+1Ak + Qk, k < N, (2.2-21)

with boundary condition SN given as the final-state weighting matrix in (2.2-2).
(Note that we have shifted from dummy index i to k .) This is a discrete Lyapunov
equation for Sk, also known as the observability Lyapunov equation .

In terms of the new quantities Sk , the zero-input performance index over the
interval [k,N] is equal to

Jk = 1
2xT

k Skxk. (2.2-22)

We call Sk the performance index kernel sequence.
The result (2.2-22) is quite interesting. The kernel Sk can be computed offline,

before we know the system state trajectory, since it depends only on the plant
and cost-weighting matrices. According to (2.2-22), then, we can calculate the
zero-input cost over the interval [k,N] by knowing the precomputed Sk and only
the initial state xk! If we know where we start out, then we know what the ride
will cost. Note that we can interpret 2Jk as the squared seminorm of xk with
respect to Sk , since Sk ≥ 0. If Qk > 0, then Sk is positive definite for all k , and
2Jk becomes a squared norm of xk .

In the time-invariant case, we know that the solution of the Lyapunov equation
(2.2-21) is

Sk = (AT)N−kSNAN−k +
N−1∑
i=k

(AT)N−i−1QAN−i−1. (2.2-23)

By the Lyapunov stability theory, as (N − k) → ∞ this converges to the steady-
state value

S∞ =
∞∑
i=0

(AT)iQAi (2.2-24)

if the plant is asymptotically stable. Figure 2.2-2 shows the limiting behavior of
Sk for a scalar plant for the stable and unstable cases.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 37

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 37

N k

S infinity

S N

Cost kernel

| a |>1
| a |<1

FIGURE 2.2-2 Zero-input cost kernel for a stable and an unstable plant.

If the plant is stable, the cost over the interval [−∞, N], or equivalently
[0,∞], is given by the steady-state cost

J∞ = 1
2xT

0 S∞x0. (2.2-25)

It should be clearly understood that if A is stable, the uncontrolled cost over an
infinite interval is finite. This is true because the state goes to zero with time.

If A is not stable, the zero-input steady-state cost can be infinite (depending

on Q) since the norm of xk is unbounded. In the steady-state case, S
�= Sk = Sk+1

for large k , so that (2.2-21) becomes the algebraic Lyapunov equation

S = ATSA + Q. (2.2-26)

By the Lyapunov theory, this equation has a positive semidefinite solution S∞ if
A is stable, and this solution is given by (2.2-24).

If
√

Q is defined by

Q =
√

Q
T√

Q, (2.2-27)

then S∞ is the unique positive definite solution if A is stable and (A,
√

Q) is
observable. This latter condition means that Q was selected so that the plant state
is “observable by the performance index,” so that variations in any direction of the
state have an effect on J . If (A,

√
Q) is not observable, then the unobservable state

components can tend to infinity with k , but the performance index may still be
finite since these components have no effect on J . On the other hand, if (A,

√
Q)

is observable and A is unstable, then Jk will grow without bound as k → −∞.
We shall see later that these results generalize to the case of nonzero input

and provide a means for computing the optimal control sequence.

Fixed-final-state and Open-loop Control

Here we return to the problem of determining the optimal control for the plant
(2.2-1) with the cost (2.2-2). The state and costate equations are given, once

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 38

38 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

uk has been expressed in terms of λk+1, by (2.2-8) and (2.2-5). (For ease of
notation, assume the time-invariant case; the results generalize to the time-varying
situation.) To solve these, we need to determine the terminal conditions.

For simplicity, let the initial time be i = 0. The initial state x0 is given. In this
subsection our terminal objective will be to make xN match exactly the desired
final reference state rN . The final condition is thus

xN = rN . (2.2-28)

Since in this fixed-final-state case dxN = 0, condition (2.1-8a) is automatically
satisfied.

Since we are demanding that xN be equal to a known desired rN , the final-state
contribution to J0 in (2.2-2) always has a fixed value of 1

2 rT
NSNrN . It is therefore

redundant to include a final-state weighting term in J0. Accordingly, we may as
well set SN = 0.

Let the cost function be

J0 = 1

2

N−1∑
k=0

uT
k Ruk, (2.2-29)

and so we are asking for a control that drives x0 exactly to xN = rN using
minimum control energy. The state and costate equations are now

xk+1 = Axk − BR−1BTλk+1, (2.2-30)

λk = ATλk+1. (2.2-31)

Since Q = 0, the costate equation is decoupled from the state equation, and the
problem has an easy solution. To find it, write the solution of (2.2-31) in terms
of the, as yet unknown, final costate as

λk = (AT)N−kλN . (2.2-32)

Use this to eliminate λk+1 in (2.2-30) to get

xk+1 = Axk − BR−1BT(AT)N−k−1λN . (2.2-33)

Considering this as a first-order difference equation with the second term as the
input, we get

xk = Akx0 −
k−1∑
i=0

Ak−i−1BR−1BT(AT)N−i−1λN. (2.2-34)

To find λN , evaluate (2.2-34) at k = N ,

xN = ANx0 −
N−1∑
i=0

AN−i−1BR−1BT(AT)N−i−1λN.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 39

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 39

Therefore, the final costate, with xN = rN , is

λN = −G−1
0,N(rN − ANx0), (2.2-35)

where

G0,N =
N−1∑
i=0

AN−i−1BR−1BT(AT)N−i−1. (2.2-36)

Using (2.2-32) the costate is

λk = −(AT)N−kG−1
0,N (rN − ANx0), (2.2-37)

and so by (2.2-7) the optimal control sequence is

u∗
k = R−1BT(AT)N−k−1G−1

0,N (rN − ANx0). (2.2-38)

This is the minimum-control-energy solution to the fixed-final-state LQ regulator
problem; the problem is solved.

We can easily demonstrate that u∗
k is a control that drives x0 to xN = rN . The

solution to state equation (2.2-1) is

xk = Akx0 +
k−1∑
i=0

Ak−i−1Bui. (2.2-39)

Evaluating the state at k = N and using ui = u∗
i as given by (2.2-38) yields

xN = ANx0 +
N−1∑
i=0

AN−i−1BR−1BT(AT)N−i−1G−1
0,N (rN − ANx0),

but G−1
0,N (rN − ANx0) does not depend on i , and the remaining portion of the

sum is just G0,N . This means that

xN = ANx0 + G0,NG−1
0,N (rN − ANx0) = rN (2.2-40)

as desired!
To gain an understanding of our optimal control result, let us discuss it a

little. First, note that in the absence of an input, the solution to the state equation
(2.2-1) is

xk = Akx0, (2.2-41)

so that xN = ANx0 is the final state with zero input. Thus, rN − ANx0 is the
difference between the desired and undriven final states; it makes sense that u∗

k

should depend on this quantity.
Now we examine G0,N . This is the weighted reachability gramian of the

system. In terms of the system reachability matrix Uk = [B AB · · · Ak−1B],

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 40

40 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

it can be written as

G0,N = UN

⎡
⎢⎣

R−1 0
. . .

0 R−1

⎤
⎥⎦ UT

N. (2.2-42)

If R = I , then G0,N = UNUT
N . The optimal control exists if and only if |G0,N | �=

0. Since we assumed |R| �= 0, this is equivalent to UN having full rank n , where
n is the state dimension. Therefore, we can drive any given x0 to any desired
xN = rN for some N if and only if the system is reachable! Since reachability
implies that Un+j has full rank for all j ≥ 0, if the system is reachable, we
can guarantee the existence of a control to drive x0 to xN = rN for any rN by
selecting N ≥ n.

The following point should be clearly understood. The optimal control (2.2-38)
is an open-loop control. It can be precomputed knowing only the given x0 and the
desired rN , and it is independent of intermediate values of xk within the interval
[0, N]. This means that if we apply u∗

k as calculated by (2.2-38) to the actual
system, all is well as long as (2.2-1) is an exact description of the dynamics and
nothing occurs to cause xk to deviate from the optimal state trajectory. In practice,
however, nature is seldom cooperative. Modeling uncertainties and noise cause
errors in xk, and the control (2.2-38) does not take these errors into account.
Open-loop control schemes are not robust in most actual applications.

To compute the reachability gramian, there is an attractive alternative to
(2.2-36) or (2.2-42). The solution to the Lyapunov equation

Pk+1 = APkA
T + BR−1BT, k > 0 (2.2-43)

is

Pk = AkP0(A
k)T +

k−1∑
i=0

Ak−i−1BR−1BT(AT)k−i−1, (2.2-44)

so if we solve this equation with P0 = 0, then G0,k = Pk for each k . First this
recursion is solved to obtain G0,N for the final time of interest N , and then
(2.2-38) is used to compute the optimal control u∗

k for each k in [0, N]. This
reachability Lyapunov equation should be compared with the observability Lya-
punov equation (2.2-21).

The next example illustrates the use of these results.

Example 2.2-1. Open-loop Control of a Scalar System

Consider the scalar plant
xk+1 = axk + buk (1)

with cost

J0 = r

2

N−1∑
k=0

u2
k. (2)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 41

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 41

The system is reachable since
U1 = b �= 0. (3)

The reachability gramian (2.2-36) is

G0,N =
N−1∑
i=0

b2

r
a2(N−i−1) = b2

r

1 − a2N

1 − a2
, (4)

which is exactly � from Example 2.1-2.
To drive any given x0 to a desired rN for any N ≥ n = 1, we should use the optimal

control sequence u∗
k for k ∈ [0, N − 1] given by (2.2-38), so that

u∗
k = aN−k−1b

r

r(1 − a2)

b2(1 − a2N)
(rN − aNx0)

= 1 − a2

b(1 − a2N)
(rN − aNx0)a

N−k−1. (5)

This is exactly the result obtained by solving the state and costate equations in Example
2.1-2a.

Note that the optimal control at times k and k + 1 are related by

u∗
k+1 = u∗

k/a, (6)

which makes the control sequence easy to calculate. See Fig. 2.1-1. �

Free-final-state and Closed-loop Control

We have just found the minimum-energy optimal control for system (2.2-1) in the
case where xN is required to have a fixed given value. It is now desired to find
the optimal control sequence that drives the system (2.2-1) along the trajectory,
beginning at a given xi , resulting in a minimum value of (2.2-2). We shall make
here no restriction on the value of the final state xN . This free-final-state problem
will result in a radically different sort of control.

The state and costate equations with the input uk eliminated are (2.2-8) and
(2.2-5), which are reproduced here:

xk+1 = Akxk − BkR
−1
k BT

k λk+1, (2.2-45)

λk = Qkxk + AT
k λk+1. (2.2-46)

The control is given as (2.2-7) or

uk = −R−1
k BT

k λk+1. (2.2-47)

The initial condition is given as xi , and the final state xN is free. This means
that xN can be varied in determining the constrained minimum. Hence, dxN �= 0.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 42

42 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

According to (2.1-8), then, it is required that

λN = ∂φ

∂xN
. (2.2-48)

The final state weighting function is φ = 1
2xT

NSNxN, so that

λN = SNxN. (2.2-49)

This relation between the final costate and state is the new terminal condition;
in the fixed-final-state problem the terminal condition was (2.2-28).

To solve this two-point boundary-value problem, we shall use the sweep
method (Bryson and Ho 1975). Thus, assume that a linear relation like (2.2-49)
holds for all times k ≤ N :

λk = Skxk (2.2-50)

for some intermediate sequence of n × n matrices Sk. If we can find a consistent
formula for these postulated Sk , then evidently (2.2-50) is a valid assumption. To
do this, use (2.2-50) in (2.2-45) to get

xk+1 = Akxk − BkR
−1
k BT

k Sk+1xk+1.

Solving for xk+1 yields

xk+1 = (I + BkR
−1
k BT

k Sk+1)
−1Akxk, (2.2-51)

which is a forward recursion for the state.
Now substitute (2.2-50) into costate equation (2.2-46) to see that

Skxk = Qkxk + AT
k Sk+1xk+1,

or by (2.2-51)

Skxk = Qkxk + AT
k Sk+1(I + BkR

−1
k BT

k Sk+1)
−1Akxk.

Since xk is generally nonzero, and this equation holds for all state sequences
given any xi , evidently

Sk = AT
k Sk+1(I + BkR

−1
k BT

k Sk+1)
−1Ak + Qk, (2.2-52)

or, using the matrix inversion lemma (Appendix A)

Sk = AT
k [Sk+1 − Sk+1Bk(B

T
k Sk+1Bk + Rk)

−1BT
k Sk+1]Ak + Qk. (2.2-53)

This is a backward recursion for the postulated Sk , which completely specifies it
in terms of Sk+1 and the known system and weighting matrices. The boundary
condition is known: it is just the final-state weighting matrix SN . Therefore,

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 43

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 43

we have been able to discover an intermediate sequence such that the relation
(2.2-50) holds.

The matrix quadratic equation (2.2-53) is called a Riccati equation in honor of
the Italian mathematician Count Jacopo Riccati, who investigated a scalar version
of its differential counterpart in 1724. If |Sk| �= 0 for all k , then we can use the
matrix inversion lemma to rewrite the Riccati equation as

Sk = AT
k (S−1

k+1 + BkR
−1
k BT

k)−1Ak + Qk. (2.2-54)

The intermediate sequence Sk can be computed offline knowing only the plant
and parameters of the performance index. Then (2.2-51), with the given initial
state xi , yields the optimal state trajectory. We do not yet know, however, the
control required to move the plant along that trajectory! To determine the optimal
control write

uk = −R−1
k BT

k λk+1 = −R−1
k BT

k Sk+1xk+1. (2.2-55)

At first glance it appears that the problem is now solved, since the Riccati
equation gives sequence the Sk, (2.2-51) gives sequence xk, and we can use this
to find sequence uk . This is, however, quite inconvenient. Let us manipulate
(2.2-55) to find a more satisfactory expression for the optimal control. To this
end, use the plant equation xk+1 = Akxk + Bkuk in (2.2-55) to get

uk = −R−1
k BT

k Sk+1(Akxk + Bkuk)

or
(I + R−1

k BT
k Sk+1Bk)uk = −R−1

k BT
k Sk+1Akxk.

Premultiply by Rk and then solve for the control to obtain

uk = −(BT
k Sk+1Bk + Rk)

−1BT
k Sk+1Akxk. (2.2-56)

Defining the Kalman gain sequence

Kk = (BT
k Sk+1Bk + Rk)

−1BT
k Sk+1Ak, (2.2-57)

the control takes the form
uk = −Kkxk. (2.2-58)

Note that in these equations we could use the notation u∗
k , since they give the

optimal control.
The form of (2.2-58) makes it particularly clear what we now have on our

hands. The Kalman gain is given in terms of the Riccati equation solution Sk

and the system and weighting matrices. It can therefore be computed and stored
in computer memory before the control is ever applied to the plant. It does not
depend on the state trajectory. Therefore, (2.2-58) is a time-varying state-variable

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 44

44 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

z–1

z

Ak

Bk
+

+

uk xk

Kk

−Kk

Sk = Ak
T [Sk+1 − Sk+1Bk (Bk

T Sk+1Bk + Rk)
–1Bk

T Sk+1]Ak + Qk

Kk = (Bk
T Sk+1Bk + Rk)

–1Bk
T Sk+1Ak

Sk+1

Sk

on −
line

off −
line

FIGURE 2.2-3 Free-final-state LQ regulator optimal control scheme.

feedback , which expresses the current required control in terms of the current
state. In the free-final-state linear quadratic (LQ) regulator, the optimal control is
thus given by a closed-loop control law . Closed-loop control is inherently more
robust than open-loop control, because any deviations from the optimal state
trajectory x∗

k , which is given by (2.2-51), are automatically accounted for.
The problem is solved. To determine the optimal control, we need only solve

the Riccati equation for Sk and (2.2-57) for Kk, both of which can be done
offline, and then use the feedback (2.2-58). These equations are summarized in
Table 2.2-1, and a block diagram of the control scheme appears in Fig. 2.2-3.

The closed-loop system with the optimal feedback (2.2-58) is

xk+1 = (Ak − BkKk)xk, (2.2-59)

which provides an alternative to (2.2-51) for computing the optimal state trajec-
tory. It is worth noting that an alternative more efficient way of computing Sk

and Kk is to use the recursion

Kk = (BT
k Sk+1Bk + Rk)

−1BT
k Sk+1Ak, (2.2-60)

Sk = AT
k Sk+1(Ak − BkKk) + Qk. (2.2-61)

It is not difficult to show (see the problems) that equation (2.2-61) is equivalent
to the Joseph stabilized version of the Riccati equation

Sk = (Ak − BkKk)
TSk+1(Ak − BkKk) + KT

k RkKk + Qk. (2.2-62)

This equation has better numerical properties when it comes to computation and
will soon be useful to us.

If the system and weighting matrices A, B , Q , R are all time invariant, then
the feedback gain Kk is still a function of time, since, in general, the Riccati-
equation solution Sk is time varying. Thus, even for time-invariant systems, the
optimal control is a time-varying state feedback. This means that the optimal

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 45

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 45

closed-loop system (A − BKk) is time varying, and, of course, accounts for the
fact that it cannot be found by classical frequency-domain methods.

For completeness, let us determine the optimal value of the performance index
under the influence of the optimal control (2.2-58). First, observe that

1

2

N−1∑
k=i

(
xT

k+1Sk+1xk+1 − xT
k Skxk

) = 1

2
xT

NSNxN − 1

2
xT

i Sixi . (2.2-63)

We can therefore add zero, in the form of the left-hand side of (2.2-63) minus
its right-hand side, to the performance index (2.2-2). The result is

Ji = 1

2
xT

i Sixi + 1

2

N−1∑
k=i

[
xT

k+1Sk+1xk+1 + xT
k (Qk − Sk)xk + uT

k Rkuk

]
. (2.2-64)

If we take into account the state equation (2.2-1), this is equivalent to

Ji = 1

2
xT

i Sixi + 1

2

N−1∑
k=i

[
xT

k

(
AT

k Sk+1Ak + Qk − Sk

)
xk

+ xT
k AT

k Sk+1Bkuk + uT
k BT

k Sk+1Akxk + uT
k (BT

k Sk+1Bk + Rk)uk

]
.

(2.2-65)

According to the Riccati equation (2.2-53), this is

Ji = 1

2
xT

i Sixi + 1

2

N−1∑
k=i

[
xT

k AT
k Sk+1Bk

(
BT

k Sk+1Bk + Rk

)−1
BT

k Sk+1Akxk

+ xT
k AT

k Sk+1Bkuk + uT
k BT

k Sk+1Akxk + uT
k (BkSk+1Bk + Rk)uk

]
.

(2.2-66)

The summand can be written as the perfect square of a norm with respect to
(BT

k Sk+1Bk + Rk) (McReynolds 1966):

Ji = 1

2
xT

i Sixi

+ 1

2

N−1∑
k=i

∥∥∥(
BT

k Sk+1Bk + Rk

)−1
BT

k Sk+1Akxk + uk

∥∥∥2(
BT

k
Sk+1Bk+Rk

) . (2.2-67)

If we now select the optimal control (2.2-56), then the optimal value of the
performance index is seen to be

J ∗
i = 1

2xT
i Sixi . (2.2-68)

This result deserves some discussion. The sequence Sk can be computed offline
before the optimal control is applied, so that Si is known a priori. Given any
initial state xi , then, we can use (2.2-68) to compute the optimal cost of applying
the control before we ever apply it! In general, we can treat any time k in [i , N]

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 46

46 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

as the initial time of a subinterval, so that

J ∗
k = 1

2xT
k Skxk. (2.2-69)

What this means is that given the current state xk we can compute the cost to go
(i.e., remaining cost) of applying the optimal control from times k through N .

Because of (2.2-69), we call Sk the performance index kernel matrix. The
optimal value of the performance index Jk is simply one-half of the semi-norm
squared of the current state xk with respect to Sk . (If |Sk| �= 0, the semi-norm
becomes a norm.)

It is worth noting that, according to (2.2-67), BT
k Sk+1Bk + Rk is equal to

∂2Ji/∂u2
k , the second derivative of Ji with respect to the k th input under the

constraint (2.2-1). Compare this with the constrained curvature matrix L
f
uu in

Example 1.2-3. Evidently, BT
k Sk+1Bk + Rk is a time-varying curvature matrix.

To contribute to the development of an intuitive grasp of the Riccati-equation-
based control law, let us point out a few links with our previous work. First,
use the matrix inversion lemma to write the optimal state trajectory recursion
(2.2-51) as

xk+1 = [
I − Bk(B

T
k Sk+1Bk + Rk)

−1BT
k Sk+1

]
Akxk (2.2-70)

(which is, in fact, the same as (2.2-59)). It is now clear that this equation and
(2.2-69) (with Sk given by (2.2-53)) are simply generalizations to the case where
time is a parameter of our static results in Example 1.2-3.

We can also link our present results to the zero-input cost discussion, for if
control matrix Bk is zero, then the (quadratic) Riccati equation reduces to the
(linear) Lyapunov equation (2.2-21)! The control-dependent term in the Riccati
equation makes the value of Sk smaller than AT

k Sk+1Ak + Qk at each step, and
expresses the decrease in the value of the performance index that results if we
are allowed to control the plant.

There is a second way to reduce a Riccati equation to a Lyapunov equation,
and it provides the connection between the fixed-final-state and free-final-state
control laws. Suppose Qk = 0, so that there is no intermediate-state weighting.
For simplicity, assume time-invariant plant and cost-weighting matrices. Suppose
also that |A| �= 0. Under these circumstances, (2.2-54) can be written

S−1
k = A−iS−1

k+1A
−T + A−1BR−1BTA−T, (2.2-71)

which is a backward-developing Lyapunov recursion for S−1
k .

Now, if we want to ensure that xN approaches exactly a desired final value of
rN = 0, in the performance index we can let the final-state weighting matrix SN

go to infinity. This tells the optimal control to make xN = 0 in order to keep Ji

finite. In this limit, S−1
N = 0, which provides the terminal condition for (2.2-71).

It is easy to show (by writing out explicitly the first few steps in the recursion
and then using induction) that the solution to (2.2-71) with S−1

N = 0 is just

S−1
N−k = A−kG0,k(A

T)−k, (2.2-72)

where G0,k is the weighted reachability gramian (2.2-36).

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 47

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 47

It takes a few more steps to prove it, but it is fairly evident at this point
that if Q = 0 and SN → ∞, then the free-final-state closed-loop control (2.2-56)
reduces to the fixed-final-state open-loop control (2.2-38) in the case rN = 0!
See the related discussion in Example 2.1-2. (Note that SN → ∞ is equivalent
to R → 0 if Q = 0.)

As a final connection, examine part b of Example 2.1-2. It can be demon-
strated that the control law given in equation (34) of that example is just an
alternative formulation of (2.2-56). In practical applications the latter closed-loop
formulation would be used.

As a final comment on the closed-loop LQ regulator, we make the following
very important point. In the fixed-final-state problem, reachability of the system
was required to be able to solve for the optimal control to drive any given initial
state to any desired final state. In our discussion of the free-final-state problem,
however, reachability never came up. In fact, it is not necessary for the system to
be reachable for the control in Table 2.2-1 to exist. If the system is not reachable,
the control will still do its best to minimize Ji . Clearly, if the system is, in fact,
reachable, the control will do a better job of minimizing Ji , since then all vectors
in Rn are candidates for the optimal xN .

We shall see later that reachability does become important in the steady-state
control problem, where N tends to infinity. Let us now work through an example.

Example 2.2-3. Optimal Feedback Control of a Scalar System

The plant to be controlled is the time-invariant scalar system

Q3

xk+1 = axk + buk (1)

with performance index

Ji = 1

2
sNx2

N + 1

2

N−1∑
k=i

(qx2
k + ru2

k). (2)

In Example 2.1-2 we considered a special case (q = 0) of this problem, and we found
the optimal controls for two different terminal conditions by direct solution of the state and
costate equations. Here we shall find the optimal control in the state feedback formulation
using the results we have just derived.

In this scalar case the Riccati equation is

sk = a2sk+1 − a2b2s2
k+1

b2sk+1 + r
+ q (3)

or

sk = a2rsk+1

b2sk+1 + r
+ q. (4)

The Kalman gain is

Kk = absk+1

b2sk+1 + r
= a/b

1 + r/b2sk+1
(5)

and the optimal control is
uk = −Kkxk. (6)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 48

48 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

The optimal value of the performance index is

Jk = 1
2 skx

2
k . (7)

The optimal closed-loop system (2.2-59) is

xk+1 = (a − bKk)xk = a

1 + (b2/r)sk+1
xk. (8)

Even in this simple case a closed-form solution to (3) is hard to find. Let us therefore
consider three special cases. Then we shall demonstrate that even if we cannot solve (3)
analytically, for particular values of a , b, q , r , sN , it is very easy to compute the optimal
control sequence u∗

k and to simulate applying it to the plant on a digital computer.

a. No Control Weighting

Let r = 0, meaning that we do not care how much control is used (i.e., uk is not weighted
in Ji so that the optimal solution will make no attempt to keep it small). Then (4) is

sk = q, (9)

the feedback gain (5) is Kk = a/b, and the optimal control becomes

uk = −a

b
xk. (10)

Under the influence of this control, the performance index is

Jk = 1
2 qx2

k , (11)

and the closed-loop system (8) is xk+1 = 0!
We can understand this as follows. If we have a given value xk for the state at time k ,

then a naive approach to minimizing the magnitude of the state vector (which is all we
require since r = 0) is to solve the state equation (1) for the uk required to make xk+1

equal to zero, so that 0 = xk+1 = axk + buk . This yields the control (10).

b. Very Large Control Weighting

If we are very concerned not to use too much control energy, we can let r → ∞. Then
(4) becomes

sk = a2sk+1 + q. (12)

The solution to this (Lyapunov) difference equation is

sk = sNa2(N−k) +
N−1∑
i=k

qa2(N−i−1) = sNa2(N−k) +
(

1 − a2(N−k)

1 − a2

)
q. (13)

The Kalman gain is Kk = 0, and so the optimal control is uk = 0. The closed-loop system
is xk+1 = axk .

If we are very concerned about using too much control, the best policy is to use none
at all!

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 49

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 49

c. No Intermediate-state Weighting

Let us set q = 0. Then we are concerned only about making x2
N small without using too

much control energy. It is easier in this case to deal with the inverse of the cost kernel,
s−1
k , so use (2.2-71) to rewrite (4) as

s−1
k = s−1

k+1

a2
+ b2

a2r
. (14)

The solution to this (Lyapunov) difference equation is

s−1
k = a−2(N−k)s−1

N +
N−1∑
i=k

b2

a2r
a−2(N−i−1), (15)

or, changing variables,

s−1
k = a−2(N−k)s−1

N + b2

a2r

N−k−1∑
i=0

a−2i = s−1
N a−2(N−k) + b2

ra2(N−k)

1 − a2(N−k)

1 − a2
. (16)

After a few lines of work we get

sk = sNa2(N−k)

1 + sN (b2/r)[(1 − a2(N−k))/(1 − a2)]
. (17)

This is the Riccati-equation solution for q = 0.

d. Implementation of Optimal Control

To actually compute and implement the control described by (4)–(6), none of the analysisQ4
subsequent to equation (6) is needed. The implementation of optimal controls has two
phases: computing the control sequence and applying it to the plant. We show here how
to compute u∗

k and then simulate its application using a digital computer.

function [x, u, K, S]=scaopt (a, b, q, r, s, x0, N)
% Program to Compute and Simulate Optimal Feedback Control
% Compute and Store Optimal Feedback Sequence
% (Backward Iteration)
S(N+1) =s;
for k=N:–1:1
K(k)=(a*b*s)/(r+s*b ˆ 2);
s=q+(r*s*a ˆ 2)/(r+s*b ˆ 2);
S(k)=s;
end
% Apply Optimal Control to Plant (Forward Iteration)
x(1)=x0;
for k=1:N
% Compute Optimal Control
u(k)=–K(k)*x(k);
% Update the Plant State
x(k+1)=a*x(k)+b*u(k);
end

FIGURE 2.2-4 MATLAB code to compute and simulate optimal feedback control.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 50

50 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

A routine implementing (4) and (5), for a = 1.05, b = 0.01, q = r = 1, x0 = 10,
sN = 5, and N = 100, is shown in Fig. 2.2-4. This must solve the Riccati equation
backward on the desired interval [0, N], using as a starting value sN . The optimal feedback
gains Kk are also computed for all k ∈ [0, N], and they are stored in memory. (The sk

need not be stored. They are stored in this example only so they can be plotted for
illustrative purposes. In an application the storage of sk can be avoided.) This completes
the computation of the control law.

0

500

1000

1500

Sequence Sk

0

2

4

6

8

10
Control gain Kk

0 20 40 60 80 100
0

2

4

6

8

10

Iteration number k

0 20 40 60 80 100

Iteration number k

0 20 40 60 80 100

Iteration number k

(a)

(b)

(c)

State xk

FIGURE 2.2-5 Optimal control simulations for sN = 5. (a) Cost kernel sk . (b) Optimal
feedback gains Kk . (c) Optimal trajectory x∗

k .

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 51

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR 51

400

600

800

1000

1200

Sequence Sk

5

6

7

8

9

10

Control gain Kk

0 20 40 60 80 100
0

2

4

6

8

10

Iteration number k
(c)

0 20 40 60 80 100

Iteration number k
(b)

0 20 40 60 80 100

Iteration number k
(a)

State xk

FIGURE 2.2-6 Optimal control simulations for sN = 500. (a) Cost kernel sk . (b) Opti-
mal feedback gains Kk . (c) Optimal trajectory x∗

k .

A MATLAB routine simulating the application of the feedback control to the plant (1)
is also shown in Fig. 2.2-4. Beginning at the given x0, it steps forward in time using (1)
and (6), with precomputed stored values of Kk , to calculate the resulting trajectory x∗

k .
The backward-computed kernel and gain sequences sk and Kk and the forward-computed
state sequence x∗

k are plotted in Fig. 2.2-5. Note that if sN is finite, xN will not be
exactly equal to zero, but that as sN → ∞, the final state xN approaches zero more
closely. The value of sN for Fig. 2.2-5 was 5. Figure 2.2-6 is the simulation using
sN = 500. �

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 52

52 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Software for the efficient solution of the Riccati equation is included in Bier-
man (1977). However, this example has made the point that a little preliminary
analysis can result in simplified algorithms (i.e., we used (4) in the example, not
(3), for implementation). This is especially true in the case where the number of
states n is greater than one and the matrices are sparse.

To see why, note that the Riccati equation is symmetric (the transpose of
the right-hand side is equal to itself if Sk+1 is symmetric). Therefore, Sk is
symmetric for all k if ST

N = SN , which we have assumed. This means that Sk has
n2 elements, only n(n + 1)/2 of which are distinct. Some preliminary analysis
can yield n(n + 1)/2 scalar recursions for the components of Sk , which are
easier to use than one n × n matrix recursion. We shall see examples of this in
Section 2.3.

Exercise 2.2-4. LQ Regulator with Weighting of State–input Inner Product

Let the plant be given by
xk+1 = Akxk + Bkuk, (1)

but consider the modified performance index

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

[
xT

k uT
k

] [
Qk Tk

T T
k Rk

] [
xk

uk

]
, (2)

where the block coefficient matrix in the sum is positive definite. This index allows us to
weight products of state and input components to keep them small.

a. Show that the Hamiltonian system is

[
xk+1

λk

]
=

[
Ak −BkR

−1
k BT

k

Qk A
T
k

] [
xk

λk+1

]
, (3)

where
Ak = Ak − BkR

−1
k T T

k , (4)

Qk = Qk − TkR
−1
k T T

k . (5)

b. Show that the optimal control is given by

uk = −(
BT

k Sk+1Bk + Rk

)−1
(BT

k Sk+1Ak + T T
k)xk, (6)

where sequence Sk is give by the Riccati equation

Sk = A
T
k

[
Sk+1 − Sk+1Bk(B

T
k Sk+1Bk + Rk)

−1BT
k Sk+1

]
Ak + Qk, k < N (7)

with boundary condition of SN .

c. Show that (7) can alternatively be written

Sk = AT
k Sk+1Ak − KT

k (BT
k Sk+1Bk + Rk)Kk + Qk (8)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 53

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 53

where the Kalman gain is

Kk = (BT
k Sk+1Bk + Rk)

−1(BT
k Sk+1Ak + T T

k). (9)

d. Show that the optimum cost to go on the subinterval [k, N] is given in terms of the
state xk as

Jk = 1
2 xT

k Skxk. (10)

e. Show that the Riccati equation (2.2-53) can be written as (8) with Kk given by
(2.2-57). Hence, the only changes introduced by the off-diagonal weighting term Tk

are that the Kalman gain must be modified as in (9) and that the Riccati equation
formulation (8) should be used.

�

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS

With the increasing sophistication of microprocessors, more and more control
schemes are being implemented digitally. In these schemes, the control input is
switched to new values at discrete time steps, with a zero-order hold usually used
between switchings so that the control is constant during these intervals. Such
controls must be designed using a discretized version of the continuous plant.

Design of Digital Controls

The design of digital control laws is very straightforward. If the continuous
time-invariant plant is given by

ẋ(t) = Ax(t) + Bu(t), (2.3-1)

then the discretized version of the plant, using a sampling period of T , is

xk+1 = Asxk + Bsuk, (2.3-2)

where the sampled plant and control matrices are

As = eAT , (2.3-3a)

Bs =
∫ T

0
eAτB dτ. (2.3-3b)

This discretization process assumes that the control input u(t) to the continuous
plant is switched only at times kT , and that it is held constant (with a zero-
order hold) between switchings so that u(t) = uk , for kT ≤ t < (k + 1) T . This
is within our power to guarantee, since we select the control input. If we do
manufacture u(t) from uk in this fashion, then the continuous state is related to
the discrete state according to x(kT) = xk .

To guarantee that the samples of the state, xk = x(kT), and the control, uk =
u(kT), display a desired behavior, it is necessary only to apply our optimal

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 54

54 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

control law computation methods to the sampled system (2.3-2) to compute the
optimal sequence u∗

k . The actual continuous input that is sent to the plant is then
manufactured from u∗

k .
The values of x(t) between sampling instants kT cannot be specified using a

control law design based on (2.3-2), but they can be determined in a very easy
manner, for between the sampling instants kT and (k + 1)T the state propagates
according to the plant dynamics with a constant input:

ẋ(t) = Ax(t) + Buk, kT ≤ t < (k + 1)T . (2.3-4)

The solution to this equation is

x(t) = eA(t−kT)xk +
∫ T

kT

eA(t−τ)B dτ uk, kT ≤ t < (k + 1)T . (2.3-5)

If the continuous plant is time varying, then the discretization process yields
a time-varying discrete plant

As
k = φ((k + 1)T , kT), (2.3-6a)

Bs
k =

∫ (k+1)T

kT

φ((k + 1)T , τ)B(τ) dτ, (2.3-6b)

where φ(t, t0), is the state transition matrix of the time invariant plant described
by (2.3-1). The optimal control approach just described still applies.

Simulation of Digital Controls

Once the optimal control sequence u∗
k has been designed based on (2.3-2), we

should like to simulate the application of the resulting digital control to the plant
(2.3-1) to verify that it has a satisfactory behavior. For completeness, we should
like to observe the behavior of the state between sampling instants as well as at
the sampling instants.

To do this, we can use the simulation scheme shown in Fig. 2.3-1. The con-
tinuous state equation (2.3-1) is represented in the figure as

F(t,X, Ẋ) (2.3-7)

and is integrated using the MATLAB routine lsim.m. The control input u(t) is
updated at each time kT and then held until time (k + 1)T . It is important to
realize that two sampling time intervals are involved, the plant sampling interval
T and the simulation sampling interval Ts . The states are evaluated by the routine
at the sampling interval and hence we choose Ts to be a divisor of T .

Note that we are using discrete system (2.3-2) to design the control law, but
that, to find x(t) at all values of t , we are using the continuous plant (2.3-1) to
simulate the control law.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 55

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 55

STOP

No

run
complete?

Time = kT
for some integer k ?

START

Update control
u(t) = uk

Yes

Yes

No

MATLAB routine
lsim with continuous

plant dynamics
F (t, X, X)

·

FIGURE 2.3-1 Digital control simulation scheme.

Some Examples

Let us demonstrate how easy this procedure is by considering some examples.
The examples also illustrate how to simplify the coding for the computation of
optimal control uk by doing some preliminary analysis; by tailoring the Riccati
equation to each problem, no matrix manipulations are used.

Example 2.3-1. Digital Control of an RC Circuit

The electric circuit in Fig. 2.3-2 provides a scalar example that nicely illustrates our
approach. The continuous state equation is

ẋ = −1

τ
x + 1

τ
u, (1)

with time constant
τ = 1

RC
. (2)

FIGURE 2.3-2 RC circuit.

Let τ = 5, so that
ẋ = −0.2x + 0.2u. (3)

It is desired to control the capacitor voltage x(t) by a scheme in which input u(t)

is switched only at discrete instants kT by a microprocessor. The microprocessor also

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 56

56 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

samples x(t) at each sampling period T . Let T = 0.5 sec. (For good control, we should
select T < τ/10.)

a. Design of Digital Control Law for Free Final State

The discretized system is

xk+1 = e−T/τ xk +
∫ T

0
e−λ/τ 1

τ
dλ · uk

= e−T/τ xk + (1 − e−T/τ)uk,

(4)

or
xk+1 = axk + buk, (5)

with a = 0.9048 and b = 0.0952. Suppose that we want the control and state samples uk

and xk to be small over a 5-sec interval for any initial voltage x(0). Then N = 5/T = 10.
To express these control objectives mathematically, select the performance index

J = 1

2
sNx2

N + 1

2

N−1∑
k=0

(ax2
k + ru2

k). (6)

This is the same system and cost we examined in Example 2.2-3, so the optimal control
is just given by the Riccati equation as

Kk = absk+1

b2sk+1 + r
, (7)

sk = a2rsk+1

b2sk+1 + r
+ q, (8)

uk = Kkxk. (9)

By making sN large, we can force the final state xN = x(5) to be small.

b. Simulation of Digital Control Law for Free Final State

It is quite simple to simulate the digital control law being applied to the continuous plant
(3). First notice that equations (7), (8), and (9) can be computed by using the scaopt.m
function. The overall driver program for the implementation of the digital control law is
given in Fig. 2.3-3, where ac = −0.2, bc = 0.2, ad = 0.9048, bd = 0.0952, q = r = 1,
s = 100, N = 10, and x0 = 10.

Results of the simulation run are shown in Fig. 2.3-4, where the state x(t) with no
control is shown along with the state resulting on application of our digital control. Also
shown in Fig. 2.3-5 is u(t), the digital control manufactured from uk in (9).

c. Design of Control Law for Fixed Final State

To achieve a fixed final value of x(5) = 0, we can use a very large value of sN in parts a
and b. To achieve a nonzero value rN for x(5), however, we must use the open-loop control
of (2.2-38). (When we discuss the function of final-state-fixed problem in Section 4.5, we
shall see how to achieve a nonzero fixed final state using a Riccati-equation-based design.)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 57

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 57

function ex2_3_1b(a_c, b_c, a_d, b_d, q, r, s, x0, N)
% Compute Optimal Control Input
[x, u, K, S] =scaopt(a_d, b_d, q, r, s, x0, N);
% Define the time interval T
T=0:0.05:5;
% Expand the input u to the specified interval T
U=kron(u, ones(1, 10));
U=[U u(length(u))];
% Simulate the plant dynamics
system=ss(a_c,b_c,1,0);
figure(1)
[Y,T,X]=lsim(system, U, T, x0); plot(T,Y); hold;
%Simulate the plant dynamics with zero input
[Y,T,X]=lsim(system, [0 kron(u, zeros(1, 10))], T, x0); plot(T,Y);
legend('x(t) with zero control input','x(t) with control');Q5

xlabel('Time [s]');
% Plot the input u(t)
figure(2)
T=0:0.05:5;
plot(T, U); legend('Control input'); xlabel('Time [s]');
end

FIGURE 2.3-3 Driver program to compute u∗
k and simulate the resulting digital control

scheme.

0 1 2 3 4 5
1

2

3

4

5

6

7

8

9

10

Time [s]

x(t) with zero control input
x(t) with control

FIGURE 2.3-4 Simulation of continuous plant dynamics comparing zero-input response
to controlled response.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 58

58 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

0 1 2 3 4 5
−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

Time [s]

Control input

FIGURE 2.3-5 The control input obtained from uk .

Thus, suppose we want to drive the capacitor voltage from x(0) = x0 = 10 V exactly
to x(5) = rN = 20 V while minimizing the energy

J0 = r

2

N−1∑
k=0

u2
k (10)

of the control samples. The design of the control to make the sampled system (5) achieve
this objective is exactly the problem we solved in Example 2.2-1, so the optimal discrete
control sequence is

uk = (1 − a)2

b(1 − a2N)
(rN − aNx0)a

N−k−1. (11)

d. Simulation of Digital Control for Fixed Final State

In this open loop scheme, the simulation is as easy as before. We just use the driver
program as before with the exception that in this case we cannot use scaopt.m to compute
uk; instead, we wrote a simple script to implement (11). The driver program is shown in
Fig. 2.3-6.

The simulation results are shown in Fig. 2.3-7. Note that −u(t) (not u(t)) is plotted
there.

While the open-loop control is easier to implement, it is not as robust as the closed-
loop control. If at a time of 2 sec, for example, a noise source drives the state off the
optimal trajectory shown in Fig. 2.3-7, the final state x(5) will no longer be 20V .

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 59

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 59

function ex2_3_1d (a_c, b_c, a_d, b_d, q, r, s, rN, x0, N)
% Compute Optimal Control Input
for k=1:N
u(k)=((1–a_d ˆ 2)/(b_d*(1–a_d ˆ (2*N))))*(rN–x0*a_d ˆ N)*a_d ˆ N–k);
end
% Define the time interval T
T=0.05:0.05:5;
% Expand the input u to the specified interval T
U=kron(u,ones(1,10));
% Simulate the plant dynamics
lsim(a_c, b_c, 1, 0, U, T, x0); hold
%Simulate the plant dynamics with zero input
lsim (a_c, b_c, 1, 0, kron (u, zeros (1, 10)), T, x0);
% Plot the input –u(t)
plot (T, U);

FIGURE 2.3-6 Driver program for on-line computation of open-loop control.

0 1 2 3

TIme [s]

4 5
0

5

10

15

20

25

30

35

40

x(t) with zero control input
x(t) with control
Control input u(t)

FIGURE 2.3-7 Simulation of continuous plant dynamics comparing zero-input response
to controlled response. �

Example 2.3-2. Digital Control of Systems Obeying Newton’s Laws

Newton’s laws md̈ = F can be expressed in state-variable form as

ẋ =
[

0 1
0 0

]
x +

[
0
1

]
u, (1)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 60

60 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

where x
�= [d v]T, with d(t) and v(t) representing position and velocity. Input u(t) is

an acceleration; to find the input in units of force, we can multiply u(t) by m , the mass
of the body.

The optimal control law we shall derive applies to any system obeying (1). To lend
more interest to our example, however, let us formulate a particular problem to solve.

a. The Rendezvous Problem

See Fig. 2.3-8. A target aircraft At is moving in the y1 direction with a constant velocity
of Vt . Its initial y1 coordinate is Yt . Our aircraft A is moving in the y1 direction with a
constant velocity of V >Vt . Our initial y1 coordinate is 0. Thus, our velocity relative to
At is (V − Vt). Clearly, at time

tf = Yt

V − Vt

(2)

the two aircraft A and At will be abreast of each other (i.e., have the same y1 coordinate).
The y1 velocities V and Vt are fixed throughout the problem, and hence the final time tf
is known.

FIGURE 2.3-8 Rendezvous problem geometry.

The optimal control problem is as follows. The y2 position and velocity of aircraft
A relative to At are d(t) and v(t), and the y2 dynamics of A are described by (1). It
is required to determine the control acceleration u(t) needed in the y2 direction so that
aircraft A will rendezvous with the target At at time tf. This means that we must determine
u(t) so that d(tf) and v(tf) are both zero.

b. Design of Digital Control Law

To find such a control u(t), discretize the y2 dynamics (1) to get (note that eAT = I +
AT since A2 = 0.):

xk+1 =
[

1 T

0 1

]
xk +

[
T 2/2

T

]
uk (3)

for some sampling period T . Suppose that tf = 5 sec. Then T = 0.5 sec is reasonable.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 61

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 61

Associate with (3) the performance index

J0 = 1

2
xT

N

[
sd 0
0 sv

]
xN + 1

2

N−1∑
k=0

(
xT

k

[
qd 0
0 qv

]
xk + ru2

k

)
. (4)

Select control weighting r = 1, position weighting qd = 1, and velocity weighting qv = 1.
To ensure that the final y2 position dN and velocity VN are very small, select the final-state
component weights as sd = 100, sv = 100. The number of iterations is

N = tf/T = 10. (5)

Now the optimal control is given by (2.2-58), (2.2-60), and (2.2-61). Let us do some
preliminary analysis on these equations, defining a few intermediate variables to simplify
things.

Since we know that Sk is symmetric for all k , let

Sk
�=

[
s1 s2

s2 s3

]
. (6)

(We shall not require time subscripts on the cost kernel components si since they will be
updated at each k by MATLAB replacement.) Then the feedback gain is updated by

δ = BTSk+1B + r

= r + s1T
4

4
+ s2T

3 + s3T
2, (7)

Kk = BTSk+1A/δ

= 1

δ

[
s1T

2

2
+ s2T

s1T
3

2
+ 3s2T

2

2
+ s3T

]
. (8)

Letting

Kk
�= [k1 k2] (9)

we can write

k1 =
(

s1T
2

2
+ s2T

)
/δ, (10a)

k2 =
(

s1T
3

2
+ 3s2T

2

2
+ s3T

)
/δ. (10b)

The closed-loop plant matrix is

Acl
k

�=A − BKk =
[

1 − k1T
2/2 T − k2T

2/2

−k1T 1 − k2T

]
. (11)

Defining the components of Acl
k as

Acl
k

�=
[
acl

11 acl
12

acl
21 acl

22

]
, (12)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 62

62 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

we have the four scalar updates:

acl
11 = 1 − k1T

2/2, (13a)

acl
12 = T − k2T

2/2, (13b)

acl
21 = −k1T , (13c)

acl
22 = 1 − k2T . (13d)

The updated cost kernel is

Sk = ATSk+1A
cl
k + Q

=
[

s1a
cl
11 + s2a

cl
21 + qd s1a

cl
12 + s2a

cl
22

(s1T + s2)a
cl
11 + (s2T + s3)a

cl
21 (s1T + s2)a

cl
12 + (s2T + s3)a

cl
22 + qv

]
, (14)

which yields the scalar updates:

s1 = s1a
cl
11 + s2a

cl
21 + qd, (15a)

s2 = s1a
cl
12 + s2a

cl
22, (15b)

s3 = (s1T + s2)a
cl
12 + (s2T + s3)a

cl
22 + qv. (15c)

Note that (15b) and
s2 = (s1T + s2)a

cl
11 + (s2T + s3)a

cl
21 (16)

are evidently equivalent since Sk is symmetric. (Prove this.) For numerical stability in the
face of computer roundoff error, we could use the average of (15b) and (16) for s2.

The optimal feedback gains are therefore found by iterating (7), (10), (13), and (15)
for time index k = N − 1, N − 2, . . . , 0. Software for this is contained in subroutine
ex2 _3 _2c in Fig. 2.3-10.

c. Simulation of Digital Control

Suppose that the initial y2 position and velocity of aircraft A are d(0) = 10, v(0) = 10.
By using subroutine lsim to simulate the dynamics (1) and driving with a zero input as
follows

T=0:0.05:5;
U=zeros(1,101);
A=[0 1;0 0]; b=[0;1]; c=eye(2); d=zeros(2, 1);
system=ss(A,b,c,d);
ic=[10 10];
[Y,T,X]=lsim(system, U, T, ic);
plot(T,Y)
axis([0 5 0 60]);
legend('d(t)','v(t)'); xlabel('Time [s]');

the uncontrolled state plot in Fig. 2.3-9 was obtained.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 63

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 63

0 1 2 3 4 5
0

10

20

30

40

50

60

Time [s]

d(t)
v(t)

FIGURE 2.3-9 Uncontrolled response of plant.

This plot represents the zero input solution

d(t) = d(0) + v(0)t,

v(t) = v(0).

Clearly, this behavior is not exactly what we had in mind!
Let us examine the behavior of (1) manufactured under the influence of a digital control

law manufactured from the optimal discrete control found in part b according to

u(t) = uk, kT ≤ t < (k + 1)T .

To do this, we can use the driver program shown in Fig. 2.3-10.
Since we computed the digital control law, we can use lsim for simulating the dynamics

of the continuous plant. The resulting state trajectory is shown in Fig. 2.3-11. The first
thing the control input does is go negative to −20 in order to decrease the y2 velocity v(t)

to zero by a time of 0.5 sec. Then velocity v(t) becomes negative so that our aircraft A
begins to approach the target (i.e., d(t) begins to decrease). Velocity v(t) is then gradually
returned to zero to achieve a rendezvous at tf = 5 sec.

Apparently, our choice of final weighting sd = 100 and sv = 100 was satisfactory.
The simulation shows that at t = 5 sec, d(t) and v(t) are indeed very close to zero as
required.

Preliminary simplification of the Riccati equation can lead to some nice, simple imple-
mentations, as this example shows. For greater than n = 2 states, however, it can be more
trouble than it is worth. It should be clearly realized that preliminary analysis is only for
convenience; it is never actually required, since the software in Bierman (1977) can be
used to solve the Riccati equation in the general case.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 64

64 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

function u = ex2_3_2c(A_d, b_d, q, r, s, N, T, x0)
% Backward iteration for Cost Kernel and FB Gains
k=N;
K=zeros(N,2);
while k>0,
T2=T ˆ 2;
div=r+(s(1)*T2 ˆ 2)/4 + s(2)*T*T2 + s(3)*T2;
% Feedback Gains
K(k, 1) = (s(1)*T2/2+s(2)*T)/div;
K(k, 2) = (s(1)*T2*T/2 +3*s(2)*T2/2 + s(3)*T)/div;
% Closed-loop Plant matrix
Acl=[1-K(k,1)*T2/2 T-K(k,2)*T2/2; -K(k,1)*T 1-K(k,2)*T]
% Cost Kernel Update
s(3)=(s(1)*T+s(2))*Acl(1, 2) + (s(2)*T+s(3))*Acl(2, 2)+q(2);
temp=s(2);
s(2)=s(1)*Acl(1,2)+temp*Acl(2,2);
s(1)=s(1)*Acl(1,1)+temp*Acl(2,1)+q(1);
k=k-1;
end
% Apply Optimal Control (Forward Iteration)
x(:,1)=x0;
for k=1:N
% Compute Optimal Control Law
u(k)=-K(k,:)*x(:,k);
% Update the Plant State
x(:,k+1)=A_d*x(:,k)+b_d*u(k);
end
end

FIGURE 2.3-10 Driver program to compute u∗
k and simulate the resulting control

scheme.

0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

Time [s]

d(t)
v(t)
u(t)

FIGURE 2.3-11 Optimal state and control trajectories for rendezvous problem.
�

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 65

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 65

2.4 STEADY-STATE CLOSED-LOOP CONTROL
AND SUBOPTIMAL FEEDBACK

We have seen that the solution to the LQ optimal control problem is a state
feedback of the form

uk = −Kkxk, (2.4-1)

with gain sequence Kk given in terms of the solution sequence Sk to the Riccati
equation as

Sk = AT[Sk+1 − Sk+1B(BTSk+1B + R)−1BTSk+1]A + Q, (2.4-2)

Kk = (BTSk+1B + R)−1BTSk+1A. (2.4-3)

In most of this section we assume the time-invariant case. Even in this situation,
the closed-loop system

xk+1 = (A − BKk)xk (2.4-4)

is time varying since the optimal feedback gains Kk are time varying.
This time-varying feedback is not always convenient to implement; it requires

the storage of an entire sequence of m × n matrices. We might be interested in
using instead a suboptimal feedback gain that does not actually minimize the
performance index but is a constant so that

uk = −Kxk. (2.4-5)

Such a feedback is certainly easier to implement than (2.4-1).
As one candidate for a constant feedback gain, we might consider the limit of

the optimal Kk as the final time N goes to infinity (or equivalently as k → −∞).
We shall see that when this limit exists, it provides a constant feedback that is
often satisfactory.

Let us first consider the effect of using an arbitrary feedback to control the
plant.

Suboptimal Feedback Gains

The plant, which we shall assume time invariant in this subsection only for
notational simplicity, is

xk+1 = Axk + Buk. (2.4-6)

Let us use as a control the state feedback (2.4-1) for some arbitrary given matrix
sequence Kk. We are not yet concerned about how to select Kk; all we want to
know is the resulting value of the performance index

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(
xT

k Qxk + uT
k Ruk

)
. (2.4-7)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 66

66 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

We can find this value by using a derivation like the one leading to (2.2-66).
Thus, add the left-hand side minus the right-hand side of (2.2-63) (i.e., add zero)
to (2.4-7) and use (2.4-1) to get

Ji = 1

2
xT

i Sixi + 1

2

N−1∑
k=i

[
xT

k+1Sk+1xk+1 + xT
k (Q − Sk + KT

k RKk)xk

]
. (2.4-8)

The sequence Sk is at this point undefined. Taking into account the state equation
(2.4-6) with the control (2.4-1) yields

Ji = 1

2
xT

i Sixi + 1

2

N−1∑
k=i

xT
k

[
(A − BKk)

TSk+1(A − BKk) + Q + KT
k RKk − Sk

]
xk.

(2.4-9)
Now suppose the sequence Sk satisfies the matrix equation (2.2-62). The sum is
then zero, so that finally Ji = 1

2xT
i Sixi .

We can summarize this result as follows. Let the feedback (2.4-1) for any
given Kk be applied to the plant. Then the resulting cost on [k,N] is given for
each time k by

Jk = 1
2xT

k Skxk, (2.4-10)

where the kernel is the solution to

Sk = (A − BKk)
TSk+1(A − BKk) + KT

k RKk + Q (2.4-11)

with boundary condition SN .
We should be sure we know exactly what is going on here. Equation (2.4-11) is

not the Joseph-stabilized Riccati equation! It becomes the Joseph-Riccati equation
only if the optimal gain sequence (2.4-3) is used. If Kk is an arbitrary given gain
sequence, then (2.4-11) is simply a (linear) Lyapunov equation in terms of the
known closed-loop plant matrix (A − BKk).

Note in particular that Kk can be a constant feedback matrix K , as in (2.4-5).
If Kk is not the optimal gain, then Jk given by (2.4-10) and (2.4-11) is, in general,
greater than the optimal cost J ∗

k .
The next example illustrates the use of these new results.

Example 2.4-1. Suboptimal Feedback Control of a Scalar System

Let us reconsider the system of Example 2.2-3. The plant is

xk+1 = axk + buk (1)

with performance index

J0 = 1

2
sNx2

N + 1

2

N−1∑
k=0

(qx2
k + ru2

k). (2)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 67

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 67

The optimal control is a time-varying state feedback

uk = −Kkxk, (3)

with gain determined by the Riccati equation as

sk = a2rsk+1

b2sk+1 + r
+ q, (4)

Kk = absk+1

b2sk+1 + r
. (5)

For parameters of a = 1.05, b = 0.01, q = r = sN = 5, with final time N = 100,
a simulation was run to obtain the Kalman gain sequence shown in Fig. 2.2-5b. For

N − k = 100, a steady-state value of K∞
�= K0 = 9.808 has been reached. The corre-

sponding Riccati-equation solution s∗
k is shown in Fig. 2.4-1a. If we apply the feedback

(3) to the plant with x0 = 10, the optimal state trajectory x∗
k in Fig. 2.4-1b results. The

optimal cost
J ∗

k = 1
2 s∗

k x∗2
k (6)

along this trajectory is shown in Fig. 2.4-1c.
Now, let us suppose we want a simpler feedback control than (3) with Kk as in

Fig. 2.2-5b. Suppose we try to use the constant state feedback

uk = −K∞xk = −9.808xk. (7)

Then the cost is given by
Jk = 1

2 skx
2
k , (8)

where sk is the solution to the Lyapunov equation (2.4-11), which becomes

sk = sk+1(a − bK∞)2 + rK2
∞ + q, (9)

with boundary condition sN . This suboptimal kernel sequence is shown in Fig. 2.4-1a.
Note that it is an upper bound for the optimal sequence s∗

k . Thus, for any state xk at any
time k , the cost to go Jk using feedback (7) satisfies

J ∗
k = 1

2 s∗
k x2

k ≤ 1
2 skx

2
k = Jk. (10)

Simulating the plant (1) with the input (7) yields the suboptimal state trajectory xk shown
in Fig. 2.4-1b. The associated suboptimal cost Jk is shown in Fig. 2.4-1c. It is greater
than J ∗

k . The suboptimal trajectory xk has less energy than x∗
k , but Jk is larger than J ∗

k

because of the larger control energy required to achieve xk .
Note that initially, at times well removed from the final time N , xk and x∗

k are about
the same. As k approaches N , K∗

k deviates more from K∞, and the trajectories differ
markedly.

Using the constant gain K∞, the closed-loop system is

xk+1 = (a − bK∞)xk = 0.952xk, (11)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 68

68 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

0

2000

4000

6000

Optimal sequence Sk

Suboptimal sequence Sk

0

2

4

6

8

10

Optimal xk

Suboptimal xk

0 20 40 60 80 100
0

2

4

6
× 105

Iteration number k

(c)

0 20 40 60 80 100

Iteration number k

(b)

0 20 40 60 80 100

Iteration number k

(a)

Optimal cost Jk

Suboptimal cost Jk

FIGURE 2.4-1 Optimal and suboptimal closed-loop behavior. (a) Cost kernels. (b) State
trajectories. (c) Costs.

so the suboptimal trajectory is simply given by

xk = 0.952kx0 = 10(0.952)k. (12)

By examining these graphs, we can determine whether the behavior under the influence of
the simplified gain (7) is satisfactory and whether we are willing to use the extra control
energy required. If so, we can go ahead and use this simplified feedback on the actual
physical plant. �

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 69

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 69

The Algebraic Riccati Equation

The comments in this subsection apply only for time-invariant plant and cost
matrices. Equation (2.4-2) is solved backward in time beginning at time N . As
k → −∞, the sequence Sk can have several types of behavior, as symbolized
in Fig. 2.4-2. It can converge to a steady-state matrix S∞, which may be zero,
positive semi-definite, or positive definite. It can also fail to converge to a finite
matrix.

If Sk does converge, then for large negative k , evidently S
�= Sk = Sk+1. Thus,

in the limit, (2.4-2) becomes the algebraic Riccati equation (ARE)

S = AT[S − SB(BTSB + R)−1BTS]A + Q, (2.4-12)

which has no time dependence. The limiting solution S∞ to (2.4-2) is clearly a
solution of (2.4-12).

Note that if SN is symmetric and positive semidefinite, then the solution Sk to
(2.4-2) is also symmetric and positive semidefinite for all k (transpose both sides
of the equation). The algebraic equation (2.4-12), on the other hand, can have
nonpositive semidefinite, nonsymmetric, and even complex solutions. Thus, all
solutions to the algebraic Riccati equation are not also limiting solutions to the
(time-varying) Riccati equation for some SN .

If the limiting solution to (2.4-2) exists and is denoted by S∞, then the corre-
sponding steady-state Kalman gain is

K∞ = (BTS∞B + R)−1BTS∞A. (2.4-13)

This is a constant feedback gain. Under some circumstances it may be acceptable
to use the time-invariant feedback law

uk = −K∞xk (2.4-14)

instead of the optimal control (2.4-1)–(2.4-3). The cost associated with such a
control strategy is given by (2.4-10), where Sk satisfies (2.4-11) with Kk = K∞.

FIGURE 2.4-2 Limiting behavior of Riccati-equation solution.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 70

70 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

To examine the consequences of using this steady-state feedback, let us discuss
the limiting behavior of the closed-loop system (2.4-4) using the optimal time-
varying feedback (2.4-1)–(2.4-3).

Limiting Behavior of the Riccati-equation Solution

This subsection applies only for time-invariant plant and cost matrices. We are
interested in answering three questions here:

1. When does there exist a bounded limiting solution S∞ to the Riccati
equation for all choices of SN?

2. In general, the limiting solution S∞ depends on the boundary condition
SN . When is S∞ the same for all choices of SN ?

3. When is the closed-loop plant (2.4-4) asymptotically stable?

Question 3 is particularly important. We have designed the feedback Kk to
minimize a performance index, but as k → −∞ (or equivalently, as final time
N → ∞), we should certainly like for the closed-loop system to be stable! In
some circumstances this can be guaranteed.

We can answer these questions in terms of the dynamical properties of the
original system (2.4-6) with associated performance index (2.4-7). Recall that
(A, B) is reachable if the eigenvalues of (A − BK) can be arbitrarily assigned by
appropriate choice of the feedback matrix K . (A, B) is stabilizable if there exists
a matrix K such that (A − BK) is asymptotically stable. This is equivalent to the
reachability of all the unstable modes of A. Recall also that (A, C) is observable
if the eigenvalues of (A − LC) can be arbitrarily assigned by appropriate choice
of the output injection matrix L. (A, C) is detectable if (A − LC) can be made
asymptotically stable by some matrix L. This is equivalent to the observability
of the unstable modes of A.

Up to this point, we have been interested only in the state equation and not
in an output, because our performance index was expressed in terms of the state
and the input. Let us now define a fictitious output for our system. Let C and
D denote the square roots of Q and R, such that Q = CTC and R = DTD. In
addition, let SN = CT

NCN . Then define a fictitious output by the output equations

yk =
[
C

0

]
xk +

[
0

D

]
uk, k = 0, . . . , N − 1,

yN = CNxN.

(2.4-15)

In terms of this “output,” the performance index can be written

Ji = 1

2
yT

NyN + 1

2

N−1∑
k=i

yT
k yk. (2.4-16)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 71

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 71

We shall see that the answers to our three questions can be given in terms
of the stabilizability of (A, B) and the observability of (A, C). The following
theorem tells us when there is a finite limiting cost kernel S∞.

Theorem 2.4-1. Let (A, B) be stabilizable. Then for every choice of SN , there
is a bounded limiting solution S∞ to (2.4-2). Furthermore, S∞ is a positive
semidefinite solution to the algebraic Riccati equation (2.4-12).

Proof: Since (A, B) is stabilizable, there exists a constant feedback L so that

uk = −Lxk

and
xk+1 = (A − BL)xk

is asymptotically stable. Thus, xk is bounded and goes to zero as k → ∞. There-
fore, the associated cost

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(xT
k Qxk + uT

k Ruk)

is finite as i → ∞. It is given by (2.4-10) with k = i, where Si satisfies the
Lyapunov equation (2.4-11) (with index k replaced by i) with Ki there equal to
L, and using SN as boundary condition.

The optimal cost, however, is given for all i by

J ∗
i = 1

2xT
i S∗

i xi ,

where S∗
i is the solution to (2.4-2) with SN as boundary condition. Since J ∗

i ≤ Ji

for all initial states xi , Si provides an upper bound for S∗
i for all i (S∗

i ≤ Si means
(Si − S∗

i) ≥ 0). Hence, the solution sequence to (2.4-2) is bounded above by a
finite sequence.

It can be shown that the solution S∗
i to (2.4-2) is smooth, so that if it is bounded

above by a finite Si , then it converges to a constant limit S∞. For details, see
Casti (1977) or Kwakernaak and Sivan (1972).

Since equation (2.4-2) is symmetric, then so is Si for all i if SN is symmetric,
which we have assumed. The structure of the equation and the assumptions on
Q and R also imply positive semidefiniteness.

Clearly, S∞ is a solution to the limiting equation (2.4-12). �

An important point should be noted here. In presenting the solution in
Table 2.2-1 to the free-final-state LQ regulator and in the subsequent examples
we discussed, we did not make any controllability assumptions on the plant.
Regardless of the controllability properties of the plant, the optimal control will
do the best it can to minimize the performance index. We have just shown that
if the plant is, in fact, stabilizable, then there is a finite limiting solution S∞ to

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 72

72 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

the Riccati equation. This means that as the time interval [i, N] goes to infinity,
the optimal cost J ∗

i stays bounded. Since R > 0, this in turn guarantees that the
optimal control u∗

k itself does not go to infinity.
We can often show the stronger condition of reachability, which implies sta-

bilizability, and for which there is a simple test based on the full rank of the
reachability matrix

Un = [B AB · · · An−1B], (2.4-17)

where x ∈ Rn.
Theorem 2.4-1 is based on system stabilizability, and it makes intuitive sense

because we are dealing with the optimal control problem. The next result initially
seems very strange; it provides answers to our second and third questions in terms
of the observability of the plant through the fictitious output!

Theorem 2.4-2. Let C be a square root of the intermediate-state weighting
matrix, so that Q = CTC ≥ 0, and suppose R > 0. Suppose that (A, C) is observ-
able; then (A, B) is stabilizable if and only if:

a. There is a unique positive definite limiting solution S∞ to the Riccati
equation (2.4-2). Furthermore, S∞ is the unique positive definite solution
to the algebraic Riccati equation (2.4-12).

b. The closed-loop plant
xk+1 = (A − BK∞)xk

is asymptotically stable, where K∞ is given by (2.4-13).

Proof:

Necessity

Define D by R = DTD. Then |D| �= 0, so that B = MD for some M . One,
therefore, has

rank

⎡
⎣zI − A

C

DK

⎤
⎦ = rank

⎡
⎣I 0 M

0 I 0
0 0 I

⎤
⎦

⎡
⎣zI − A

C

DK

⎤
⎦ = rank

⎡
⎣zI − (A − BK)

C

DK

⎤
⎦ .

(1)

If (A, C) is observable, then by the PBH (Popov–Belevitch–Hautus) rank test
(Kailath 1980),

rank

[
zI − A

C

]
= n for every z, (2)

so that by (1) (
(A − BK),

[
C

DK

])

is observable for any K .

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 73

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 73

Now, stabilizability implies the existence of a feedback control uk = −Lxk ,
so that

xk+1 = (A − BL)xk (3)

is asymptotically stable. The cost of such a control on [i , ∞] is

Ji = 1
2xT

i Sxi (4)

with S the limiting solution to (2.4-11) with Ki = L. The optimal closed-loop
system (2.4-2)–(2.4-4) has an associated cost on [i,∞] of

J ∗
i = 1

2

∞∑
k=i

(
xT

k Qxk + uT
k Ruk

) = 1

2
xT

i S ∗ xi ≤ Ji. (5)

with S∗ the limiting solution to (2.4-2). Therefore, Cxk → 0 and, since |R| �= 0,
uk → 0. Select an N so that Cxk and uk are negligible for k >N . Then for
k >N ,

0 =

⎡
⎢⎢⎢⎣

Cxk

Cxk+1
...

Cxk+n−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C

CA
...

CAn−1

⎤
⎥⎥⎥⎦ xk, (6)

and so observability of (A, C) requires xk → 0. Hence, the optimal closed-loop
system (2.4-4) is asymptotically stable.

Write (2.4-12) as

S = (A − BK∞)TS(A − BK∞) +
[

C

DK∞

]T [
C

DK∞

]
(7)

with K∞ the optimal feedback. (Prove that this can be done.) Then (7) is a
Lyapunov equation with (

(A − BK∞),

[
C

DK∞

])

observable and (A − BK∞) stable. Therefore, there is a unique positive definite
solution S∗ to (2.4-12).

Sufficiency

If xk+1 = (A − BK∞)xk is asymptotically stable, then (A, B) is certainly stabi-
lizable. �

The structure of this result should be examined. All it is, is a restatement of
Theorem 2.4-1 under the observability hypothesis. The observability condition
has made our previous theorem quite a bit stronger!

Let us discuss two aspects of this theorem: what it does for us, and how we
can guarantee that it holds in a particular problem. Part a of the theorem says

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 74

74 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

that if interval [i, N] is a large enough, then the optimal cost of control is

J ∗
i = 1

2xT
i S∞xi, (2.4-18)

which is both finite and independent of the value we selected for the final-state
weighting SN . Thus, whether we weight the final state heavily or lightly in Ji ,
the cost of optimal control over [i, N] is the same. Since R > 0, the finiteness of
Ji means that the optimal control is also finite; all our objectives can be achieved
with finite control energy.

The theorem also guarantees the existence of a steady-state gain K∞ that
stabilizes the plant. This means two things. First, at the beginning of a control run,
far from the final time N , the closed-loop plant (A − BKk) is nearly (A − BK∞),
so it starts out stable. Second, if we should decide to use the constant suboptimal
gain uk = −K∞xk for all k instead of the harder to implement optimal time-
varying feedback, we are guaranteed at least closed-loop stability.

These properties are all quite desirable. To guarantee that they hold, we need
only to ensure that the plant is stabilizable and to be judicious in our choice of
the state weighting matrix Q . We should select Q = CTC for some C such that
(A, C) is observable. Note that this is always the case if Q is selected to be
positive definite, for (A, C) is observable for any C of rank n .

Intuitively, all of this means the following. If the plant is observable through
the fictitious output, then motions in all of the directions of the state space Rn

have an influence on the performance index. If any state component begins to
increase, then so does the cost Jk . Hence, if Jk is small, necessarily the state is
also. Any control that makes Jk small will also make small the excursions of the
state from the origin.

On the other hand, if (A, C) is unobservable, then if the state tends to infinity
in an unobservable direction of Rn, this motion will not be sensed in Jk . Thus,
the boundedness of Jk does not in this case guarantee the boundedness of the
state trajectory.

We have made the hypothesis of Theorem 2.4-2 unnecessarily strong. All we
really require for the theorem to hold is the detectability of (A, C). Thus, only the
unstable modes need be observable through the performance index. In this case,
however, the unique limiting solution to the Riccati equation can be guaranteed
only to be positive semidefinite.

One result of these theorems is that we now have a way of stabilizing any
multi-input plant. If Q and R are any positive definite matrices of appropriate
dimension, then the state feedback uk = −K∞xk based on the steady-state gain
(2.4-13) determined from the unique positive definite solution S∞ to the algebraic
Riccati equation (2.4-12) will result in a stable closed-loop system. Different
matrices Q and R will result in different closed-loop poles for A − BK∞, but
these poles will always be inside the unit circle.

It would be quite useful to be able to select Q and R to yield a desired set
of closed-loop poles. We present an example demonstrating the relation between
Q, R, and the closed-loop poles for a simple system (Example 2.4-3), and then

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 75

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 75

in Section 2.5 we discuss a technique similar to root locus for selecting Q and
R to yield desired closed-loop poles.

One more result on the limiting, or infinite-horizon optimal control problem
((N − k) → ∞) should be mentioned. Let (A, B) be stabilizable and (A,

√
Q)

observable. Then the steady-state feedback uk = −K∞xk is the optimal control
for a particular problem, for it is the control that minimizes the cost over the
infinite time interval [0, ∞]. That is, it minimizes

J0 = 1

2

∞∑
k=0

(xT
k Qxk + uT

k Ruk). (2.4-19)

This follows from our discussion.
The next examples illustrate these results.

Example 2.4-2. Steady-state Control of a Scalar System

Let the plant be
xk+1 = axk + buk, (1)

with performance index

J0 = 1

2

∞∑
k=0

(qx2
k + ru2

k). (2)

The optimal control minimizing J0 is the constant feedback

uk = −k∞xk, (3)

where the gain (2.4-13) is

k∞ = abs∞
b2s∞ + r

(4)

and the steady-state kernel is the unique positive (definite) root of the algebraic Riccati
equation

s = a2s − a2b2s2

b2s + r
+ q. (5)

Under the influence of the control (3), the closed-loop system is

acl = a − bk∞ = a

1 + (b2/r)s∞
. (6)

The ARE can be written
b2s2 + [(1 − a2)r − b2q]s − qr = 0. (7)

If we define the auxiliary variable

� = b2q

(1 − a2)r
, (8)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 76

76 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

this becomes
�

q
s2 + (1 − �)s − �r

b2
= 0, (9)

which has two solutions, given by

s = q

2�

[
±

√
(1 − �)2 + 4�

(1 − a2)
− (1 − �)

]
. (10)

We must now consider two cases.

a. Original System Stable

If |a| < 1, then (1 − a2) > 0 and � > 0. In this case the unique non-negative solution to
(7) is

s∞ = q

2�

[√
(1 − �)2 + 4�

(1 − a2)
− (1 − �)

]
, (11)

and the steady-state gain is given by (4).
In the scalar case, observability of (a,

√
q) is equivalent to q �= 0, and plant reachability

is equivalent to b �= 0. Therefore, the observability and reachability conditions imply
� > 0 and hence s∞ > 0. Then, according to (6)

∣∣acl
∣∣ < |a|, (12)

so that the closed-loop system is stable.
Since |a| < 1, if q = 0, the system is still detectable (the unobservable mode is stable).

If q = 0, then � = 0, but according to (6) acl = a is still stable. Note that in this case,
s∞ = 0 (i.e., positive semidefinite).

b. Original System Unstable

If |a|> 1, then (1 − a2) < 0 and � < 0. Then the unique non-negative solution to the
ARE is

s∞ = −q

2�

[√
(1 − �)2 + 4�

(1 − a2)
+ (1 − �)

]
. (13)

Again, reachability and observability imply that � is strictly negative, so that according
to (13), s∞ > 0.

According to (6), if � < 0, we still have
∣∣acl

∣∣ < |a|, but it is not easy to prove that∣∣acl
∣∣ < 1|. Note, however, that

acl = a

1 − 1 − a2

2

[√
(1 − �)2 + 4�

1 − a2
+ (1 − �)

] , (14)

so that if |a| � 1, then �
 0 and

acl
 1

a
. (15)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 77

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 77

This is certainly stable. Note that acl does not depend on b, q , and r individually, but
only on the quantity b2q/r . (This is also true if a is stable.) If |a|> 1, then detectability
of (a,

√
q) is equivalent to q �= 0, which is necessary for (14) to be stable.

c. acl as a Function of a

Figure 2.4-3 shows a plot of the closed-loop plant matrix acl as a function of the original
plant matrix a for b2q/r = 1. Note that acl is stable for all values of a .

−20 −10 −101 10 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

a

acl

FIGURE 2.4-3 Closed-loop plant matrix as a function of an open-loop plant matrix.

�

Example 2.4-3. Limiting Control Behavior for Systems Obeying Newton’s Laws

Let us reconsider the discretized Newton’s system of Example 2.3-2,

xk+1 =
[

1 T

0 1

]
xk +

[
T 2/2

T

]
uk, (1)

where xk = [dk, vk]T, with dk and vk the k th samples of position and velocity. The sam-
pling period is T = 0.5 sec for this example, so that

xk+1 =
[

1 0.5
0 1

]
xk +

[
0.125

0.5

]
uk. (2)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 78

78 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Let Q = I , so that the cost is

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(d2
k + v2

k + u2
k). (3)

Using the solution to the optimal control problem given in Example 2.3-2 and the associ-
ated software, we can determine the optimal cost kernel Sk , feedback gain Kk , closed-loop
plant matrix Acl

k , and the optimal control u∗ and state trajectory x∗. By adding a polynomial
root finder we can determine the poles of Acl

k for each time k .
First, let us use final-state weighting of SN = 100I . This is the simulation run in

Example 2.3-2, and the optimal state trajectory and control are shown in Fig. 2.3-11. This
behavior is quite satisfactory, and a good rendezvous is achieved. The Kalman gain Kk

is shown in Fig. 2.4-4a. Note that it is defined only at integer values of k . In the graph
its values are connected by lines to distinguish more easily between the two components
of Kk , which are denoted by K1

k and K2
k .

The poles of the closed-loop system Acl
k are a function of time index k , since Acl

k is
a time-varying system. They are illustrated in Fig. 2.4-4b. When k = N , the system is
marginally stable with poles at z = 0 and z = 1. As k decreases, the closed-loop poles
become complex and move as shown.

For N − i = 10, corresponding to a run time of 5 sec, the Riccati-equation solution
has reached a steady-state value that is given by S0. It is equal to

S∞
�=

[
4.035 2.0616

2.0616 4.1438

]
. (4)

The corresponding steady-state gain is

K∞ =
[

0.6514

1.3142

]
, (5)

which agrees with Fig. 2.4-4a . The steady-state closed-loop plant matrix is

Acl
∞ = (A − BK∞) =

[
0.9185 0.3357

−0.3257 0.3429

]
, (6)

which has poles at
z = 0.6307 ± j0.1628. (7)

These steady-state closed-loop poles agree with Fig. 2.4-4b.
We might now be interested in trying to use the suboptimal feedback

uk = −K∞xk (8)

with K∞ given by (5). This control is easier to implement than the optimal control
uk = −Kkxk since the Kalman gain sequence Kk need not be stored. If we simulate this
suboptimal control, the suboptimal state trajectory in Fig. 2.4-4c results. This trajectory
is barely distinguishable from the optimal path in Fig. 2.3-11, except that the final val-
ues d(5) and v(5) are not quite equal to zero. It would probably be suitable for most
purposes.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 79

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 79

0 1 2 3 4 5 6 7 8 9
0

1

2

3

Iteration number k

(a)

K(1)
K(2)

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

Real

(b)

Im
ag

in
ar

y

0 1 2 3 4 5
−20

−10

0

10

20

Time [s]

(c)

d(t)
v(t)
u(t)

k = N-3

k = N-2 k = N-10

k = N-2

k = N-3

k = N-10

k = N-1

FIGURE 2.4-4 Position and velocity weighting, SN = 100I . (a) Optimal feedback gain
sequence. (b) Locus of the closed-loop poles. (c) Suboptimal state trajectory using steady-
state feedback gain K∞.

Let us now check our theorems. Since (A, B) is reachable, the solution Sk to the Riccati
equation converges to a finite S∞. A root of Q is given by C = I . Since (A,C) is certainly
observable, S∞ is positive definite. Furthermore, Acl∞ is asymptotically stable.

An important consequence of these facts is that if we use control law (8) and give the
system enough time, the state will always go to zero.

To show that (8) may not always be satisfactory, suppose we want to rendezvous in
2 sec, corresponding to a discrete interval of length N − i = 4. According to Fig. 2.4-4a ,

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 80

80 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Kk has not yet reached steady state by four iterations backward from N = 10 (i.e., K6 is
not yet equal to K0 = K∞). Thus, we might anticipate problems in using the steady-state
control law (8). Figure 2.4-5 shows the optimal trajectories using uk = −Kkxk and the
suboptimal trajectories using (8). For this short rendezvous time, the steady-state gains
would not be satisfactory.

−30

−20

−10

0

10

20

d(t)
v(t)
u(t)

0 0.5 1 1.5 2
−30

−20

−10

0

10

20

Time [s]

(b)

0 0.5 1 1.5 2

Time [s]

(a)

d(t)
v(t)
u(t)

FIGURE 2.4-5 System trajectories for a short run time. (a) Trajectories using optimal
control. (b) Trajectories using suboptimal steady-state feedback gains.

�
An Analytic Solution to the Riccati Equation

The optimal control is given in terms of the Riccati equation (2.4-2) with bound-
ary condition SN . One way to solve this equation is by iteration. We discuss here
a nonrecursive solution for Sk with important theoretical uses that applies in the
case of time-invariant plant and cost-weighting matrices. These results are due
to Vaughan (1970). These results are for the case where A is nonsingular, as it
is whenever a continuous-time system is discretized. In some cases, however, A

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 81

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 81

can be singular (e.g., system with pure delays). The solution of the discrete time
ARE for the case of singular A is covered in a subsequent subsection.

We wrote the LQ regulator Hamiltonian system as the backward recursion
(2.2-11), which is [

xk

λk

]
= H

[
xk+1

λk+1

]
, (2.4-20)

with

H
�=

[
A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

]
. (2.4-21)

The final condition for (2.4-20) if the final state is free is λN = SNxN . The initial
condition is x0.

We assumed that
λk = Skxk (2.4-22)

for all k ≤ N (cf. (2.2-50)), and based on this assumption derived the results in
Table 2.2-1. Matrix Sk in (2.4-22) turned out to be given by (2.4-2). Let us now
demonstrate that the Riccati-equation solution Sk can be computed in terms of
the eigenvalues and eigenvectors of H . Define

J =
[

0 I

−I 0

]
. (2.4-23)

Then, it can be shown with only a few lines of work that

HTJH = J. (2.4-24)

A matrix H satisfying (2.4-24) is called symplectic. Since H is symplectic, its
inverse is very easy to find, because by (2.4-24)

HTJ = JH−1,

J−1HTJ = H−1,

so that (since J−1 = −J)
H−1 = −JHTJ. (2.4-25)

Performing these multiplications yields

H−1 =
[
A + BR−1BTA−TQ −BR−1BTA−T

−A−TQ A−T

]
. (2.4-26)

(Remember that Q and R are symmetric. A−T means (A−1)T.) Now it can be
shown that if μ is an eigenvalue of H , then so is 1/μ. If μ is an eigenvalue with

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 82

82 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

eigenvector

[
f

g

]
partitioned comfortably with H , then

[
A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

] [
f

g

]
= μ

[
f

g

]
. (2.4-27)

This can be rearranged to read
[
AT + QA−1BR−1BT −QA−1

−A−1BR−1BT A−1

] [
g

−f

]
= μ

[
g

−f

]
. (2.4-28)

Now note that the coefficient matrix on the left-hand side is just H−T. This
means that μ is also an eigenvalue of H−T, and hence of H−1. Therefore, 1/μ

is an eigenvalue of H , as we wanted to show (see Appendix A).
What this means is that the 2n eigenvalues of H can be arranged in a matrix

D =
[
M 0
0 M−1

]
, (2.4-29)

where M is a diagonal matrix containing n eigenvalues outside the unit circle.
(Hence, M−1 is stable.)

There is a nonsingular matrix W whose columns are the eigenvectors of H
such that

W−1HW = D. (2.4-30)

Define a state space transformation W−1 so that for each k ,
[
xk

λk

]
= W

[
wk

zk

]

=
[
W11 W12

W21 W22

] [
wk

zk

]
,

(2.4-31)

where Wij are partitions of W . Then the Hamiltonian system (2.4-20) takes on
its Jordan normal form [

wk

zk

]
= D

[
wk+1

zk+1

]
. (2.4-32)

The solution to (2.4-32) in terms of the final conditions is
[

wk

zk

]
=

[
MN−k 0

0 M−(N−k)

] [
wN

zN

]
. (2.4-33)

The problem with this solution is that MN−k does not go to zero as (N − k) →
∞, since M is not stable. Therefore, rewrite (2.4-33) as

[
wN

zk

]
=

[
M−(N−k) 0

0 M−(N−k)

] [
wk

zN

]
(2.4-34)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 83

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 83

Now we consider the relations between xk and λk (e.g., (2.4-22)) and between
wk and zk . According to (2.4-22) and (2.4-31), at the final time N

λN = W21WN + W22zN = SNxN = SN(W11wN + W12zN).

Solving for zN in terms of wN yields

zN = T wN, (2.4-35)

where
T = −(W22 − SNW12)

−1(W21 − SNW11). (2.4-36)

Now, by (2.4-34)

zk = M−(N−k)zN = M−(N−k)T wN = M−(N−k)TM−(N−k)wk, (2.4-37)

so that at each value of k
zk = Tkwk, (2.4-38)

where
Tk = M−(N−k)TM−(N−k). (2.4-39)

It remains to relate Sk in (2.4-22) to Tk in (2.4-38). To do this, use (2.4-31)
to write

λk = W21wk + W22zk = Skxk = Sk(W11wk) + W12zk),

so that by (2.4-38)

(W21 + W22Tk)wk = Sk(W11 + W12Tk)wk. (2.4-40)

Since this must hold for all x0, and hence for all trajectories wk, it implies that

Sk = (W21 + W22Tk)(W11 + W12Tk)
−1. (2.4-41)

Equations (2.4-36), (2.4-39), and (2.4-41) give a nonrecursive analytic solu-
tion to the Riccati equation for any k ≤ N in terms of SN and the eigenvalues
and eigenvectors of Hamiltonian matrix H . One important special case is the
following. As N → ∞, the Riccati equation tends to the ARE (2.4-12). We have
seen that if (A, B) is reachable and (A,

√
Q) is observable, then the steady-state

feedback gain K∞ defined in terms of the ARE solution by (2.4-13) is often a
satisfactory choice as a suboptimal and easy-to-implement control law. One way
to find the positive definite solution S∞ to the ARE is to select any SN and
iterate (2.4-2) until Sk converges. Our new results provide an alternative way to
find S∞, which is important theoretically. If (N − k) → ∞, then M−(N−k) goes

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 84

84 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

to zero since M−1 is stable. This means that Tk → 0, so that in the steady-state
limit, (2.4-41), yields

S∞ = W21W
−1
11 (2.4-42)

as an expression for the positive definite ARE solution. Thus, S∞ can be manu-
factured from the unstable eigenvectors

[
W11

W21

]

of H (or the stable eigenvectors of H−1). Hence, the optimal steady-state feed-
back K∞ can be found (by (2.4-13)) without solving a Riccati equation.

Example 2.4-4. Analytic Solution to a Scalar Riccati Equation

This example is from Vaughan (1970). Let the plant and cost function be

xk+1 = xk + uk, (1)

Ji = 10

2
x2

N + 1

2

N−1∑
k=1

(x2
k + u2

k). (2)

Then

H =
[

1 1

1 2

]
(3)

has eigenvalues of 0.382, 2.618, so
M = 2.618. (4)

The matrix of eigenvectors (the unstable one first!) is

W =
[

1.0 1.0

1.618 −0.618

]
. (5)

Since SN = 10,
T = −0.789 (6)

and
Tk = −0.789(0.382)2(N−k). (7)

Therefore, (2.4-41) yields

sk = 1.618 + 0.488(0.382)2(N−k)

1 − 0.789(0.382)2(N−k)
(8)

as the analytic solution to the Riccati equation (2.4-2). In the limiting case (N − k) → ∞
this yields the ARE solution

s∞ = 1.618, (9)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 85

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 85

so the steady-state feedback is given by (2.4-13) as

K∞ = 1.618

2.618
= 0.618. (10)

The control law
uk = −0.618xk (11)

results in a stable closed-loop plant of

acl
∞ = (a − bK∞) = 0.382. (12)

We point out now that the closed-loop pole of 0.382 is the stable eigenvalue of Hamil-
tonian matrix H . This is not a coincidence, and we shall have more to say about it in
Section 2.5. �

Analytic Solution to the Discrete Riccati Equation:
System Matrix A Singular

In several digital control problems the system matrix A may either be singular
or ill conditioned with respect to inversion. In that case the method described
previously may either fail or produce misleading results due to the fact the A is
ill conditioned with respect to inversion. This problem can be circumvented by
employing the generalized eigenvalue problem for the analytic solution of the
discrete Riccati equation presented by Pappas, Laub, and Sandell (1980).

In the previous section we defined the Hamiltonian matrix H as

H =
[

A−1 A−1BR−1BT

QA−1 AT + QA−1BR−1BT

]
,

associated with the backward recursion (2.4-20). By noting that the Hamiltonian
matrix H can be decomposed as the product of two matrices as

H =
[

A 0
−Q I

]−1 [
I BR−1BT

0 AT

]
,

we can rewrite the backward recursion (2.4-20) as a forward generalized recur-
sion [

I BR−1BT

0 AT

] [
xk+1

λk+1

]
=

[
A 0

−Q I

] [
xk

λk

]
. (2.4-43)

The key idea of this method is to study the generalized eigenvalue problem

Gz = μFz (2.4-44)

where

F =
[
I BR−1BT

0 AT

]
and G =

[
A 0

−Q I

]
. (2.4-45)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 86

86 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

As before, we can extend the definition of a symplectic matrix H to the definition
of a symplectic pair of matrices (F, G). It is easy to show that (F, G) have the
following property:

GJGT = FJFT =
[

0 A

−AT 0

]
, (2.4-46)

where J is defined in (2.4-23). A pair that satisfies equation (2.4-46) is called a
symplectic pair.

We now show that the solution to the discrete algebraic Riccati equation can
be obtained from the eigenvectors of the Hamiltonian. Before we proceed, we
show that the Hamiltonian has n stable and n unstable eigenvalues. Under the
assumption of stabilizability of (A, B) and detectability of (

√
Q, A), none of the

eigenvalues of the Hamiltonian H given by (2.4-21), which corresponds to the
discrete algebraic Riccati equation, lie on the unit circle. To see this, consider
the generalized eigenvalue problem

Gz = μFz

where

F =
[
I BR−1BT

0 AT

]
and G =

[
A 0

−Q I

]
.

Suppose that |μ| = 1, then there exists some z �= 0 such that
[

A 0
−Q I

] [
z1

z2

]
= μ

[
I BR−1BT

0 AT

] [
z1

z2

]
.

This implies

Az1 = μz1 + μBR−1BTz2 and −Qz1 + z2 = μATz2.

By premultiplying the first equation by μ∗zH
2 and postmultiplying the conjugate

transpose of the second equation by z1, one gets

μ∗zH
2 Az1 = |μ|2zH

2 z1 + |μ|2zH
2 BR−1BTz2, and zH

2 z1 = μ∗zH
2 Az1 + zH

1 Qz1.

By adding the above two equations and noting that |μ2| = 1, we get

zH
2 BR−1BTz2 + zH

1 Qz1 = 0,

which, in turn, implies that

BTz2 = 0 and
√

Qz1 = 0.

Note that under these conditions

Az1 = μz1 and ATz2 = (1/μ)z2,

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 87

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 87

which implies that the system is unstabilizable and undetectable, which is a
contradiction; so there are no eigenvalues on the unit circle.

Further, it is straightforward to show that det(μF − G) �= 0. Note that if the
determinant were identically zero, it would also be zero for |μ| = 1, which con-
tradicts the fact that the pair (F , G) has no eigenvalues on the unit circle. Next
we show, as in the case of the Hamiltonian H , that if ν �= 0 is an eigenvalue of
(μF − G), then 1/ν is also an eigenvalue. To show this, assume that y is a left
eigenvector corresponding to eigenvalue ν. Then

yHG = νyHF,

yHGJGT = νyHFJGT,

yHFJFT = νyHFJGT,

(1/ν)xTF T = xHGT,

Gx = (1/ν)Fx

(where xH = yHFJ), which shows that if ν �= 0 is an eigenvalue of (μF − G),
then 1/ν is also an eigenvalue. What this means is that there exist matrices V
and W such that the 2n eigenvalues can be arranged as (see Appendix A.5)
⎡
⎢⎢⎣

μI − M0 0 0 0
0 μI − Mf 0 0
0 0 μI − M−1

f 0
0 0 0 μN0 − I

⎤
⎥⎥⎦ =

[
μNs − Ms 0

0 μNu − Mu

]

where the n generalized eigenvalues of (Ns = I,Ms) are stable, i.e., |μi | < 1, and
the eigenvalues of (Nu, Mu) are the reciprocals of the generalized eigenvalues
of (Ns, Ms), i.e., |μi |> 1; that is, the n generalized eigenvalues of (Nu, Mu)

are unstable. Note that in the case where A is singular some of the unstable
eigenvalues lie at infinity.

Let Vs be the 2n × n matrix corresponding to the stable eigenvalues, that is,
the first n columns of the matrix V . Then

GVs = FVsMs, (2.4-47)

where Ms is in Jordan canonical form, corresponding to all stable eigenvalues.
By substituting for F , G and conformably partitioning Vs , equation (2.4-47) can
be rewritten as [

A 0
−Q I

] [
V1s

V2s

]
=

[
I BR−1BT

0 AT

] [
V1sMs

V2sMs

]

or
AV1s = V1sMs + BR−1BTV2sMs (2.4-48)

−QV1s + V2s = ATV2sMs. (2.4-49)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 88

88 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Since V1s is nonsingular (see Appendix A), equation (2.4-48) can be rewritten as

A = V1sMsV
−1

1s + BR−1BTV2sMsV
−1

1s = (V1s + BR−1BTV2s)MsV
−1
1s (2.4-50)

and (2.4-49) can be written as

S = V2sV
−1
1s = ATV2sMsV

−1
1s + Q. (2.4-51)

In the sequel it is shown that S described in (2.4-51) is a solution to the
discrete ARE. Note that using the inversion lemma, the ARE can be written as

S = ATS(I + BR−1BTS)−1A + Q. (2.4-52)

Substituting (2.4-51), the ARE (2.4-52) becomes

ATV2sMsV
−1
1s = ATV2sV

−1
1s (I + BR−1BTV2sV

−1
1s)−1A.

Substituting A from equation (2.4-50), the ARE becomes

ATV2sMs = ATV2s(V1s + BR−1BTV2s)
−1(V1sMs + BR−1BTV2sMs),

or
ATV2sMs = ATV2s(V1s + BR−1BTV2s)

−1(V1s + BR−1BTV2s)Ms,

which shows that (2.4-51) is a solution to the ARE.
It remains to show that S is the stabilizing solution to the ARE. That is, the

closed-loop system matrix (A − B(BTSB + R)−1BTSA) has stable eigenvalues.
The closed-loop matrix is

A − B(BTSB + R)−1BTSA = (I − B(BTSB + R)−1BTS)A

= (I + BR−1BTS)−1A

= (I + BR−1BTV2sV
−1

1s)−1A

= V1s(V1s + BR−1BTV2s)
−1A

= V1sMsV
−1

1s ,

which shows that the closed-loop system matrix (A − B(BTSB + R)−1BTSA) and
Ms have the same spectrum. Therefore, the closed-loop spectrum corresponds to
the stable eigenvalues of the symplectic pair (F , G).

The calculation of generalized eigenvectors has significant difficulties that
may lead to inaccurate results; in particular, in the case of multiple eigenvalues.
To avoid this problem, the solution to the ARE is computed by using the QZ
algorithm and the generalized Schur form. For more details on efficient and stable

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 89

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 89

computations of solutions to algebraic Riccati equations see Laub (1979), Pappas,
Laub, and Sandell (1980), and Bittanti, Laub, and Willems (1991).

Example 2.4-5. Discrete Riccati Equation: System Matrix A Singular

This example is from Åström and Wittenmark (1984). Let the plant be described by

xk+1 =
[

1 1

0 0

]
xk +

[
0

1

]
uk

yk = [
1 0

]
xk,

and the cost function by

J = 1

2

∞∑
k=0

(yT
k yk + uT

k uk).

Then the matrices for the generalized eigenvalue problem are (see equation (2.4-45))

F =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 1

0 0 1 0

0 0 1 0

⎤
⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎣

1 1 0 0

0 0 0 0

−1 0 1 0

1 0 0 1

⎤
⎥⎥⎥⎦ .

The finite eigenvalues of (F , G) are the roots of the equation

det(μF − G) = μ(μ2 − 3μ + 1) = 0,

which are μ1 = 0, μ2 = 0.3820, and μ3 = 2.6180. The fourth eigenvalue is an infinite
one. The eigenvectors corresponding to the two stable eigenvalues are

Vs =
[
V1s

V2s

]
=

⎡
⎢⎢⎢⎣

0.4777 −0.5774

−0.2952 0.5774

0.7730 −0.5774

0.2952 0.0000

⎤
⎥⎥⎥⎦ .

Then the solution to the ARE is

S = V1sV
−1

2s =
[

0.7730 −0.5774

0.2952 0.0000

] [
0.4777 −0.5774

−0.2952 0.5774

]−1

=
[

2.6180 1.6180

1.6180 1.6180

]
.

The feedback gain is

K = (BTSB + I)−1BTSA = [
0.6180 0.6180

]
.

�

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 90

90 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Design of Steady-state Regulators by Eigenstructure Assignment

The results of the previous subsection gave us an alternative design procedure
for the optimal steady-state LQ regulator that did not involve solving a Riccati
equation. It involved finding S∞ from the unstable eigenvectors of the Hamilto-
nian matrix H in (2.4-21). Let us now discuss a method for finding the optimal
steady-state gain K∞ directly from the eigenstructure of the Hamiltonian system.

We assume here that (A, B) is stabilizable and (A,
√

Q) is detectable. First,
write the Hamiltonian system (2.4-20) as the forward recursion

[
xk+1

λk+1

]
=

[
A + BR−1BTA−TQ −BR−TBTA−T

−A−TQ A−T

] [
xk

λk

]
, (2.4-53)

where the coefficient matrix is H−1 in (2.4-26). Let μ be an eigenvector of
H−1. Then the eigenvectors of H−1 corresponding to μ are the eigenvectors
of H corresponding to 1/μ (Appendix A). Hence, W11, W21 in (2.4-42) can
alternatively be found by partitioning the stable eigenvectors of H−1. In terms
of the state vector only, the steady-state closed-loop system with the optimal
control uk = −K∞xk is

xk+1 = (A − BK∞)xk. (2.4-54)

Both (2.4-53) and (2.4-54) characterize the optimal closed-loop plant. We want
to demonstrate that the eigenvalues of the optimal closed-loop system (2.4-54)
are simply the stable eigenvalues of H−1 and that the n eigenvectors of (2.4-54)
are given by the columns of W11.

Suppose that μi is an eigenvalue of the optimal closed-loop system (Kailath
1980). Then, if only the mode corresponding to μi is excited, the state, control,
and costate are described by

xk = Xiμ
k
i , (2.4-55a)

uk = Uiμ
k
i , (2.4-55b)

λk = �iμ
k
i , (2.4-55c)

for some vectors Xi , Ui , �i . But xk+1 = Axk + Buk, or

Xiμ
k+1
i = AXiμ

k
i + BUiμ

k
i ,

so that
(μiI − A)Xi = BUi. (2.4-56)

The optimal control is uk = −K∞xk, so that

Ui = −K∞Xi (2.4-57)

and
(μiI − A + BK∞)Xi = 0. (2.4-58)

Thus, Xi is an eigenvector of the closed-loop plant (2.4-54) for eigenvalue μi .

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 91

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 91

Now focus on the representation (2.4-53). Using (2.4-55a) and (2.4-55c)
we have

μi

[
Xi

�i

]
= H−1

[
Xi

�i

]
. (2.4-59)

Hence, [
Xi

�i

]

is an eigenvector of H−1 for eigenvalue μi .
According to Theorem 2.4-2, (A − BK∞) is stable, so that |μi | < 1. Hence,

the eigenvalues of (2.4-54) are the stable eigenvalues of H−1 and the eigenvectors
of (2.4-54) are the top halves of the stable eigenvectors of H−1.

To see why this is useful, observe that H−1 can be written down by inspec-
tion. Its stable eigenvalues and eigenvectors can be found, and these are the
desired pole locations and associated eigenvectors of the optimal closed-loop
plant.

If the plant is single input, we do not need to determine the eigenvectors of
H−1, since given only the desired closed-loop eigenvalues we can use Acker-
mann’s formula to find the required feedback K∞. According to this formula,
the state feedback K is required to assign a desired closed-loop characteristic
polynomial �d(s) is

K = eT
nU−1

n �d(A), (2.4-60)

where en is the last column of the n × n identity matrix, Un is the reachability
matrix (2.4-17), and �d(A) is the desired characteristic polynomial evaluated at
A (Franklin and Powell 1980).

In the multivariable case, the desired closed-loop eigenvalues are not suffi-
cient to determine the required feedback—the closed-loop eigenvectors are also
required. In general, we can compute K∞ from the eigenstructure of H−1 as
follows.

Suppose the closed-loop eigenvalues are distinct. Then the optimal control is
uk = −R−1BTλk+1, so that

Ui = −R−1BTμi�i. (2.4-61)

The optimal feedback satisfies (2.4-57), so that

K∞Xi = R−1BTμi�i. (2.4-62)

Let X be a matrix whose columns are the Xi , and � be a matrix whose columns
are the corresponding �i (where [

Xi

�i

]

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 92

92 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

is an eigenvector of the stable eigenvalue μi of H−1). Let M = diag[μ1, . . . , μn].
Then, evidently,

K∞ = R−1BT�MX−1. (2.4-63)

Compare this with (2.4-42) (W11 = X, W21 = �).
If μi is complex, then so are Xi and �i . In this event, there is a block in

(2.4-63) of the form

[�i λ∗
i]

[
μi 0
0 μ∗

i

]
[Xi X∗

i]−1.

By premultiplying and postmultiplying diag[ui, μ∗
i] by

I = 1

2

[
1 −j

1 j

]
·
[

1 1
j −j

]
,

we see that this block can be replaced by

[Re(�i) Im(�i)]

[
Re(μi) Im(μi)

−Im(μi) Re(μi)

]
[Re(Xi) Im(Xi)]

−1,

which results in a real feedback gain K∞.
Note that |X| �= 0 since the μi were assumed to be distinct. If this is not the

case, then generalized eigenvectors must be used in manufacturing X .
It is worth remarking that if the state-weighting matrix Q is zero, then

H−1 =
[
A −BR−1BTA−T

0 A−T

]
. (2.4-64)

In this case the eigenvalues of H−1 are the eigenvalues of A plus those of A−1

(i.e., those of A−T). The optimal closed-loop poles are therefore found simply
by taking the stable poles of A, and the reciprocals of the unstable poles of A,
since this yields the set of stable eigenvalues of H−1. These are also the optimal
closed-loop poles in the case of infinite control weighting R → ∞.

Example 2.4-6. Eigenstructure Design of Steady-state Regulator for Harmonic
Oscillator

Suppose our plant is the harmonic oscillator

ẋ =
[

0 1

−ω2
n −2δωn

]
x +

[
0

10

]
u (1)

with natural frequency ωn = √
2 and damping ratio δ = −1/

√
2, so that

ẋ =
[

0 1

−2 2

]
x +

[
0

10

]
u. (2)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 93

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 93

The plant is unstable with poles at 1 ± j . Discretizing with T = 25 msec yields (we give
only three decimal places)

xk+1 =
[

0.999 0.026

−0.051 1.051

]
xk +

[
0.003

0.256

]
uk

�=Axk + Buk. (3)

The open-loop poles are at

z = 1.025 ± j0.026. (4)

Let us associate with (3) the infinite-horizon performance index

J0 = 1

2

∞∑
k=0

(qxT
k xk + u2

k) (5)

(i.e., Q = qI), where the infinite time interval [0, ∞] means we are seeking the optimal
steady-state control.

a. Locus of Optimal Closed-loop Poles versus q

Here we investigate the effect of q on the optimal closed-loop poles. To do this, we can
look at the eigenstructure of the Hamiltonian matrix (R = 1)

H−1 =
[
A + BBTA−Tq −BBTA−T

−A−Tq A−T

]
. (6)

A program was written to plot the eigenvalues of H−1 as q varies. The resulting root-locus
is shown in Fig. 2.4-6. The poles of the optimal closed-loop plant

xk+1 = (A − BK∞)xk
�= Acl

∞xk (7)

are given by the stable poles of H−1. For q = 0, these are

z = 0.975 ± j0.024, (8)

which are simply the poles of the original plant reflected inside the unit circle (i.e., their
reciprocals). As q → ∞ the optimal closed-loop poles tend to

z = 0,0.975. (9)

We now discuss three ways to find the optimal steady-state feedback

uk = −K∞xk (10)

for the case of q = 0.07.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 94

94 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

FIGURE 2.4-6 Locus of eigenvalues of H−1 as state weighting q varies. (Values of q
are in parentheses. The increment in q is 0.01.)

b. Solution of the Algebraic Riccati Equation

To solve the ARE (2.4-12), we use a final condition of S = I (any final condition will
do since (A, B) is reachable and (A,

√
Q) is observable) in (2.4-2) and iterate until the

solution converges. This occurs after 200 iterations (5 sec) and yields

S∞ =
[

6.535 0.528

0.528 2.314

]
. (11)

We now use (2.4-13) to find the optimal steady-state feedback gain

K∞ = [0.109 0.545]. (12)

The resulting closed-loop plant is

Acl
∞ = (A − BK∞) =

[
0.999 0.024

−0.079 0.911

]
, (13)

which has stable poles of
z = 0.962, 0.948. (14)

These correspond to q = 0.07 in Fig. 2.4-6.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 95

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 95

c. Ackermann’s Formula

We can avoid solving the ARE as follows. If q = 0.07, the optimal closed-loop poles are
the stable eigenvalues of H−1. These are found by the program that generated Fig. 2.4-6
to be 0.962, 0.948. Therefore, the desired closed-loop characteristic polynomial is

�cl(z) = (z − 0.962)(z − 0.948) = z2 − 1.910z + 0.912. (15)

The reachability matrix is

U2 = [B AB] =
[

0.003 0.010

0.256 0.269

]
. (16)

According to Ackermann’s formula,

K∞ = [0 1]U−1
2 �cl(A), (17)

where �cl(A) = A2 − 1.910A + 0.912I is just a 2 × 2 real matrix. This again results
in (12).

d. Eigenstructure Assignment

Another way to avoid solving the ARE is to use (2.4-63). The diagonal matrix of stable
eigenvalues of H−1 for q = 0.07 is

M =
[

0.962 0

0 0.948

]
, (18)

and the associated eigenvectors are the columns in

⎡
⎢⎢⎢⎣

0.148 0.764

−0.229 −1.640
0.849 4.130

−0.452 −3.392

⎤
⎥⎥⎥⎦

�=
[

X

�

]
. (19)

Using these matrices in (2.4-63) yields exactly (12).
We can also check our analytic ARE solution (2.4-42). If we compute

S∞ = W21W
−1
11 = �X−1, (20)

we get exactly (11). �

Time-varying Plant

If the original plant is time varying, we need to redefine observability and reach-
ability to discuss the asymptotic LQ regulator. Let the plant and cost function be
given by

xk+1 = Akxk + Bkuk, (2.4-65)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 96

96 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(xT
k Qkxk + uT

k Rkuk). (2.4-66)

Define the discrete state transition matrix as

φ(k, i) = Ak−1Ak−2 · · ·Ai for k > i, with φ(k, k) = I. (2.4-67)

Then we say the plant is uniformly completely observable if for every N the
observability gramian satisfies

α0I ≤
N−1∑
k=i

φT(k, i)Qkφ(k, i) ≤ α1I (2.4-68)

for some I < N , α0 > 0, and α1 > 0. This guarantees the positive definiteness of
both the gramian and its inverse. Compare (2.4-68) with (2.2-24). We say the
plant is uniformly completely reachable if for every i the reachability gramian
satisfies

α0I ≤
N−1∑
k=i

φ(N, k + 1)BkR
−1
k BT

k φT(N, k + 1) ≤ a1I (2.4-69)

for some N > i, α0 > 0, and α0 > 0. Compare with the time-invariant reachability
gramian (2.2-36).

If the plant is time varying, then there is, in general, no constant steady-
state solution to the Riccati equation. However, uniform complete observability
and reachability (and boundedness of Ak , Bk, Qk , Rk) guarantee that for large
(N − k) the behavior of Sk is unique, independent of SN . They also guarantee
uniform asymptotic stability of the closed-loop plant (A − BKk). See Kalman
and Bucy (1961) and Kalman (1963).

2.5 FREQUENCY-DOMAIN RESULTS

In the steady-state case with time-invariant plant, the optimal closed-loop sys-
tem is also time invariant, and we can work in the frequency domain to derive
two important results. One of these yields further insight on the fictitious out-
put (2.4-15), and the other gives a frequency-domain approach to the design of
optimal regulators that is similar to the classical root-locus technique.

A Factorization Result

The optimal steady-state LQ regulator is given by the constant feedback

uk = −Kxk, (2.5-1)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 97

2.5 FREQUENCY-DOMAIN RESULTS 97

where
K = (BTS∞B + R)−1BTS∞A. (2.5-2)

(For notational convenience, we write K instead of K∞.) S∞ is the unique pos-
itive definite solution to the ARE

S = AT[S − SB(BTSB + R)−1BTS]A + Q (2.5-3)

(we assume (A, B) is stabilizable and (A,
√

Q) is observable). The resulting
time-invariant closed-loop system

xk+1 = (A − BK)xk (2.5-4)

is asymptotically stable.
To derive a relation between the open-loop characteristic polynomial �(z) =

|zI − A| and the optimal closed-loop characteristic polynomial �cl(z), note that
(Appendix A)

�cl(z) = |zI − A + BK|
= |I + BK(zI − A)−1| · |zI − A|
= |I + K(zI − A)−1B| · �(z).

(2.5-5)

This identity will be useful shortly. According to Fig. 2.5-1, −K(zI − A)−1B

can be interpreted as a loop gain matrix, so that I + K(zI − A)−1B is a return
difference matrix.

To derive the result on which this section is based, note that

S − ATSA = (z−1I − A)TS(zI − A) + (z−1I − A)TSA + ATS(zI − A).

(2.5-6)

FIGURE 2.5-1 Optimal closed-loop system with control drawn as a state feedback.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 98

98 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Use the ARE to write

(z−1I − A)TS(zI − A) + (z−1I − A)TSA + ATS(zI − A)

+ ATSB(BTSB + R)−1BTSA = Q.

Premultiply this by BT(z−1I − A)−T and postmultiply it by (zI − A)−1B to get

BTSB + BTSA(zI − A)−1B + BT(z−1I − A)−TATSB

+ BT(z−1I − A)−TATSB(BTSB + R)−1BTSA(zI − A)−1B

= BT(z−1I − A)−TQ(zI − A)−1B.

Substitute from (2.5-2) to obtain

BTSB + (BTSB + R)K(zI − A)−1B + BT(z−1I − A)−TKT(BTSB + R)

+ BT(z−1I − A)−TK−T(BTSB + R)K(zI − A)−1B

= BT(z−1I − A)−TQ(zI − A)−1B.

Finally, add R to both sides and factor to see that

BT(z−1I − A)−TQ(zI − A)−1B + R

= [I + K(z−1I − A)−1B]T(BTSB + R)[I + K(zI − A)−1B].
(2.5-7)

Let us briefly discuss this result to try to get a feel for it. From (2.4-6) and
(2.4-15) we can write the transfer-function relation in the plant from the control
input to the fictitious output as

Y (z) =
[
C(zI − A)−1B

D

]
U(z), (2.5-8)

where Q = CTC and R = DTD. But

[
C(z−1I − A)−1B

D

]T [
C(zI − A)−1B

D

]
=BT(z−1I − A)−TQ(zI − A)−1B +R;

(2.5-9)

evidently, then, (2.5-7) shows that we can factor this transfer-function product in
terms of the return difference matrix.

Another point of view is obtained from Figs. 2.5-1 and 2.5-2. Define

H(z) = C(zI − A)−1B (2.5-10)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 99

2.5 FREQUENCY-DOMAIN RESULTS 99

FIGURE 2.5-2 Optimal closed-loop system with control drawn as a costate feedback.

as the transfer function in the original state system from the control input to y1
k ,

which is the partition of the fictitious output corresponding to Cxk (see (2.4-15)).
Then it is evident that

HT(z−1) = BT(z−1I − A)−TCT = BT(z−1I − AT)−1CT (2.5-11)

is the transfer function of the costate system from y1
k to the intermediate signal wk .

Therefore, (2.5-7) simply expresses an equivalence between a transfer-function
product in Fig. 2.5-2 and a transfer-function (i.e., return difference) product in
Fig. 2.5-1. It is simply another way of expressing the equivalence of the two
formulations of the LQ regulator (2.2-9) and Table 2.2-1.

We can use (2.5-5) and (2.5-7) to derive a frequency-domain method for
designing steady-state regulators, as we now show.

Chang–Letov Design Procedure for the Steady-state LQ Regulator

By using the characteristic polynomial relation (2.5-5) and the factorization result
(2.5-7) we can write the Chang–Letov equation

�cl(z−1)�cl(z) = |HT(z−1)H(z) + R| · �(z−1)�(z) · |BTSB + R|−1, (2.5-12)

where H (z) is defined in (2.5-10) (Q = CTC) (Chang 1961, Letov 1960). This
is a very useful result, since it provides an alternative frequency-domain method
for steady-state regulator design that is very similar to the classical root-locus
technique.

To see this, note that H(z) and the open-loop characteristic equation �(z)

can be computed immediately, given the plant and performance index. The term

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 100

100 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

|BTSB + R| depends on the as yet unknown ARE solution S (i.e., S∞), but
it is irrelevant since it only provides a normalizing constant. Thus, the entire
right-hand side of the Chang-Letov equation is known to within a multiplicative
constant.

The term �cl(z−1)�cl(z) on the left-hand side is a polynomial with quite
interesting properties. Its roots are the roots z i of �cl(z) and their reciprocals
1/zi (which are the roots of �cl(z−1)). The closed-loop plant (2.5-4) is stable,
so that the optimal closed-loop poles can be determined by selecting the stable
roots of the right-hand polynomial in (2.5-12)!

The importance of the Chang–Letov equation is now clear. It allows us to
determine directly from A, B, Q , and R, which are all known, the optimal closed-
loop poles. Then, in the single-input case, Ackermann’s formula or an equivalent
pole-placement technique can be used to determine the required optimal feedback
K . (In the multivariable case we need to know the optimal closed-loop eigen-
vectors also before K can be uniquely determined. Chang–Letov cannot tell us
these, but the techniques of Section 2.4 can be used.)

In the single-input case with Q = qI, we have

H(z) = √
q

[adj(zI − A)]B

�(z)

�=√
q

N(z)

�(z)
, (2.5-13)

where N(z) is a column vector. Then (2.5-12) becomes

�cl(z−1)�cl(z) = (q/r)NT(z−1)N(z) + �(z−1)�(z)

1 + BTSB/r
. (2.5-14)

The roots of the right-hand side are the zeros of

1 + q

r

NT(z−1)N(z)

�(z−1)�(z)
, (2.5-15)

which is in exactly the form required for root-locus analysis. That entire body
of theory therefore applies here. Evidently, then, as q/r varies from 0 (no state
weighting) to ∞ (no control weighting), the optimal closed-loop poles move
from the stable poles of

G(z)
�=HT(z−1)H(z) (2.5-16)

to its stable zeros. The ratio of cost weights q/r can therefore be selected to yield
suitable closed-loop poles.

The next example illustrates these ideas. Good references are Schultz and
Melsa (1967) and Kailath (1980).

Example 2.5-1. Root-locus Design of Steady-state Regulator for Harmonic Oscillator

To compare the Chang–Letov method with the steady-state regulator design methods in
Section 2.4, let us reconsider Example 2.4-6. The only thing we need to begin our design

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 101

2.5 FREQUENCY-DOMAIN RESULTS 101

is the “fictitious” transfer function

H(z) =
√

Q(zI − A)−1B (1)

Using A and B from Example 2.4-6, and Q = qI and R = 1 as in that example, this is
found to be (we show only three decimal places)

H(z)
�=√

q
N(z)

�(z)
= √

q

[
0.003z + 0.003

0.256z − 0.256

]

z2 − 2.050z + 1.051
. (2)

The design is based on the rational function

G(z) = NT(z−1)N(z)

�(z−1)�(z)
, (3)

since the zeros of

1 + q

r
G(z) (4)

are the roots of �cl(z−1)�cl(z). This function is

G(z) =

[
0.003z−1 + 0.003

0.256z−1 − 0.256

]T [
0.003z + 0.003

0.256z − 0.256

]

(z−2 − 2.050z−1 + 1.051)(z2 − 2.050z + 1.051)

= −0.066z3 + 0.131z2 − 0.066z

1.051z4 − 4.205z3 + 6.308z2 − 4.205z + 1.051
.

(5)

Note the symmetric form of the coefficients of the numerator and denominator; this means
that if z is a root of either of these polynomials, then z−1 is also.

G(z) can be factored as

G(z) = −0.063z(z − 0.975)(z − 1.025)

[(z − 0.975)2 + 0.0242][(z − 1.025)2 + 0.0262]
. (6)

If we draw the root locus of (4) as q varies from 0 to ∞, we obtain exactly Fig. 2.4-6!
Thus, the eigenvalues of the Hamiltonian matrix H−1 in (2.4-43) are exactly the roots of
(q/r)NT(z−1)N(z) + �(z−1)�(z).

According to the Chang-Letov equation, the optimal poles of the closed-loop plant
(A − BK) with LQ regulator are the stable zeros of (4) for any given q and r . When
q = 0, they are the original plant poles reflected inside the unit circle (i.e., unstable plant
poles z i are replaced by z−1

i), and when q → ∞, they are the zeros of H(z) reflected
inside the unit circle.

Suppose we examine the root locus and decide that the closed-loop poles corresponding
to q = 0.07 are satisfactory for our purposes. Then we can use Ackermann’s formula to
find the required optimal feedback K as in part c of Example 2.4-6. �

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 102

102 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

PROBLEMS

Section 2.1

2.1-1. Optimal control of a bilinear system. Let the scalar plant

xk+1 = xkuk + 1 (1)

have performance index

J = 1

2

N−1∑
k=0

u2
k, (2)

with final time N = 2. Given x0, it is desired to make x2 = 0.
a. Write state and costate equations with uk eliminated.
b. Assume the final costate λ2 is known. Solve for λ0, λ1 in terms of λ2 and

the state. Use this to express x2 in terms of λ2 and x0. Hence, find a quartic
equation for λ2 in terms of initial state x0.

c. If x0 = 1, find the optimal state and costate sequences, the optimal control,
and the optimal value of the performance index.

2.1-2. Optimal control of a bilinear system. Consider the bilinear system

xk+1 = Axk + Dxkuk + buk, (1)

where xk ∈ Rn, uk ∈ R, with quadratic performance index

J = 1

2
xT

NSNxN + 1

2

N−1∑
k=0

(xT
k Qxk + ru2

k), (2)

where SN ≥ 0, Q ≥ 0, r > 0. Show that the optimal control is the bilinear
state–costate feedback,

uk = −(b + Dxk)
Tλk+1/r, (3)

and that the state and costate equations after eliminating uk are

xk+1 = Axk − (b + Dxk)(b + Dxk)
Tλk+1/r, (4)

λk = Qxk + ATλk+1 − (b + Dxk)
Tλk+1D

Tλk+1/r. (5)

2.1-3. Optimal control of a generalized state-space system. Rederive the
equations in Table 2.1-1 to find the optimal controller for the nonlinear general-
ized state-space (or descriptor) system

Exk+1 = f k(xk, uk), (6)

where E is singular. These systems often arise in circuit analysis, economics,
and similar areas.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 103

PROBLEMS 103

Section 2.2

2.2-1. Writing the Lyapunov equation as a vector equation. Show that the
Lyapunov equation (2.2-21) can be written as the vector equation

s(Sk) = (AT
k ⊗ AT

k)s(Sk+1) + s(Qk), (1)

where the Kronecker product and stacking operator are defined in Appendix A.

2.2-2. Solutions to the algebraic Lyapunov equation.
a. Find all possible solutions to (2.2-26) if

A =
[

1
2 1

0 − 1
2

]
, C = [2 0], Q = CTC.

(Hint : Let

P =
[
p1 p2

p3 p4

]
,

substitute into (2.2-26), and solve for the scalars pi . Alternatively, the results
of Problem 2.2-1 can be used.)

b. Now find the symmetric solutions.

2.2-3. Prove that (2.2-57) and the Joseph-stabilized Riccati equation (2.2-62)
are equivalent to (2.2-53).

2.2-4. Control of a scalar system. Let xk+1 = 2xk + uk .
a. Find the homogeneous solution xk for k = 0, 5 if x0 = 3.
b. Find the minimum-energy control sequence uk required to drive x0 = 3 to

x5 = 0. Check your answer by finding the resulting state trajectory.
c. Find the optimal feedback gain sequence Kk to minimize the performance

index

J0 = 5x2
5 + 1

2

4∑
k=0

(x2
k + u2

k).

Find the resulting state trajectory and the costs to go J ∗
k for k = 0, 5.

2.2-5. Comparison of different discrete controllers

xk+1 =
[
− 1

2
1
2

3 −1

]
xk +

[
2 1
2 0

]
uk, x0 =

[
8
4

]
.

a. Find the open-loop control u0, u1 to drive the initial state to x2 = 0 while
minimizing the cost

Ja = 1

2

1∑
k=0

uT
k

[
2 0
0 1

]
uk.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 104

104 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

Check your answer by “simulation” (i.e., apply your u0, u1 to the plant to
verify that x2 = 0).

b. Find a constant state-variable feedback to input component one of the form

u1
k = −Kxk,

where uk = [u1
k u2

k]T, to yield a deadbeat control (all closed-loop poles at
the origin). Find the closed-loop state trajectory.

c. Let
Jc = 10xT

2 x2 + Ja,

with Ja as in part a. Solve the Riccati equation to determine the optimal
control u0, u1. Find the optimal cost.

d. Compare the state trajectories of parts a, b, and c.
e. Now suppose x0 = [1 2]T. How must the controls of parts a, b, and c be

modified?

2.2-6. Linear performance index. Let

xk+1 = Axk + Buk,

J = SNxN +
N−1∑
K=0

(Qxk + Ruk),

with J a scalar. Write state and costate equations and stationarity condition.
What is the problem? (We shall learn how to deal with linear cost indices in
Section 5.2.)

2.2-7. Cubic performance index. Let

xk+1 = axk + buk,

where xk and uk are scalars, and

J = 1

3
sNx3

N + 1

3

N−1∑
k=0

(qx3
k + ru3

k).

a. Write state and costate equations and stationarity condition.
b. When can we solve for uk? Under this condition, eliminate uk from the state

equation.
c. Solve the open-loop control problem (i.e., xN fixed, sN = 0, q = 0).

2.2-8. Optimal control with weighting of state-input inner product
a. Redo Problem 2.2-4c if the cost index is

J = 5x2
5 + 1

2

4∑
k=0

(x2
k + u2

k + 2xkuk).

b. Redo Problem 2.2-5c if the term 2xT
k uk is added to Ja .

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 105

PROBLEMS 105

2.2-9. Information formulation of the Riccati equation. If SN is very large,
then it is convenient to use the information formulation of the discrete Ric-
cati equation, which propagates S−1

k instead of Sk . (The name derives from the
filtering application of the Riccati equation.)

Separate the Riccati equation into two parts by defining the intermediate
matrix

Sk+1
�= Sk+1 − Sk+1B(BTSk+1B + R)−1BTSk+1. (1)

Then
Sk = ATSk+1A + Q. (2)

The first of these equations incorporates the effect of the control input on the
performance index Jk; note that Sk+1 ≤ Sk+1. The second equation shows the
effects of the plant dynamics and state weighting Q on Jk; these effects generally
make Sk larger than Kk+1.
a. Show that input update (1) can be written

S
−1
k+1 = S−1

k+1 + BR−1BT. (3)

b. Assume |A| �= 0, Q > 0, and define

Fk+1 = A−1S
−1
k A−T. (4)

Show that the state update (2) can be written

S−1
k = Fk+1 − Fk+1(Fk+1 + Q−1)−1Fk+1. (5)

If the information Kalman gain is defined as

Gk = (Fk+1 + Q−1)−1Fk+1, (6)

this becomes
S−1

k = Fk+1(I − Gk). (7)

The information update is given by (3), (4), (6), and (7).

2.2-10. Square-root Riccati formulations. Split the Riccati equation into two
parts as in Problem 2.2-9 and define the roots Pk, P k by Sk = P T

k Pk, Sk = P
T
k Pk .

The following results show how to propagate P k, Pk instead of Sk, Sk and yield
numerically stable algorithms. See Schmidt (1967, 1970), Businger and Golub
(1965), Dyer and McReynolds (1969), Bierman (1977), Morf and Kailath (1975),
and Kaminski et al. (1971).
a. Show that the state update is equivalent to

T1

[
P k+1A

C

]
=

[
Pk

0

]
, (1)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 106

106 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

where Q = CTC, and T1 is any orthogonal transformation (i.e., T T
1 T1 = I)

selected so that Pk has n rows.
b. Show that the input update is equivalent to

T2

[
D 0

Pk+1B Pk+1

]
=

[
(BTSk+1B + R)1/2 Kk+1

0 P k+1

]
, (2)

where R = DTD, and T2 is any orthogonal matrix such that P k+1 has n rows.
c. Show that both updates can be expressed together in square-root form as

T3

⎡
⎢⎣

D 0

Pk+1B Pk+1A

0 C

⎤
⎥⎦ =

⎡
⎢⎣

(BTSk+1B + R)1/2 Kk+1A

0 Pk

0 0

⎤
⎥⎦ , (3)

where T3 is orthogonal.

Section 2.3

2.3-1. Digital control of harmonic oscillator. A harmonic oscillator is
described by

ẋ1 = x2

ẋ2 = −ω2
nx1 + u.

(1)

a. Discretize the plant using a sampling period of T .
b. With the discretized plant, associate a performance index of

J = 1

2

[
s1(x

1
N)2 + s2(x

2
N)2] + 1

2

N−1∑
k=0

[
q1(x

1
k)

2 + q2(x
2
k)

2 + ru2
k

]
, (2)

where the state is xk = [x1
k x2

k]T. Write scalar equations for a digital optimal
controller.

c. Write a MATLAB subroutine to simulate the plant dynamics, and use the time
response program lsim.m to obtain zero-input state trajectories.

d. Write a MATLAB subroutine to compute and store the optimal control gains
and to update the control uk given the current state xk. Write a MATLAB
driver program to obtain time response plots for the optimal controller.

2.3-2. Digital control of an unstable system. Repeat the previous problem for

ẋ1 = x2,

ẋ2 = a2x1 + bu.
(3)

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 107

PROBLEMS 107

2.3-3. Digital controller with weighting of state–input inner product. Mod-
ify your controller in Problem 2.3-1 to include terms like

v1x
1
k uk + v2x

2
k uk

in the performance index, where v1 and v2 are scalar weightings.

2.3-4. General digital control subroutine. For a general time-invariant plant
and performance index as in Table 2.2-1, use MATLAB to write m-files to com-
pute and store the optimal feedback gains Kk.

Section 2.4

2.4-1. Steady-state behavior. In this problem we consider a rather unrealistic
discrete system because it is simple enough to allow an analytic treatment. Thus,
let the plant

xk+1 =
[

0 1

0 0

]
xk +

[
0

1

]
uk (1)

have performance index of

J0 = 1

2
xT

NxN + 1

2

N−1∑
k=0

(
xT

k

[
q1 q2

q2 q1

]
xk + ru2

k

)
. (2)

a. Find the optimal steady-state (i.e., N → ∞) Riccati solution S∗∞ and show that
it is positive definite. Find the optimal steady-state gain K∗∞ and determine
when it is nonzero.

b. Find the optimal steady-state closed-loop plant and demonstrate its stability.
c. Now the suboptimal constant feedback

uk = −K∗
∞xk (3)

is applied to the plant. Find scalar updates for the components of the sub-
optimal cost kernel Sk . Find the suboptimal steady-state cost kernel S∞ and
demonstrate that S∞ = S∗

∞.

2.4-2. Analytic Riccati solution. Let

A =
[

1 1

0 1

]
, B =

[
0

1

]
, SN = I, Q = I.

Lewis c02.tex V1 - 10/19/2011 3:38pm Page 108

108 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

a. Let r = 0.1. Find the Hamiltonian matrix H and its eigenvalues and eigenvec-
tors. Find the analytic expression for Riccati solution Sk . Find the steady-state
solution S∞ using (2.4-42). Find the optimal steady-state gain K∞ using
(2.4-63) and also using Ackermann’s formula.

b. Let r = 1. Find the Hamiltonian matrix and its eigenstructure. Find the steady-
state solution S∞ and gain K∞. (Hint : See the discussion following (2.4-63).)

2.4-3. Software for plotting optimal closed-loop poles
a. For the LQ case, write a computer program to

1. Compute the Hamiltonian matrix H .
2. Find eigenstructure of H . You can use MATLAB routine eig.m .
3. Compute the steady-state Riccati solution S∞.
4. Compute the steady-state gain K∞ and closed-loop system Acl.

b. Modify your program to find the optimal steady-state closed-loop poles as a
function of r , the control weighting. (Note that you only need to do 1 and
2 for this.) You now have a design tool to select the cost-weighting matrices
Q = qI and R = rI to yield desired closed-loop performance at steady state.

Section 2.5

2.5-1. Chang–Letov design.
a. For the system in Problem 2.4-2, use the Chang–Letov procedure and Ack-

ermann’s formula to find the optimal steady-state feedback gain K∞ and
closed-loop plant if r = 0.1.

b. Plot a root locus of the closed-loop poles as r varies from ∞ to 0.

2.5-2. Reciprocal polynomials. Let φ(z) = z2 + 2αz + ω2. Find and sketch
the roots z1, z2 of φ(z). Define the reciprocal polynomial as z2φ(z−1) = ω2z2 +
2αz + 1. Show that the roots of z2φ(z−1) are the roots of φ(z) reflected about
the unit circle. That is, they are equal to 1/z1 and 1/z2.

2.5-3. Decomposition of polynomials using a reciprocal polynomial.
a. Show that any polynomial P (z) of degree n with real coefficients can be

decomposed as

P(z) = P1(z) + P2(z), (1)

where the mirror-image and anti-mirror-image polynomials are defined by

P1(z) = 1
2 (P (z) + znP (z−1)), (2)

P2(z) = 1
2 (P (z) + znP (z−1)). (3)

Lewis c02.tex V1 - 10/19/2011 3:38pm

PROBLEMS 109

b. Show that

P1(z) = znP1(z
−1), (4)

P2(z) = −znP2(z
−1). (5)

(Compare this with the decomposition of a real matrix into symmetric and
antisymmetric matrices. Hence, note that the reciprocal polynomial znP (z−1)

plays a role similar to that of the transpose of a matrix.)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 110

3
OPTIMAL CONTROL
OF CONTINUOUS-TIME SYSTEMS

We shall now discuss optimal control for systems with a continuous time index.
From a glance at the table of contents, it is apparent that this chapter will follow
the development of Chapter 2.

There are several distinctions between the optimal control problems for con-
tinuous and discrete systems, the most noticeable of which is that the continuous
control laws are based on equations of a simpler form than their discrete coun-
terparts. That will allow us to obtain some analytic solutions in this chapter.
Another distinction arises in the initial stages of the derivation of the control
law. For continuous systems, we must distinguish between differentials and vari-
ations in a quantity, which we did not need to do in Chapter 2. This means
that we shall need to use the calculus of variations, which is briefly reviewed in
Section 3.1.

The continuous dependence on time also makes it fairly simple to talk about
minimum-time problems, which we do in Chapter 5. The derivations in this
chapter are for the most part similar to those for discrete systems, and we shall
attempt to set them down in a manner that makes clear what is going on without
duplicating too much of our work from Chapter 2.

3.1 THE CALCULUS OF VARIATIONS

Only a few ideas from the calculus of variations will be needed, so our review will
be short. For an in-depth discussion, see Athans and Falb (1966) or Kirk (1970).
In Section 3.2 we shall be concerned with minimizing an augmented performance
index J′ exactly as we were in Chapter 2. To perform this minimization, we need

110

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 111

3.1 THE CALCULUS OF VARIATIONS 111

to find the change induced in J′ by independent changes in all of its arguments
(cf. (2.1-6)). Unfortunately, we shall run into a slight problem. The change in
J′ will depend on the time and state differentials dt and dx . However, these
quantities are not independent. The purpose of this section is to clear up this
point and to derive a relation that will soon be useful.

If x (t) is a continuous function of time t , then the differentials dx (t) and
dt are not independent. We can, however, define a small change in x (t) that is
independent of dt . Let us define the variation in x (t), δx(t), as the incremental
change in x (t) when time t is held fixed.

To find the relations among dx , δx , and dt , examine Fig. 3.1-1. Here we show
the original function x (t) and a neighboring function x(t) + dx(t) over an interval
specified by initial time t0 and final time T (Bryson and Ho 1975). In addition to
the increment dx (t) at each time t , the final time has been incremented by dT . It
is clear from the illustration that the overall increment in x at T , dx (T), depends
on dT . According to our definition, the variation δx(T) occurs at the fixed value
of t = T , as shown and is independent of dT . Since x (t) and x(t) + dx(t) have
approximately the same slope ẋ(T) at t = T , and since dT is small, we have

dx(T) = δx(T) + ẋ(T) dT. (3.1-1)

This relation is the one we shall need later.
Another relation we shall need is Leibniz’s rule for functionals: if x(t) ∈ Rn

is a function of t and

J (x) =
∫ T

t0

h(x(t), t) dt, (3.1-2)

FIGURE 3.1-1 Relation between the variation δx and the differential dx .

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 112

112 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

where J (·) and h(·) are both real scalar functionals (i.e., functions of the function
x (t)), then

dJ = h(x(T), T) dT − h(x(t0), t0) dt0

+
∫ T

t0

[
hT

x (x(t), t)δx
]

dt. (3.1-3)

Our notation is
hx

�= ∂h

∂x
.

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME
OPTIMIZATION PROBLEM

The philosophy in this chapter is to derive the solution to the continuous optimal
control problem in the most general case. This is accomplished in the present
section. Then, in subsequent sections, we consider various special cases of the
general solution. The discussion at the beginning of Chapter 2 and the comments
in Section 2.1 also apply here; they provide some insight on the formulation of
the optimal control problem.

Problem Formulation and Solution

Suppose the plant is described by the nonlinear time-varying dynamical equation

ẋ(t) = f (x, u, t), (3.2-1)

with state x(t) ∈ Rn and control input u(t) ∈ Rm. With this system let us asso-
ciate the performance index

J (t0) = φ(x(T), T) +
∫ T

t0

L(x(t), u(t), t) dt, (3.2-2)

where [t0, T] is the time interval of interest. The final weighting function
φ(x(T), T) depends on the final state and final time, and the weighting function
L(x, u, t) depends on the state and input at intermediate times in [t0, T].

The performance index is selected to make the plant exhibit a desired
type of performance. Some different possibilities for J (t0) are discussed in
Example 2.1-1, which carries over to the continuous case.

The optimal control problem is to find the input u∗(t) on the time interval
[t0, T] that drives the plant (3.2-1) along a trajectory x∗(t) such that the cost
function (3.2-2) is minimized, and such that

ψ(x(T), T) = 0 (3.2-3)

for a given function ψ ∈ Rp. This corresponds to the function-of-final-state-fixed
discrete problem solved in Section 4.5.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 113

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 113

The roles of the final weighting function φ and the fixed final function ψ

should not be confused. φ(x(T), T) is a function of the final state, which we want
to make small . An illustration might be the energy, which is [xT(T)S(T)x(T)]/2,
where S (T) is a given weighting matrix. On the other hand, ψ(x(T), T) is a
function of the final state, which we want fixed at exactly zero. As an illustration,
consider a satellite with state x = [rṙθ θ̇]T, where r and θ are radius and angular
position. If we want to place the satellite in a circular orbit with radius R, then
the final state function to be zeroed would be

ψ(x(T), T) =

⎡
⎢⎢⎢⎣

r(T) − R

ṙ(T)

θ̇(T) =
√

μ

R3

⎤
⎥⎥⎥⎦ ,

with μ = GM the gravitational constant of the attracting mass M .
To solve the continuous optimal control problem, we shall use Lagrange mul-

tipliers to adjoin the constraints (3.2-1) and (3.2-3) to the performance index
(3.2-2). Since (3.2-1) holds at each t ∈ [t0, T], we require an associated mul-
tiplier λ(t) ∈ Rn, which is a function of time. Since (3.2-3) holds only at one
time, we require only a constant associated multiplier ν ∈ Rp. The augmented
performance index is thus

J ′ = φ(x(T), T) + νTψ(x(T), T)

+
∫ T

t0

[
L(x, u, t) + λT(t)(f (t)(x, u, t) − ẋ)

]
dt. (3.2-4)

If we define the Hamiltonian function as

H(x, u, t) = L(x, u, t) + λTf (x, u, t), (3.2-5)

then we can rewrite (3.2-4) as

J ′ = φ(x(T), T) + νTψ(x(T), T)

+
∫ T

t0

[
H(x, u, t) − λTẋ

]
dt. (3.2-6)

Using Leibniz’s rule, the increment in J′ as a function of increments in x , λ, ν,
u , and t is

dJ′ = (φx + ψT
x ν)T dx |T + (φt + ψT

t ν) dt |T + ψT|T dν

+ (H − λTẋ) dt |T − (H − λTẋ) dt |t0
+

∫ T

t0

[
HT

x δx + HT
u δu − λTδẋ + (Hλ − ẋ)Tδλ

]
dt. (3.2-7)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 114

114 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

To eliminate the variation in ẋ, integrate by parts to see that

−
∫ T

t0

λTδẋ dt = −λTδx|T + λTδx|t0 +
∫ T

t0

λ̇Tδx dt. (3.2-8)

If we substitute this into (3.2-7), there result terms at t = T dependent on both
dx (t) and δx(T). We can express δx(T) in terms of dx (t) and dT using (3.1-1).
The result after these two substitutions is

dJ′ = (φx + ψT
x ν − λ)T dx |T + (φt + ψT

t ν + H − λTẋ + λTẋ) dt |T

+ ψT|T dν − (H − λTẋ + λTẋ) dt |t0 + λT dx |t0

+
∫ T

t0

[
(Hx + λ̇)Tδx + HT

u δu + (Hλ − ẋ)Tδλ
]

dt. (3.2-9)

According to the Lagrange theory, the constrained minimum of J is attained
at the unconstrained minimum of J′. This is achieved when dJ′ = 0 for all
independent increments in its arguments. Setting to zero the coefficients of the
independent increments dν, δx , δu , and δλ yields necessary conditions for a
minimum as shown in Table 3.2-1. For our applications, t0 and x (t0) are both
fixed and known, so that dt0 and dx (t0) are both zero. The two terms evaluated
at t = t0 in (3.2-9) are thus automatically equal to zero.

The final condition (3.2-10) in the table needs further discussion. We have seen
that dx (T) and dT are not independent (Fig. 3.1-1). Therefore, we cannot simply
set the coefficients of the first two terms on the right-hand side of (3.2-9) sepa-
rately equal to zero. Instead, the entire expression (3.2-10) must be zero at t = T .
Compare it with (2.7-7). The extra term in (3.2-10) arises in the present situation
since we have allowed for possible variations in the final time T . This will allow
us to deal with minimum-time problems, which we shall do in Chapter 5.

For convenience, we have shown the conditions in the table both in terms of
H and in terms of L and f . Compare these results with Table 2.1-1 and see the
associated discussion for further insight. Note that the discrete and continuous
costate equations are both dynamical equations that develop backward in time. In
the continuous case, this amounts to making the rate of change (i.e., λ̇) negative.
The costate equation is also called the adjoint to the state equation.

As in the discrete case, the optimal control in Table 3.2-1 depends on the
solution to a two-point boundary-value problem, since x (t0) is given and λ(T) is
determined by (3.2-10). It is, in general, very difficult to solve these problems.
We do not really care about the value of λ(t), but it must evidently be determined
as an intermediate step in finding the optimal control u∗(t), which depends on
λ(t) through the stationarity condition.

An important point is worth noting. The time derivative of the Hamiltonian is

Ḣ = Ht + HT
x ẋ + HT

u u̇ + λ̇Tf = Ht + HT
u u̇ + (Hx + λ̇)Tf. (3.2-11)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 115

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 115

TABLE 3.2-1 Continuous Nonlinear Optimal Controller with Function of Final
State Fixed

System model:

ẋ = f (x, u, t), t ≥ t0, t0 fixed

Performance index:

J (t0) = φ(x(T), T) +
∫ T

t0

L(x, u, t) dt

Final-state constraint:

ψ(x(T), T) = 0

Optimal controller
Hamiltonian:

H(x, u, t) = L(x, u, t) + λTf (x, u, t)

State equation:

ẋ = ∂H

∂λ
= f, t ≥ t0

Costate equation:

−λ̇ = ∂H

∂x
= ∂f T

∂x
λ + ∂L

∂x
, t ≤ T

Stationarity condition:

0 = ∂H

∂u
= ∂L

∂u
+ ∂f T

∂u
λ

Boundary conditions:

x(t0) given

(φx + ψT
x ν − λ)T|T dx(T) + (φt + ψT

t ν + H)|T dT = 0 (3.2-10)

If u(t) is an optimal control, then

Ḣ = Ht . (3.2-12)

Now, in the time-invariant case, f and L are not explicit functions of t , and so
neither is H . In this situation

Ḣ = 0. (3.2-13)

Hence, for time-invariant systems and cost functions, the Hamiltonian is a con-
stant on the optimal trajectory.

Let us begin to develop a feel for the continuous optimal controller by looking
at some examples.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 116

116 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Examples

The first two examples make the point that the solution to the optimization
problem given in Table 3.2-1 is very general; it does not only apply in system
theory. The next examples illustrate the computation of the optimal controller
for dynamical systems, the last example emphasizing that the optimal control
equations apply for general nonlinear systems.

Example 3.2-1. Hamilton’s Principle in Classical Dynamics

Hamilton’s principle for conservative systems in classical physics says that “of all possible
paths along which a dynamical system may move from one point to another within a
specified time interval (consistent with any constraints), the actual path followed is that
which minimizes the time integral of the difference between the kinetic and potential
energies” (Marion 1965).

a. Lagrange’s Equations of Motion

We can derive Lagrange’s equations of motion from this principle by defining (Bryson
and Ho 1975)

q
�= generalized coordinate vector,

u = q̇
�= generalized velocities,

U(q)
�= potential energy,

T (q, u)
�= kinetic energy,

L(q, u)
�= T (q, u) − U(q), the Lagrangian of the system.

The “plant” is then described by

q̇ = u
�= f (q, u), (1)

where the function f is given by the physics of the problem. To find the trajectories of
the motion, Hamilton’s principle says that we must minimize the performance index

J (0) =
∫ T

0
L(q, u) dt. (2)

Therefore, the Hamiltonian is
H = L + λTu. (3)

According to Table 3.2-1, for a minimum we require

−λ̇ = ∂H

∂q
= ∂L

∂q
(4)

and
0 = ∂H

∂u
= ∂L

∂u
+ λ. (5)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 117

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 117

Combining these equations yields Lagrange’s equations of motion

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (6)

It is worth emphasizing that in this context, the costate equation and the stationarity
condition are equivalent to Lagrange’s equation. In the general context of variational
problems, (6) is called Euler’s equation . The costate equation and stationarity condition
in Table 3.2-1 are, therefore, an alternative formulation of Euler’s equation.

In the context of this example, condition (3.2-13) is nothing more than a statement of
the conservation of energy!

b. Hamilton’s Equations of Motion

If we define the generalized momentum vector by

λ = −∂L

∂q̇
, (7)

then the equations of motion can be written in Hamilton’s form as

q̇ = ∂H

∂λ
, (8)

−λ̇ = ∂H

∂q
. (9)

Hence, in the optimal control problem, the state and costate equations are a generalized
formulation of Hamilton’s equations of motion! �

Example 3.2-2. Shortest Distance between Two Points

The length of a curve x (t) dependent on a parameter t between t = a and t = b is
given by

J =
∫ b

a

√
1 + ẋ2(t) dt. (1)

To specify that the curve join two points (a, A)(b, B) in the plane, we need to impose
the boundary conditions

x(a) = A, (2)

x(b) = B. (3)
See Shultz and Melsa (1967).

It is desired to find the curve x (t) joining (a , A) and (b, B) that minimizes (1). To put
this into the form of an optimal control problem, define the “input” by

ẋ = u. (4)

This is the “plant.” Then (1) becomes

J =
∫ b

a

√
1 + u2 dt. (5)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 118

118 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

The Hamiltonian is
H =

√
1 + u2 + λu. (6)

Now, Table 3.2-1 yields the conditions

ẋ = Hλ = u, (7)
−λ̇ = Hx = 0, (8)

0 = Hu = λ + u√
1 + u2

. (9)

To solve these for the optimal slope u , note that by (9)

u = −λ√
1 − λ2

, (10)

but according to (8), λ is constant. Hence,

u = const (11)

is the optimal “control.” Now use (7) to get

x(t) = c1t + c2. (12)

To determine c1 and c2, use the boundary conditions (2) and (3) to see that

x(t) = (A − B)t + (aB − bA)

a − b
. (13)

The optimal trajectory (13) between two points is thus a straight line. �

Example 3.2-3. Temperature Control in a Room

It is desired to heat a room using the least possible energy. If θ (t) is the temperature in
the room, θa the ambient air temperature outside (a constant), and u(t) the rate of heat
supply to the room, then the dynamics are

θ̇ = −a(θ − θa) + bu (1)

for some constants a and b, which depend on the room insulation and so on. By defining
the state as

x(t)
�= θ(t) − θa, (2)

we can write the state equation
ẋ = −ax + bu. (3)

See McClamroch (1980). To control the temperature on the fixed time interval [0, T] with
the least possible supplied energy, define the performance index as

J (0) = 1

2

∫ T

0
u2(t) dt. (4)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 119

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 119

We shall discuss two possible control objectives in parts a and b below. The Hamilto-
nian is

H = u2

2
+ λ(−ax + bu). (5)

According to Table 3.2-1, the optimal control u(t) is determined by solving

ẋ = Hλ = −ax + bu, (6)

λ̇ = −Hx = aλ, (7)

0 = Hu = u + bλ. (8)

The stationarity condition (8) says that the optimal control is given by

u(t) = −bλ(t), (9)

so to determine u∗(t) we need only find the optimal costate λ∗(t).
Substituting (9) into (6) yields the state–costate equations

ẋ = −ax − b2λ, (10a)

λ̇ = aλ, (10b)

which must now be solved for λ∗(t) and the optimal state trajectory x∗(t). We do not yet
know the final costate λ(T), but let us solve (10) as if we did. The solution to (10b) is

λ(t) = e−a(T −t)λ(T). (11)

Using this in (10a) yields
ẋ = −ax − b2λ(T)e−a(T −t). (12)

Using Laplace transforms to solve this gives

X(s) = x(0)

s + a
− b2λ(T)e−aT

(s + a)(s − a)

= x(0)

s + a
− b2

a
λ(T)e−aT

(−1/2

s + a
+ 1/2

s − a

)
(13)

so that

x(t) = x(0)e−at − b2

a
λ(T)e−aT sinh at. (14)

Equations (11) and (14) give the optimal costate λ∗(t) and state x∗(t) in terms of the as
yet unknown final costate λ(T). The initial state x (0) is given.

Now we consider two possible control objectives, which will give two ways to deter-
mine λ(T).

a. Fixed Final State

Suppose that the initial temperature of the room is equal to θa = 60◦. Then

x(0) = 0◦
. (15)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 120

120 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Let our control objective be to drive the final temperature θ (T) exactly to 70◦ at the given
final time of T seconds. Then the final state is required to take on the fixed value of

x(T) = 10◦
. (16)

Note that since the final time and final state are both fixed, dT and dx (T) are both zero,
so that (3.2-10) is satisfied.

Using (15) and (16), we must determine λ(T); then we can find λ(t) by using (11) and
the optimal control by using (9). To find λ(T), use (14) to write

x(T) = x(0)e−aT − b2

2a
λ(T)(1 − e−2aT). (17)

Taking into account (15) and (16) shows that the final costate is

λ(T) = 20a

b2(1 − e−2aT)
, (18)

and so the optimal costate trajectory is

λ∗(t) = − 10 aeat

b2 sinh
aT. (19)

Finally, the optimal rate of heat supply to the room is given by (9) or

u∗(t) = 10 aeat

b sinh aT
0 ≤ t ≤ T . (20)

To check our answer, apply u∗(t) to the system (3). Solving for the state trajectory yields

x∗(t) = 10
sinh at

sinh aT
. (21)

Indeed x∗(T) = 10 as desired.

b. Free Final State

Now suppose that we are not so concerned that the final state x (T) be exactly 10◦. Let
us demand only that the control u(t) minimize

J (0) = 1

2
s(x(T) − 10)2 + 1

2

∫ T

0
u2(t) dt (22)

for some weighting s (i.e., some real number s) to be selected later. If s is large, then
the optimal solution will have x (T) near 10◦, since only then will the first term make a
small contribution to the cost.

According to Table 3.2-1, the state and costate equations are still given by 10, and the
optimal control by (9). Therefore, (11) and (14) are still valid.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 121

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 121

The initial condition is still (15), but the final condition must be determined by using
(3.2-10). The final time T is fixed, so dT = 0 and the second term of (3.2-10) is auto-
matically equal to zero. Since x (T) is not fixed, dx (T) is not zero (as it was in part a).
Therefore, it is required that

λ(T) = ∂φ

∂x

∣∣∣∣
T

= s(x(T) − 10). (23)

(Note that there is no function ψ in this problem.) This is our new terminal condition,
and from (15) and (23) we must determine λ(T). To do this, note that

x(T) = λ(T)

s
+ 10, (24)

and use this and (15) and (17). Solving for the final costate gives

λ(T) = −20 as

2a + b2s(1 − e−2aT)
. (25)

Using (11) gives the optimal costate trajectory

λ∗(t) = −10 aseat

aeaT + sb2 sinh aT
. (26)

Finally (9) yields the optimal control

u∗(t) = 10 abseat

aeaT + sb2 sinh aT
. (27)

To check our answer, we “simulate” the control by using u∗(t) in the plant (3). Solving
for the optimal state trajectory yields

x∗(t) = 10 sb2 sinh at

aeaT + sb2 sinh aT
. (28)

At the final time,

x∗(T) = 10 sb2 sinh aT

aeaT + sb2 sinh aT
. (29)

c. Discussion

The final value x∗(T) in (29) is not equal to the desired 10◦. It is a function of the
final-state weighting s in the performance index. As s becomes larger, we are making it
more important relatively for x (T) to equal 10◦ than for u2(t) to be small on [0, T]. In
fact, in the limit s → ∞, the costate (26), control (27), and state trajectory (28) tend to
the expressions found in part a. In this limit, the final state x∗(T) in (29) does indeed
become exactly 10◦.

By examining (29), we can determine x∗(T) for various values of s and select a
value that gives a good compromise between driving x (t) to the desired final value and
conserving control energy. Using this value of s in (27) yields the optimal control that
we would actually apply to heat the room. �

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 122

122 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Example 3.2-4. The Intercept and Rendezvous Problems

a. Problem Formulation

In Example 2.3-2 we constructed a digital controller for the rendezvous problem. Let
us now find an analytical expression for the continuous-time optimal control. In the next
subsection we show an easy way to program the continuous optimal controller on a digital
computer that does not require the analysis done here.

The geometry of the problem is shown in Fig. 3.2-1, where y(t) and v (t) are the
vertical position and velocity of the pursuit aircraft A relative to the target aircraft At,
which we can assume is at rest. Its initial horizontal distance from the pursuer is D . The
horizontal velocity of the pursuit aircraft relative to At is V ; so the final time T , at which
the two aircraft will have the same horizontal distance, is fixed and known to be

T = t0 + D

V
. (1)

The line-of-sight angle is σ (t). See Bryson and Ho (1975).

FIGURE 3.2-1 Intercept and rendezvous geometry.

In the rendezvous problem it is desired that final position y(T) and velocity v (T) both
be zero. In the intercept problem we are not concerned with final velocity, and it is only
desired that the final position y(T) be zero.

The vertical dynamics are described by the state equations

ẏ = v, (2)

v̇ = u, (3)

where u(t) is the vertical control input acceleration. Let the performance index be

J (t0) = syy
2(T)

2
+ svv

2(T)

2
+ 1

2

∫ T

t0

u2(t) dt. (4)

For intercept, sv = 0 and sy is made large so the optimal control will make y2(T) small.
For rendezvous, sv and sy are both selected large.

b. Problem Solution

The optimal control must now be selected to minimize (4). Each state component

must have an associated scalar Lagrange multiplier; hence let λ
�=[λyλv]T. Then the

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 123

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 123

Hamiltonian is

H = 1
2u2 + vλy + uλv. (5)

The costate equations are therefore

λ̇y = −∂H

∂y
= 0, (6)

λ̇v = −∂H

∂v
= −λy. (7)

The stationarity condition is

0 = ∂H

∂u
= u + λv, (8)

so the optimal control is the negative of the velocity multiplier

u(t) = −λv(t). (9)

The initial conditions are
y(t0), v(t0) given. (10)

The final conditions are determined by (3.2-10). Since the final time is fixed, dT = 0 and
so only the first term gives binding conditions. They are

λy(T) = ∂φ

∂y
(T) = syy(T), (11)

λv(T) = ∂φ

∂v
(T) = svv(T). (12)

We must now solve the two-point boundary-value problem defined by the state and
costate equations, with u as in (9) and with boundary conditions (10)–(12). To do this,
we proceed as we did in Example 3.2-3, assuming at the outset that λy(T) and λv(T) are
known. The costate equation is first solved backward in time (i.e., in terms of λ(T)), and
the state equation is then solved forward in time (i.e., in terms of x(t0)).

Integrating both sides of (6) from t to T yields the constant costate component

λy(t) = λy(T)
�= λy. (13)

Integrating (7) then gives

λv(T) − λv(t) = −(T − t)λy

or
λv(t) = λv(T) + (T − t)λy. (14)

Now, to simplify things, let us assume for a few moments that t0 = 0. Substituting the
control (9) into (3) gives

v̇ = −λv(t). (15)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 124

124 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Using (14) and integrating both sides from 0 to t yields the quadratic expression

v(t) = v(0) − t (λv(T) + T λy) + t2

2
λy. (16)

Taking this into account and integrating (2) yields the cubic expression

y(t) = y(0) + tv(0) − t2

2
(λv(T) + T λy) + t3

6
λy. (17)

The state and costate equations have now been solved in terms of λ(T) and the given
y(0), v (0). Unfortunately, the final costate is unknown. To find it, we must use the relations
(11) and (12) between the final state and costate. Thus, use these relations and (16), (17)
to get

λy = sy

[
y(0) + T v(0) − T 2

2
(λv(T) + T λy) + T 3

6
λy

]
(18)

and

λv(T) = sv

[
v(0) − T (λv(T) + T λy) + T 2

2
λy

]
. (19)

These two equations can be written as

⎡
⎢⎢⎣

1 + syT
3

3

syT
2

2
svT

2

2
1 + svT

⎤
⎥⎥⎦

[
λy

λv(T)

]
=

[
sy syT

0 sv

] [
y(0)

v(0)

]
. (20)

Solving this yields the final costate

[
λy

λv(T)

]
= 1

�(T)

⎡
⎢⎢⎣

sv + T T

(
sv + T

2

)

−T 2/2 sy − T 3

6

⎤
⎥⎥⎦

[
y(0)

v(0)

]
, (21)

where
�(T) = (sy + T 3/3)(sv + T) − T 4/4 (22)

and the reciprocal final weights are

sy ≡ 1

sy

, (23a)

sv ≡ 1

sv

. (23b)

The initial time is, in fact t0 not 0. Since the state and costate equations are linear, all
we need do to correct this is to substitute (T − t0) for T on the right-hand side of (21).
Before we do this, however, consider the following. At the current time t ≤ T we know

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 125

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 125

y(t) and v (t), so we can take the current time t as the initial time. This corresponds to
minimizing J (t), the remaining cost on the interval [t, T].

Substituting (T − t) for T in (21) yields an expression for the final costate in terms
of the current state:

[
λy

λv(T)

]
= 1

�(T − t)

⎡
⎢⎢⎣

sv + (T − t) (T − t)

[
sv + T − t

2

]

− (T − t)2

2
sy − (T − t)3

6

⎤
⎥⎥⎦

[
y(t)

v(t)

]
. (24)

We are finally in a position to compute the optimal control, for according to (9) and
(14),

u(t) = − [
T − t 1

] [
λy

λv(T)

]
. (25)

Taking into account (24) therefore yields the optimal control

u(t) = − (T − t)sv + (T − t)2/2

�(T − t)
y(t)

− sy + (T − t)2sv + (T − t)3/3

�(T − t)
v(t). (26)

This is a feedback control law since the current control is given in terms of the current
state.

c. Proportional Navigation

For the intercept problem, we select sv = 0 and sy → ∞. Taking the limit in (26) yields

u(t) = − 3

(T − t)2
y(t) − 3

(T − t)
v(t) (27)

as the optimal control for intercept. To make this look neater, note that for a small
line-of-sight angle

σ(t) � tan σ(t) = y(t)

(T − t)V
, (28)

so that

σ̇ � ẏ(t)

(T − t)V
+ y(t)

(T − t)2V
. (29)

Therefore, the optimal control is

u(t) = −3V σ̇ . (30)

This is the proportional navigation control law. Every pilot knows that for an intercept
it is necessary only to keep the angle to the target constant so that there is no relative
bearing drift!

See Bryson and Ho (1975) for further discussion. �

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 126

126 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Example 3.2-5. Thrust Angle Programming

This example emphasizes that the optimal controller in Table 3.2-1 applies to general
nonlinear systems.

a. The Bilinear Tangent Law

A particle of mass m is acted on by a constant thrust F applied at a variable angle of
γ (t). Its position is (x (t), y(t)), and its x and y velocities are u(t) and v (t). See Fig. 3.2-2.
The nonlinear state equations Ẋ = f (X, γ, t) are

ẋ = u, (1)

ẏ = v, (2)

u̇ = a cos γ, (3)

v̇ = a sin γ, (4)

where the state is X = [x y u v]T, a
�= F/m is the known thrust acceleration, and thrust

angle γ (t) is the control input.

FIGURE 3.2-2 Thrust angle programming.

Let the performance index be a function only of the final time and state, so that

J = φ(X(T), T) (5)

(i.e., L(X, γ, t) = 0). Suppose that a given function ψ of the final state must be zeroed,
so that

ψ(X(T), T) = 0. (6)

The form of the control γ (t) required to minimize J and satisfy (6) is easy to determine.
The Hamiltonian is

H = L + λTf = λxu + λyv + λua cos γ + λva sin γ, (7)

where the Lagrange multiplier λ(t) = [λx λy λu λv]T has a component associated with
each state component.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 127

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 127

According to Table 3.2-1, the costate equations are λ̇ = −f T
Xλ or

λ̇x = −f T
x λ = 0, (8)

λ̇y = −f T
y λ = 0, (9)

λ̇u = −f T
u λ = −λx, (10)

λ̇v = −f T
v λ = −λy. (11)

(Note that subscripts on f indicate partial derivatives, while subscripts on λ indicate the
costate components.) The stationarity condition is

0 = Hγ = −λua sin γ + λva cos γ, (12)

or

tan γ (t) = λv(t)

λu(t)
. (13)

Integrating the costate equations backward from the final time T yields

λx(t) = λx(T)
�=λx, (14)

λy(t) = λy(T)
�=λy, (15)

λu(t) = (λu(T) + T λx) − tλx
�= c1 − tλx, (16)

λv(t) = (λv(T) + T λy) − tλy
�= c2 − tλy. (17)

Substituting into (13) yields the optimal control law

tan γ (t) = tλy − c2

tλx − c1
. (18)

This is called the bilinear tangent law for the optimal thrust direction γ (t).
To determine the constants λx , λy , c1, and c2, we may substitute for γ (t) into the state

equations using (18), solve them, and then use the boundary conditions. To determine the
boundary conditions, we need to specify φ and ψ , which depend on the particular control
objectives. There are many possible objectives we might have in mind for the behavior
of the particle m . See Bryson and Ho (1975). One that leads to an interesting and fairly
simple solution is discussed next.

b. Minimum-time Intercept

Suppose m represents an aircraft that wants to intercept a target P in minimum time. P
has an initial position of x 1 and a constant velocity in the x direction of V 1, so that its x
position at time t is x1 + V1t . Its y position h is constant.

The minimum-time objective can be expressed by demanding that the optimal control
minimize

J = T =
∫ T

0
1 dt. (19)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 128

128 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Since L = 1, the Hamiltonian is now

H(t) = 1 + λxu + λyv + λua cos γ + λva sin γ ; (20)

however, since L is constant, the other results in part a remain valid.
If m starts out at t0 = 0 at rest at the origin, the initial conditions are

x(0) = 0, y(0) = 0, u(0) = 0, v(0) = 0. (21)

The final-state function is

ψ(X(T), T) =
[
x(T) − (x1 + V1T)

y(T) − h

]
= 0, (22)

so that
x(T) = x1 + V1T , (23)

y(T) = h. (24)

To find the remaining terminal conditions, we need to use (3.2-10). Both the final state
and the final time are free (i.e., different choices of γ (t) will result in different values
for T and the state components u(T), v (T)). Therefore, dx(T)
= 0 and dT
= 0. In this
problem, however, dx(T) and dT are independent so that (3.2-10) yields the two separate
conditions

(φx + ψT
x v − λ)|T = 0 (25)

and
(φt + ψT

t v + H)|T = 0, (26)

where v = [vxvy]T is a new constant Lagrange multiplier.
Taking into account (22) (note that φ(x(T), T) = 0), (25) becomes

λ(T) =

⎡
⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

⎤
⎥⎥⎥⎥⎦

[
vx

vy

]

or
λx(T) = vx, (27)

λy(T) = vy, (28)

λu(T) = 0, (29)

λv(T) = 0. (30)

Note that the components of λ(T) corresponding to the fixed final state components x (T)
and y(T) are unknown variables, and the components of λ(T) corresponding to the free
final state components u(T) and v (T) are fixed at zero.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 129

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 129

Using (20) and (22), the final condition (26) becomes

H(T) = −ψT
t v|T = − [−V1 0]

[
vx

vy

]

or
1 + vxu(T) + vyv(T) = V1vx. (31)

We have used (27)–(30).
Now we need to solve the state equations (1)–(4), taking into account (18) and the

costate solutions (14)–(17) and the boundary conditions (21), (23), (24), and (27)–(30).
We also need condition (31) to allow us to solve for the unknown optimal final time T ∗.

First, note that in light of (27)–(30), the costate solutions are

λx(t) = vx, (32)

λy(t) = vy, (33)

λu(t) = (T − t)vx, (34)

λv(t) = (T − t)vy, (35)

where the terminal multipliers v x , v y still need to be determined. The bilinear tangent
law (18) therefore takes on the simple form

tan γ = vy/vx. (36)

For this minimum-time intercept problem, the optimal thrust angle is a constant!
To find the optimal control γ ∗(t), all that remains is to find v x and v y . We shall see

that this still requires a little work.
Since γ is a constant, it is easy to integrate the state equations forward from t0 = 0

to get
v(t) = at sin γ, (37)

u(t) = at cos γ, (38)

y(t) = at2

2
sin γ, (39)

x(t) = at2

2
cos γ, (40)

where we have used the initial conditions (21). Evaluating (39) and (40) at t = T yields

tan γ = y(T)

x(T)
, (41)

and final conditions (23) and (24) then give an expression for the control in terms of the
final time:

tan γ = h

x1 + V1T
. (42)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 130

130 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

We still need to determine the optimal final time T ∗ to use in (42). The role of equation
(31) is to allow us to solve for T ∗, but to use it we would first need to find v x and v y .
In this particular problem, we can use a shortcut that does not require v x , v y .

Indeed, note that (39), (40), (23), and (24) imply that

sin γ = 2y(T)

aT2 = 2h

aT2 , (43)

cos γ = 2x(T)

2T 2
= 2(x1 + V1T)

aT2
. (44)

Hence, sin2 γ + cos2 γ = 1, or

4h2 + 4(x1 + V1T)2 = a2T 4, (45)

which is

−a2T 4

4
+ V 2

1 T 2 + 2V1x1T + (x2
1 + h2) = 0. (46)

This is a quartic equation, which can be solved for T ∗ given the initial information x 1,
V 1, h about the target. Only one solution to (46) will make physical sense. The optimal
control is determined by simply solving (46) for T ∗ and then solving (42) for the optimal
thrust angle γ ∗.

It is not difficult to see what our solution means intuitively. See Fig. 3.2-3, where the
hypotenuse can be expressed in terms of the motion of the target as

d2 = h2 + (x1 + V1T
∗)2, (47)

or in terms of the motion of the pursuit aircraft as

d2 = (1
2 a(T ∗)2

)2
. (48)

Equation (45) is just an expression of the requirement that the two aircraft be at the
same point at the final time! Of course, if we had not gone through our rigorous derivation
of (45), we could not be sure from Fig. 3.2-3 that its solution yields the optimal final
time (courtesy of E. Verriest).

FIGURE 3.2-3 Interpretation of minimum-time intercept control law.
�

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 131

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 131

Solution of Two-point Boundary-value Problems

There are many computational methods for solving the optimal control problem.
Our purpose is not to provide a survey of methods, for this would occupy more
space than we have available. Instead, we present a few approaches that have
immediate practical appeal.

Suppose it is desired to solve the optimal control problem for the nonlinear
plant (3.2-1) with quadratic performance index

J (t0) = 1

2
(x(T) − r(T))TS(T)(x(T) − r(T)) + 1

2

∫ T

t0

(xTQx + uTRu) dt,

(3.2-14)
where S(T) ≥ 0,Q ≥ 0, R > 0, and the desired final-state value r(T) is given.
Thus, we want to find the control u(t) over the interval [t0, T] to minimize J (t0).
The final state is constrained to satisfy (3.2-3) for some given function ψ ∈ Rp .
For simplicity, let the final time T be fixed.

According to Table 3.2-1, we must solve the state equation (3.2-1) and the
Euler equations

−λ̇ = ∂f T

∂x
λ + Qx, (3.2-15)

0 = Ru + ∂f T

∂u
λ. (3.2-16)

In general, the Jacobians ∂f/∂x and ∂f/∂u depend on the control u(t), so that
(3.2-16) is an implicit equation for u(t). If ∂f/∂u is independent of u(t), then
we have

u = −R−1 ∂f T

∂u
λ, (3.2-17)

which we can use to eliminate u(t) in the state equation and the costate equation
(3.2-15), obtaining the Hamiltonian system

ẋ = f

(
x, −R−1 ∂f T

∂u
λ, t

)
, (3.2-18a)

−λ̇ = ∂f T

∂x
λ + Qx. (3.2-18b)

The Hamiltonian system is a nonlinear ordinary differential equation in x (t) and
λ(t) of order 2n with split boundary conditions, which are

n conditions: x(t0) = r(t0) given, (3.2-19)

p conditions: ψ(x(T), T) = 0, (3.2-20)

n − p conditions: λ(T) = S(T)(x(T) − r(T)) + ∂ψT

∂x

∣∣∣∣
T

v. (3.2-21)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 132

132 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

The undetermined multipliers v ∈ Rp allow some freedom, which means that
(3.2-21) provides only the required number n − p of final conditions.

There are several ways to solve the Hamiltonian system numerically. An excel-
lent discussion is provided in Bryson and Ho (1975). One method is the following
algorithm:

1. Guess the n unspecified initial conditions λ(t0).
2. Integrate the Hamiltonian system forward from t0 to T .
3. Using the resulting values of x (T) and λ(T), evaluate

ψ(x(T), T) (3.2-22)

and

λ(T) − S(T)(x(T) − r(T)) − ∂ψT

∂x

∣∣∣∣
T

v. (3.2-23)

4. If there is no v ∈ Rp that makes (3.2-22) and (3.2-23) equal to zero, deter-
mine changes in the final state and costate δx(T) and δλ(T) to bring these
functions closer to zero.

5. Find the sensitivity matrix

[
∂μ(T)

∂λ(t0)

]
, where μ(T) =

[
x(T)

λ(T)

]

and

δμ(T) =
[
δx(T)

δλ(T)

]
= ∂μ(T)

∂λ(t0)
δλ(t0).

(Several ways of doing this are given in Bryson and Ho (1975). See also
our discussion of unit solutions.)

6. Calculate the change in λ(t0) required to produce the desired changes in
the final values x (T), λ(T) by solving (3.2-24).

7. Repeat steps 2 through 6 until (3.2-22), (3.2-23) are close enough to zero
for the application.

Another way to solve the two-point boundary-value problem (3.2-18)–
(3.2-21) for linear systems is first to solve several initial-condition problems
and then solve a system of simultaneous equations. This unit solution method
proceeds as follows:

1. Integrate the Hamiltonian system using as initial conditions λ(t0) = 0
and x(t0) = r(t0), where r(t0) is the given initial state. Call the resulting
solutions x 0(t), λ0(t).

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 133

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 133

2. Suppose λ ∈ Rn, and let ei represent the i th column of the n × n identity
matrix. Determine n unit solutions by integrating the Hamiltonian system
n times, using as initial conditions

x(t0) = 0,

λt0 = ei, i = 1, . . . , n. (3.2-2)

Call the resulting unit solutions xi(t), λi(t) for i = 1, . . . , n.
3. General initial conditions can be expressed as

x(t0) = r(t0) given, (3.2-3)

λ(t0) =
n∑

i=1

ciei

for constants ci . The overall solutions for these general initial conditions
are

x(t) = x0(t) +
n∑

i=1

cixi(t),

λ(t) = λ0(t) +
n∑

i=1

ciλi(t).

Evaluate these solutions at the final time t = T , and then solve for the initial-
costate values ci required to ensure that the terminal conditions (3.2-20) and
(3.2-21) are satisfied. The unit solutions show the effect on x (T), λ(T) of each
of the n individual components of λ(t0), and so they can be used to find the
sensitivity matrix in (3.2-24).

Q1

The next example illustrates this approach.

Example 3.2-7. Unit Solution Method for Scalar System

The scalar plant
ẋ = ax + bu (1)

has performance index of

J = s(x(T) − r(T))2

2
+ 1

2

∫ T

0
(qx2 + ru2) dt. (2)

The desired final-state value r(T) is given. The initial state x(0) = r(0) is known, the
final time is fixed, and the final state is free. To determine the optimal control u(t) on
[0, T] by the method of unit solutions, we proceed as follows.

From Table 3.2-1, the Hamiltonian is

H = qx2

2
+ ru2

2
+ λ(ax + bu). (3)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 134

134 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

The Euler equations are

λ̇ = −∂H

dx
= −qx − aλ, (4)

0 = ∂H

du
= ru + bλ. (5)

Therefore, the optimal control is

u = −b

r
λ. (6)

Eliminating u(t) in (1) yields the Hamiltonian system

[
ẋ

λ

]
=

[
a −b2/r

−q −a

] [
x

λ

]
�=A

[
x

λ

]
(7)

The split boundary conditions are

x(0) = r(0) given, (8)

λ(T) = s(x(T) − r(T)). (9)

Instead of solving the split boundary-value problem (7)–(9), we solve two (i.e., n + 1)
initial-value problems, one with initial conditions x(0) = r(0), λ(0) = 0, and one with
x(0) = 0, λ(0) = 1. Then we solve for the λ(0) required to make (9) hold.

If x(0) = r(0), λ(0) = 0, then the solution can be found by Laplace transforms to be

[
x0(t)

λ0(t)

]
= r(0)

2α

[
α − a

q

]
e−αt + r(0)

2α

[
α + a

−q

]
eαt , t ≥ 0, (10)

where α =
√

a2 + qb2

r
. If x(0) = 0, λ(0) = 1, the unit solution is

[
x1(t)

λ1(t)

]
= 1

2α

⎡
⎣ b2

r

α + a

⎤
⎦ e−αt + 1

2α

⎡
⎣ −b2

r

α − a

⎤
⎦ eαt , t ≥ 0. (11)

Now consider the general initial condition x(0) = r(0), λ(0) = c for some constant c.
The solution with these initial conditions is

[
x(t)

λ(t)

]
=

[
x0(t)

λ0(t)

]
+ c

[
x1(t)

λ1(t)

]

= 1

2α

⎡
⎣r(0)(α − a) + cb2

r

r(0)q + c(α + a)

⎤
⎦ e−αt

+ 1

2α

⎡
⎣r(0)(α + a) − cb2

r

−r(0)q + c(α − a)

⎤
⎦ e−αt , t ≥ 0. (12)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 135

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 135

Now it remains only to determine the initial-costate value c so that boundary condition
(9) holds. Evaluating (12) at t = T , and substituting x (T) and λ(T) into (9) yields the
required initial-costate value of

λ(0) = c = r(0)[(q + sa) sinh αT + sα cosh αT] − r(T)sα

(sb2/r − a) sinh αT + α cosh αT
. (13)

Note that the initial costate is a linear combination of the initial and final states.
Using this value of c in (12) yields the optimal state and costate trajectories. Then (6)

yields the optimal control. This method yields the optimal control as on open-loop control
law, that is, as a function of time, not of the current state. �

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR

Table 3.2-1 provides the optimal controller for general nonlinear systems, but
explicit expressions for the control law are hard to compute. In this section we
consider the linear time-varying plant

ẋ = A(t)x + B(t)u, (3.3-1)

where x ∈ Rn, u ∈ Rm with associated quadratic performance index

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

t0

(xTQ(t)x + uTR(t)u) dt. (3.3-2)

The time interval over which we are interested in the behavior of the plant is
[t0, T]. We shall determine the control u∗(t) on [t0, T] that minimizes J for two
cases: fixed final state and free final state. In the former case, u∗ will turn out to
be an open-loop control, and in the latter case a feedback control.

We assume in this section that the final time T is fixed and known, and that
no function of the final state ψ is specified. The initial plant state x (t0) is given.
Weighting matrices S (T) and Q(T) are symmetric and positive semi-definite, and
R(t) is symmetric and positive definite, for all t ∈ [t0, T].

Let us use Table 3.2-1 to write down the solution to this linear quadratic
regulator problem.

The State and Costate Equations

The Hamiltonian is

H(t) = 1
2 (xTQx + uTRu) + λT(Ax + Bu), (3.3-3)

where λ(t) ∈ Rn is an undetermined multiplier. The state and costate equations
are

ẋ = ∂H

∂λ
= Ax + Bu, (3.3-4)

−λ̇ = ∂H

∂x
= Qx + ATλ, (3.3-5)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 136

136 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

and the stationarity condition is

0 = ∂H

∂u
= Ru + BTλ. (3.3-6)

Solving (3.3-6) yields the optimal control in terms of the costate

u(t) = −R−1BTλ(t). (3.3-7)

The control structure defined by these equations is identical to Fig. 2.2-1; how-
ever, the continuous LQ regulator cannot be implemented in this noncausal
state–costate form.

Using (3.3-7) in the state equation yields the homogeneous Hamiltonian
system. [

ẋ

λ̇

]
=

[
A −BR−1BT

−Q −AT

][
x

λ

]
. (3.3-8)

The coefficient matrix is called the continuous Hamiltonian matrix , which we
discuss further in Section 3.4.

To find the optimal control, we must take into account the boundary conditions
and solve (3.3-8). We shall presently do this for two special cases: fixed and free
final state. First, it is instructive to investigate the value of the performance index
J (t0) when the control input u(t) is zero.

Zero-input Cost and the Lyapunov Equation

We want to determine the value of the performance index J if the plant control
input u(t) is zero. Suppose the n × n matrix function S (t) is defined as the
solution to the continuous Lyapunov equation

−Ṡ = ATS + SA + Q, t ≤ T , (3.3-9)

with final condition S (T) as given in (3.3-2). This equation is integrated backward
in time from t = T . Then it is easy to show that the cost to go on any interval
[t , T] is given by

J (t) = 1
2xT(t)S(t)x(t), (3.3-10)

where x (t) is the current state t .
To wit, note that

1

2

∫ T

t0

d

dx
(xTSx) dt = 1

2
xT(T)S(T)x(T) − 1

2
xT(t0)S(t0)x(t0). (3.3-11)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 137

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 137

Now add zero, in the form of the left-hand side of (3.3-11) minus its right-hand
side, to J (t0) in (3.3-2) to see that (u(t) = 0)

J (t0) = 1

2
xT(t0)S(t0)x(t0) + 1

2

∫ T

t0

(ẋTSx + xTṠx + xTSẋ + xTQx) dt.

(3.3-12)

Taking into account the state equation (3.3-1) results in

J (t0) = 1

2
xT(t0)S(t0)x(t0) + 1

2

∫ T

t0

(xT(ATS + Ṡ + SA + Q)x dt; (3.3-13)

but S (t) satisfies the Lyapunov equation, so that (3.3-10) follows since the current
time t can be interpreted as the initial time of the remaining interval [t , T].

This result allows us to compute, in terms of the known current state, the cost
to go till time T of failing to apply any control to the plant. Note that S (t) does
not depend on the state, so it can be precomputed off-line and stored. Because
of the form of (3.3-10), we call S (t) the cost kernel function. The cost is just
one-half the semi-norm squared of the state with respect to the weighting S (t).

The solution to (3.3-9) is given by

S(t) = eAT(T −t)S(T)eA(T −t) +
∫ T

t

eAT(T −t)QeA(T −t) dτ, (3.3-14)

which can be verified by Leibniz’s rule. According to the Lyapunov stability
theory, this converges to the steady-state value as (T − t) → ∞ of

S∞ =
∫ ∞

0
eATτ

QeAτ dτ (3.3-15)

if the plant is asymptotically stable. In this event, the cost over any interval
[t,∞], is given by the steady-state cost (3.3-10) with S (t) replaced by S∞, which
is finite. If A is unstable and (A,

√
Q) is observable, where Q =

√
QT

√
Q, then

the cost tends to infinity as the time interval grows.
In the steady-state case, Ṡ = 0, so that (3.3-9) becomes the algebraic Lyapunov

equation
0 = ATS + SA + Q. (3.3-16)

If A is stable, then (3.3-15) is a positive semi-definite solution to (3.3-16). If
(A,

√
Q) is observable, the steady-state solution S∞ is positive definite and is

the unique positive definite solution to the algebraic Lyapunov equation.
See the discussion on the discrete time counterparts to these results in

Section 2.2.
We shall soon see that the optimal closed-loop control depends on an equation

like (3.3-9), but with an extra term to account for the effect of the input.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 138

138 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Example 3.3-1. Propagation of Cost for Uncontrolled Scalar System

Let
ẋ = ax (1)

be an uncontrolled scalar system with cost on [t , T] defined by

J (t) = 1

2
S(T)x2(T) + 1

2

∫ T

t

qx2(τ) dτ. (2)

The Lyapunov equation is
−ṡ = 2as + q, (3)

with solution

s(t) = e2a(T −t)S(T) +
∫ T

t

e2a(T −t)q dτ (4)

or
s(t) =

(
s(T) + q

2a

)
e2a(T −t) − q

2a
. (5)

If a < 0, then as (T − t) → ∞, s(t) converges to the steady-state value of

s∞ = − q

2a
> 0. (6)

Note that this is the solution to the algebraic Lyapunov equation

0 = 2as + q. (7)

If a is unstable, then s(t) grows without bound as the time interval of interest grows.
The steady-state cost on [0, ∞] of applying no control input to the plant (1) is

J∞ = 1

2
s∞x2(0) = − q

4a
x2(0) (8)

when a < 0; otherwise it is infinite. In neither case does it depend on the final-state
weighting s(T). �

Fixed-final-state and Open-loop Control

Let us now return to the problem of determining the control required in (3.3-1)
to minimize the cost (3.3-2). The state and costate equations are given by (3.3-8)
and the optimal control is given by (3.3-7). It remains only to solve (3.3-8) given
the boundary conditions.

Suppose that the initial state is known to be x (t0) and that the control objective
is to drive the state exactly to the given fixed reference value of r(T) at the final
time. Then the final condition is

x(T) = r(T). (3.3-17)

Since dx(T) = 0 and dT = 0, condition (3.2-10) is automatically satisfied.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 139

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 139

Since x (T) is fixed at r(T), it is redundant to include a final-state weighting
in the cost index, so let S(T) = 0. To allow us to get an analytic solution, let
Q = 0 also. Then the cost function is

J (t0) = 1

2

∫ T

t0

uTRu dt, (3.3-18)

and so we are trying to find a control that drives x(t0) to x(T) = r(T) using
minimum control energy.

The state and costate equations are now

ẋ = Ax − BR−1BTλ, (3.3-19)

λ̇ = −ATλ. (3.3-20)

Setting Q = 0 has decoupled the costate equation from the state equation, so its
solution is just

λ(t) = eAT(T −t)λ(T), (3.3-21)

where λ(T) is still unknown. Using this expression in the state equation yields

ẋ = Ax − BR−1BTeAT(T −t)λ(T), (3.3-22)

whose solution is

x(t) = eA(t−t0)x(t0) =
∫ t

t0

eA(t−τ)BR−1BTeAT(T −τ)λ(T) dτ. (3.3-23)

To find λ(T), evaluate this at t = T to get

x(T) = eA(T −t0)x(t0) − G(t0, T)λ(T), (3.3-24)

where the weighted continuous reachability gramian is

G(t0, T) =
∫ T

t0

eA(T −τ)BR−1BTeAT(T −τ) dτ. (3.3-25)

According to final condition (3.3-17), then,

λ(T) = −G−1(t0, T)
[
r(T) − eA(T −t0)x(t0)

]
. (3.3-26)

Finally, the optimal control can be written using (3.3-7), (3.3-21), and (3.3-26)
as

u∗(t) = R−1BT eAT(T −t)G−1(t0, T)[r(T) − eA(T −t0)x(t0)]. (3.3-27)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 140

140 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

This is our result; it is the minimum-energy control that drives the given initial
state x (t0) to the desired final reference value of x(T) = r(T). Note that

x(T) = eA(T −t0)x(t0) (3.3-28)

is the final state in the absence of an input, so the optimal control is proportional
to the difference between this homogeneous solution and the desired final state.

Since u∗(t) is found by using G(t0, T), the optimal control exists for arbitrary
x (t0) and r(T) if and only if |G(t0, T)|
= 0. This corresponds to reachability
of the plant. If (A, B) is reachable, there exists a minimum-energy control that
drives any x (t0) to any desired r(T).

The control (3.3-27) is an open-loop control, since u∗(t) does not depend on
the current state x (t). It depends only on the initial and final states, and it is
precomputed and then applied for all t in [t0, T]. If, for some reason, the state
is perturbed off the predicted optimal trajectory, then such an open-loop control
will not, in general, result in x(T) = r(T) as desired.

To compute the reachability gramian in practice, we do not need to do the
integration (3.3-25), which can be very messy. The solution to the Lyapunov
equation is

Ṗ = AP + PAT + BR−1BT, t > t0, (3.3-29)

P(t) = eA(t−t0)P (t0)e
AT(t−t0) +

∫ t

t0

eA(t−τ)BR−1BTeAT(t−τ) dtτ.

Hence, if P(t0) = 0, then G(t0, t) = P(t).
To determine u∗(t), then, we would first solve (3.3-29) off-line to get G(t0, T).

This can be done numerically using a Runge-Kutta integrator (Appendix B.1).
Then for each t ∈ [t0, T], we would use (3.3-27) to find u∗(t), which is then
applied to the plant (3.3-1).

Compare the “reachability Lyapunov equation” (3.3-29) to the “observability
Lyapunov equation” (3.3-9). The former describes the interaction between plant
and input, and the latter describes the interaction between plant and cost function
when u(t) = 0.

It is a simple matter to determine the value of the cost index (3.3-18) under
the influence of the optimal control (3.3-27). Representing the final-state differ-
ence as

d(t0, T) = r(T) − eA(T −t0)x(t0), (3.3-30)

we have

J ∗(t0) = 1

2

∫ T

t0

dTG−1eA(T −t)BR−1RR−1BTeAT(T −t)G−1d dt,

where we have used the symmetry of G−1(t0, T) and R−1. Realizing that d(t0, T)

and G−1(t0, T) do not depend on t and using the definition of the gramian yields

J ∗(t0) = 1
2dT(t0, T)G−1(t0, T)d(t0, T), (3.3-31)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 141

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 141

or
J ∗(t0) = 1

2dT(t0, T)P −1(T)d(t0, T), (3.3-32)

where P (t) satisfies (3.3-29). Compare this with (3.3-10).

Example 3.3-2. Open-loop Control of a Scalar System

Let the scalar plant be
ẋ = ax + bu, t ≥ 0, (1)

with cost

J (0) = 1

2

∫ T

0
ru2 dt. (2)

The Lyapunov equation (3.3-29) is

ṗ = 2ap + b2

r
, p(0) = 0, (3)

so the reachability gramian on [0, t] is

G(0, t) = p(t) = b2

r

∫ t

0
e2a(t−τ) dτ

or

G(0, t) = b2

2ar
(e2at − 1). (4)

Compare this to the solution of the Lyapunov equation in Example 3.3-1.
According to (3.3-27), the optimal control taking x(0) to x(T) = r(T) for a given

r(T) is

u(t) = b

r
ea(T −t) · 2ar

b2(e2aT − 1)
(r(T) − eaTx(0))

= a

b

e−at

sinh aT
(r(T) − eaTx(0)). (5)

Interestingly enough, this is independent of the control weighting r . Compare (5) to the
control (20) in Example 3.2-3, which was found by direct solution of the state and costate
equations. �

Example 3.3-3. Open-loop Control of Motion Obeying Newton’s Laws

A particle obeying Newton’s laws satisfies

ẋ =
[

0 1

0 0

]
x +

[
0

1

]
u (1)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 142

142 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

where x = [d v]T with d (t) the position, v (t) the velocity, and u(t) an acceleration input.
It is easy to find an analytic expression for the control required to drive any given x (0)
to any desired x (T), while minimizing

J (0) = 1

2

∫ T

0
ru2 dt. (2)

To find the reachability gramian, we solve the Lyapunov equation (3.3-29). Let

P(t) =
[
p1(t) p2(t)

p2(t) p3(t)

]
(3)

Then (3.3-29) is

Ṗ =
[

0 1

0 0

]
P + P

[
0 0

1 0

]
+

[
0 0

0 1/r

]
, (4)

which yields the scalar equations
ṗ1 = 2p2, (5)

ṗ2 = p3, (6)

ṗ3 = 1/r. (7)

For the gramian, we integrate (7), (6), and then (5) with P(0) = 0 to get

p3 = t

r
, (8)

p2 = t2

2r
, (9)

p1 = t3

3r
, (10)

so that

G(0, t) = P(t) =

⎡
⎢⎢⎣

t3

3r

t2

2r

t2

2r

t

r

⎤
⎥⎥⎦ . (11)

The state transition matrix is

eAt =
[

1 t

0 1

]
. (12)

To find the optimal control, we use (3.3-27), which becomes

u(t) = 1

r
[T − t 1]

⎡
⎢⎢⎣

12r

T 3
− 6r

T 2

− 6r

T 2

4r

T

⎤
⎥⎥⎦

(
x(T) −

[
1 T

0 1

]
x(0)

)
, (13)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 143

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 143

or

u(t) =
[

6T − 12t

T 3

−2T + 6t

T 2

] (
x(T) −

[
1 T

0 1

]
x(0)

)
. (14)

Once again, since u(t) is a scalar, it is independent of r . Note also that the control
magnitude decreases as the control interval [0, T] increases. More control is required to
move the system more quickly from one state to another. �

Free-final-state and Closed-loop Control

We can find an optimal control law in the form of a state feedback by changing
our control objectives for the plant (3.3-1). Instead of fixing the final state at a
desired final value, let us require only that the control minimize the performance
index (3.3-2). Thus, the final state is free, and its value can be varied in the
optimization process implicit in the solution presented in Table 3.2-1.

The state and costate equations (3.3-8) are reproduced here for convenience:

ẋ = Ax − BR−1BTλ, (3.3-33)

−λ̇ = Qx + ATλ. (3.3-34)

The control input is

u(t) = −R−1BTλ. (3.3-35)

The given initial state is x (t0), and the final state x (T) is free. Thus, dx(T)
= 0,
and dT = 0 (the final time is fixed and known here) in (3.2-10), so the coefficient
of dx (T) must be zero:

λ(T) = ∂φ

∂x

∣∣∣∣
T

= S(T)x(T). (3.3-36)

This is the terminal condition.
To solve the two-point boundary-value problem specified by (3.3-33) and

(3.3-34), given x (t0) and (3.3-36), we shall use the sweep method (Bryson and
Ho 1975). Thus, assume that x (t) and λ(t) satisfy a linear relation like (3.3-36)
for all t ∈ [t0, T] for some as yet unknown matrix function S (t):

λ(t) = S(t)x(t). (3.3-37)

If we can find such a S (t), then this assumption is valid.
To find the intermediate function S (t), differentiate the costate to get

λ̇ = Ṡx + Sẋ = Ṡx + S(Ax − BR−1BTSx), (3.3-38)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 144

144 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

where we have used the state equation. Now, taking into account the costate
equation, we must have

−Ṡx = (ATS + SA − SBR−1BTS + Q)x (3.3-39)

for all t . Since this holds for all state trajectories given any x (t0), it is necessary
that

−Ṡ = ATS + SA − SBR−1BTS + Q, t ≤ T . (3.3-40)

This is a matrix Riccati equation , and if S (t) is its solution with final condition
S (T), then (3.3-37) holds for all t ≤ T . Our assumption was evidently a good one.

In terms of the Riccati-equation solution, the optimal control is given by
(3.3-35) and (3.3-37) as

u(t) = −R−1BTSx(t). (3.3-41)

Defining the Kalman gain as

K(t) = R−1BTS(t), (3.3-42)

we have
u(t) = −K(t)x(t). (3.3-43)

The optimal control is determined by solving the Riccati equation (3.3-40)
backward in time for S (t). This can be done offline before the control run since
x (t) is not required to find S (t). The gain K (t) can be computed and stored.
Finally, during the control run, u∗(t) is found using (3.3-43) and applied to the
plant.

The continuous optimal LQ regulator is summarized in Table 3.3-1. A block
diagram of this scheme has the same structure shown in Figure 2.2-3.

In terms of the Kalman gain, the Riccati equation can be written

−Ṡ = ATS + SA − KTRK + Q. (3.3-44)

The control (3.3-43) is a time-varying state feedback , since even if A, B , Q , and
R are time invariant, K (t) varies with time. The closed-loop plant is

ẋ = (A − BK)x, (3.3-45)

and this equation can be used to find the optimal state trajectory x∗(t) given any
x (t0).

In terms of the closed-loop plant matrix, the Riccati equation can be written
in the Joseph-stabilized formulation

−Ṡ = (A − BK)TS + S(A − BK) + KTRK + Q, t ≤ T . (3.3-46)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 145

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 145

TABLE 3.3-1 Continuous Linear Quadratic Regulatory (Final State Free)

System model:

ẋ = Ax + Bu, t ≥ t0

Performance index:

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

t0

(xTQx + uTRu) dt

Assumptions:

S(T) ≥ 0,Q ≥ 0, R > 0, with all three symmetric

Optimal feedback control:

−Ṡ = ATS + SA − SBR−1BTS + Q, t ≤ T , given S(T)

K = R−1BTS

u = −Kx

J ∗(t0) = 1
2 xT(t0)S(t0)x(t0)

By a derivation like the ones leading to (3.3-10) and (2.2-69) we can show that
the coast on any interval [t , T] satisfies

J (t) = 1

2
xT(t)S(t)x(t) + 1

2

∫ T

t

∥∥R−1BTSx + u
∥∥2

R
dt, (3.3-47)

where S (t) is the solution to the Riccati equation.
If we now select the optimal control (3.3-43), then the value of the performance

index on [t , T] is just
J (t) = 1

2xT(t)S(t)x(t). (3.3-48)

This result is important since, if we know the current state x (t), then by solving
the Riccati equation we can determine the optimal cost of controlling the plan on
[t , T] before we apply the control or even compute it! If this cost is too high, we
should select another control scheme, or at least change the weighting matrices
S (T), Q , and R and find a new feedback gain K (t).

If B = 0, then the Riccati equation reduces to the zero-input Lyapunov
equation (3.3-9).

Note from (3.3-47) that
∂2J

∂u2
= R, (3.3-49)

so that the curvature matrix in the continuous case is R. Since R > 0, the
optimal control minimizes J (t0). In the discrete case, the curvature matrix is

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 146

146 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

(BTSk+1B + R), where S k satisfies the discrete Riccati equation. This accounts
for the simplicity of the continuous LQ regulator as compared to the discrete LQ
regulator.

By selecting S (T) very large, we can guarantee that the optimal control will
drive x (T) very close to zero to keep J (t0) small. In the limit as S(T) → ∞, it
can be shown that the control scheme in Table 3.3-1 tends to the fixed-final-state
scheme (3.3-27) for the case r(T) = 0. See the discussion in Section 2.2.

It should be clearly realized that reachability of the plant is not required for
the free-final-state LQ regulator. Even if (A, B) is not reachable, u∗(t) will do
its best to keep J (t0) small. If (A, B) is reachable, it can be expected to do a
better job. In fact, we shall see in Section 3.4 that reachability results in some
very desirable properties as the control interval [t0, T] becomes large.

A few examples will impart some intuition on the LQ regulator. First, let us
briefly discuss a software implementation of Table 3.3-1.

Software Implementation of the LQ Regulator

In the discrete case, the Riccati equation is a simple backward recursion that
can easily be programmed, as we have seen. In the continuous case, however,
the Riccati equation must be integrated backward. Most Runge-Kutta integration
routines run forward in time. The best policy is therefore to convert (3.3-40) into
an equation that is integrated forward. This is easy to do.

Changing variables by

τ = T − t, (3.3-50)

we have dτ = −dt, so the Riccati equation becomes (in the time-invariant case)

Ṡb = ATSb + SbA − SbBR−1BTSb + Q, (3.3-51)

where
S(t) = Sb(T − t). (3.3-52)

All we must do to solve (3.3-40) is to integrate it forward from t = 0 without
the minus sign on its left-hand side, then reverse the resulting solution and shift
it to t = T .

The control scheme in Table 3.3-1 has two parts. The first is the control law
computation by backward integration of the Riccati equation to find S (t) and
then K (t). Only K (t) must be stored. This integration we have just discussed.

The second part is the simulation of the control law found in part one by
applying u = −K(t)x to the plant. This is accomplished by a forward integration
of the state equation ẋ = Ax + Bu.

The complete simulation procedure is shown in Fig. 3.3-1. The simulation
portion can be compared with Fig. 2.3-1.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 147

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 147

FIGURE 3.3-1 Continuous LQ regulator simulation procedure.

Examples and Exercises

Example 3.3-4. Optimal Feedback Control of a Scalar System

This is the continuous counterpart of Example 2.2-3. Let the scalar plant be

ẋ = ax + bu (1)

with performance index

J (t0) = 1

2
s(T)x2(T) + 1

2

∫ T

t0

(qx2 + ru2) dt. (2)

a. Analytic Solution

The Riccati equation is

−ṡ = 2as + q − b2s2

r
, t ≤ T . (3)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 148

148 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Using separation of variables we have

∫ s(T)

s(t)

ds

(b2/r)s2 − 2as − q
=

∫ T

t

dt,

and integrating yields

s(t) = s2 + s1 + s2

[(s(T) + s1)/(s(T) − s2)]e2β(T −t) − 1
(4)

where

β =
√

a2 + b2q

r
, (5)

s1 = r

b2
(β − a), s2 = r

b2
(β + a). (6)

The steady-state value as (T − t) → ∞ is given by s2 or, if a > 0,

s∞ = q

γ

(
1 +

√
1 + γ

a

)
(7)

where
γ = b2q/ar (8)

is a control-effectiveness-to-plant-inertia ratio. If a < 0, a similar expression holds. The
steady-state value is independent of the final-state weighting s(T). It is also bounded
if b
= 0, which corresponds to reachability, even if a is unstable. Contrast this with
Example 3.3-1.

b. No Intermediate-state Weighting

Let us consider the rather interesting special case of q = 0. Then β = |a| and

s(t) = s(T)

b2s(T)/2ar + (1 − b2s(T)/2ar)e−2a(T −t)
. (9)

If we want to ensure that the optimal control drives x (T) exactly to zero, we can let
s(T) → ∞ to weight x (T) more heavily in J (t0). In this limit we have

s(t) = 2ar/b2

1 − e−2a(T −t)
, (10)

so the optimal control is (K(t) = bs(t)/r)

u(t) = −K(t)x(t) = − 2a/b

1 − e−2a(T −t)
x(t)

or

u(t) = −a

b

ea(T −t)

sinh a(T − t)
x(t). (11)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 149

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 149

Compare this with the fixed-final-state control in Example 3.3-2 for the case r(T) = 0.
We have just discovered a feedback formulation of that control law.

If the plant isstable, a < 0, then the steady-state value ((T − t) → ∞) of the cost
kernel is

s∞ = 0, (12)

so that the steady-state closed-loop system

ẋ = (a − bK)x = ax (13)

is stable. On the other hand, if a > 0, then

s∞ = 2ar

b2
, (14)

and the steady-state closed-loop system is

ẋ =
(

a − b2

r
s∞

)
x = −ax. (15)

This is still stable.
Figure 3.3-2 shows the behavior of the general solution (4) for the case of stable and

unstable plant.

FIGURE 3.3-2 Limiting behavior of the Riccati-equation solution.

c. Simulation

To implement the LQ regulator, none of the analysis subsequent to (3) is required. The
Kalman gain is

K(t) = b

r
s(t), (16)

and the complete LQ regulator is shown in Fig. 3.3-3. First, the Riccati equation (3) is
integrated backward to get s(t). This is accomplished by integrating

ṡb = 2asb + q − b2s2
b/r (17)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 150

150 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

FIGURE 3.3-3 Scalar continuous LQ regulator.

forward from zero with sb(0) = s(T) and then using

s(t) = sb(T − t). (18)

The kernel s(t) is stored and then used to compute u(t) that takes the form

u = −K(t)x (19)

as the plant dynamics are integrated in the simulation. Note that the Riccati-equation
system is a sort of “doubled” or “squared” version of the plant. �

Example 3.3-5. Optimal Feedback Control of a Damped Harmonic Oscillator

Let the plant be

ẋ =
[

0 1

−ω2
n −2δωn

]
x +

[
0

b

]
u (1)

with performance index

J (t0) = 1

2
xT(T)

[
s1(T) 0

0 s3(T)

]
x(T)

+ 1

2

∫ T

t0

(
xT

[
q1 0

0 q2

]
x + ru2

)
dt. (2)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 151

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 151

If we let

S(t)
�=

[
s1(t) s2(t)

s2(t) s3(t)

]
(3)

and simplify the Riccati equation, we get the coupled scalar differential equations

−ṡ1 = −2ω2
ns2 − b2

r
s2

2 + q1, (4)

−ṡ2 = s1 − 2δωns2 − ω2
ns3 − b2

r
s2s3, (5)

−ṡ3 = 2s2 − 4δωns3 − b2

r
s2

3 + q2. (6)

Writing the optimal feedback gain as

K(t) = [k1(t) k2(t)] , (7)

we have K = R−1BT S or

k1 = bs2

r
, (8)

k2 = bs3

r
. (9)

function [x, u, Sf, tf] = ex3_3_5(a, b, r, x0)
% Control of a Harmonic Oscillator
% Compute the solution to Riccati Equation
[tb, S]=ode45(@fex3_3_5,[-10:0.1:0],zeros(3,1));
% Compute Optimal Feedback Gains
Sf=flipud(S);
tf=-flipud(tb);
K=-b/r*Sf(:,2:3);
x(:,1)=x0;
u(1)=K(1,:)*x(:,1) ;
% compute Closed-loop Response
for k=1:length(tf)-1,
% Harmonic Oscillator System State Equations
x(:,k+1) =expm((a+[0; b]*K(k,:))*(tf(k+1)-tf(k)))*x(:,k);
u(k+1)=K(k+1,:)*x(:,k+1);
end

function sd=fex3_3_5(t,s)
q=1*eye(2); om=0.8; del=0.1; b=1; r=1;
sd =[-2*om ˆ 2*s(2)-b ˆ 2*s(2) ˆ 2+q(1, 1);

s(1)-4*del*om*s(2)-om ˆ 2*s(3)-b ˆ 2*s(2)*s(3);
2*s(2)-4*del*om*s(3)-b ˆ 2*s(3) ˆ 2+q(2,2)];

FIGURE 3.3-4 MATLAB code to use for the control of a harmonic oscillator.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 152

152 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

The optimal control is then

u = −Kx = −k1x1 − k2x2, (10)

where x = [x1 x2]T .

a. Software Implementation

To implement the optimal LQ controller, we need subroutines to describe the Riccati-
equation dynamics (4)–(6) (without the minus signs on the left-hand side of the equalities)
and to compute the gains (8)–(9). These are used in the control law computation. For the
forward integration to simulate the control law, we need subroutines to compute the control
(10) and provide the plant dynamics (1). The MATLAB code is shown in Fig. 3.3-4.

Using this software, the optimal state trajectories and controls for several values of
q = q1 = q2 were plotted (see Fig. 3.3-5). Also shown are the cost kernel elements for
two values of q .

−15

−10

−5

0

5

10

15

20
State x1

q = 0.01
q = 0.1
q = 1

0 2 4 6 8 10
−20

−15

−10

−5

0

5

time [s]

Control u

q = 0.01
q = 0.1
q = 1

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

time [s]

0 2 4 6 8 10

time [s]

(b)(a)

(d)(c)

0 2 4 6 8 10

time [s]

q=0.01

s(1)
s(2)
s(3)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
q=1

s(1)
s(2)
s(3)

FIGURE 3.3-5 Results of a harmonic oscillator simulation using MATLAB. (a) State
trajectories. (b) Optimal control inputs u(t). (c) Riccati solutions s(t) for q = 0.01.
(d) Riccatti solutions for q = 1.0.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 153

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR 153

b. Steady-state Riccati Solution

Equations (4)–(6) are difficult to solve, but a steady-state solution is easy to obtain. Letting
ṡ1 = ṡ2 = ṡ = 0, three algebraic equations are obtained. These can be solved to give

s2(∞) = q1

γ1

(√
1 + γ1

ω2
n

− 1

)
, (11)

s3(∞) = q2

γ2

(√
1 + γ2

2δωn

(
1 + 2s2

q2

)
− 1

)
, (12)

s1(∞) = b2

r

(
q2

γ2
s2 + q1

γ1
s3 + s2s3

)
, (13)

where

γ1
�= b2q1

ω2
nr

, (14)

γ2
�= b2q2

2δωnr
(15)

are “control effectiveness” ratios. In solving for the steady-state kernel, we select positive
square roots, since S(∞) ≥ 0. �

Exercise 3.3-6. LQ Regulator with Weighting of State/Input Inner Product

This is the continuous-time counterpart to Exercise 2.2-4. Let the plant

ẋ = Ax + Bu (1)

have the modified performance index

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

t0

[xT uT]

[
Q V

V T R

] [
x

u

]
, (2)

where the block matrix is positive semidefinite and R > 0.

a. Define a modified Kalman gain as

K = R−1(V T + BTS), (3)

where S (t) is the solution to the Riccati equation

−Ṡ = ATS + SA − KTRK + Q. (4)

(Compare (4) with (3.3-44).) Show that the optimal control is

u(t) = −K(t)x(t). (5)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 154

154 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

b. Show that the optimal remaining cost on any subinterval [t , T] is

J (t) = 1
2xT(t)S(t)x(t). (6)

In summary, if the cost index contains a weighting V that picks up the state-input
inner product, the only required modification to the LQ regulator is that the Kalman gain
must be modified, and the Riccati-equation formulation (4) should be used. �

3.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL
FEEDBACK

In this section we present the continuous counterparts to the results in Section 2.4.
It would be a very good exercise to fill in the derivations of these equations, both
to become more familiar with them and to compare the continuous and discrete
situations, which have subtle and interesting distinctions.

Suboptimal Feedback Gains

If the plant
ẋ = Ax + Bu (3.4-1)

has the feedback
u = −Kx, (3.4-2)

then the closed-loop plant becomes

ẋ = (A − BK)x. (3.4-3)

The optimal feedback gain K (t) is time varying and depends on the Riccati-
equation solution as in Table 3.3-1.

If the gain K in (3.4-2) is arbitrary, then the resulting cost on [t, T] for any t is

J (t) = 1
2xT(t)S(t)x(t), (3.4-4)

where S (t) satisfies

−Ṡ = (A − BK)TS + S(A − BK) + KTRK + Q, t ≤ T , (3.4-5)

with S (T) equal to the final-state weighting.
If K (t) is given, then (3.4-5) is a Lyapunov equation in terms of the closed-

loop plant matrix. If K (t) is the optimal gain in Table 3.3-1, then (3.4-5) is the
Joseph stabilized Riccati equation.

If K in (3.4-2) is selected as a constant matrix, then the cost given by (3.4-4)
can be examined to see if it is reasonable. If it is, and if the plant behavior is
satisfactory in a simulation run, then the constant feedback can be used on the
actual plant.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 155

3.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 155

The Algebraic Riccati Equation

In this subsection we assume time-invariant plant and weighting matrices.
As (T − t) goes to infinity, the solution to the Riccati equation can exhibit

several types of behavior. It can be unbounded, or it can converge to a limiting
solution S (∞), which can be zero, positive semi-definite, or positive definite.

If S (t) does converge, then for t � T , Ṡ = 0, so that there results in the limit
the algebraic Riccati equation (ARE)

0 = ATS + SA − SBR−1BTS + Q. (3.4-6)

The ARE can have several solutions, and these may be real or complex, positive
definite, negative definite, etc. If S (T) is symmetric, then the Riccati solution S (t)
is symmetric and at least positive semi-definite for all t ≤ T . S (∞) is always a
solution to the ARE, but all ARE solutions are not limiting Riccati solutions for
some S (T).

It is worth mentioning that a real solution to

0 = ATST + SA − SBR−1BTST + Q, (3.4-7)

where S is not required to be symmetric, is given by

S =
√

AT(BR−1BT)−1A + QL

√
(BR−1BT)−1 + AT(BR−1BT)−1, (3.4-8)

where L is any orthogonal matrix (i.e., LLT = I). Of course, this assumes
|BR−1BT|
= 0. See Schultz and Melsa (1967). In the scalar case, this reduces to
the well-known formula for solving a quadratic equation! (Show that for S to
be symmetric, the matrix L must satisfy a Lyapunov equation.)

If S (∞) exists, then the corresponding steady-state feedback gain is

K(∞) = R−1BTS(∞). (3.4-9)

Under some circumstances it may be acceptable to use the time-invariant
feedback law (3.4-2) with a gain of K (∞) as an alternative to the time-varying
optimal feedback. The suboptimal cost associated with this control law is given
by (3.4-4), where K in (3.4-5) is K (∞).

To examine the consequences of this simplified control strategy, let us discuss
the limiting behavior of the closed-loop system (3.4-3) using the optimal feedback
in Table 3.3-1.

Limiting Behavior of the Riccati-equation Solution

This subsection applies only for time-invariant plant and cost matrices. It is
worthwhile reviewing the discrete case discussed in Section 2.4, as we shall
not repeat the comments designed to impart some insight and motivation for
our work.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 156

156 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

The plant is (3.4-1) with cost index in Table 3.3-1. By defining a fictitious
output

y(t) =
[
C

0

]
x(t) +

[
0

D

]
u(t), (3.4-10)

where C and D are defined as any matrices such that Q = CTC and R = DTD,
we can write the cost as

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ t

t0

yTy dt. (3.4-11)

We should first like to know when there is a finite limiting solution S (∞) to the
Riccati equation. The next theorem gives us the answer.

Theorem 3.4-1. Let (A, B) be stabilizable. Then for every S (T) there is a
bounded limiting solution S (∞) to the Riccati equation. Furthermore, S (∞) is a
positive semi-definite solution to the ARE. �

The proof of this theorem is similar to that of Theorem 2.4-1. Note that,
in general, S (∞) is different for different S (T). Remember that the free-final-
state LQ regulator does not require any controllability assumptions on the plant.
However, such assumptions guarantee desirable properties as the control interval
[t0, T] becomes large.

If we intend to use the simplified suboptimal control law (3.4-2) with a gain
of K (∞), we should certainly like for the resulting closed-loop system to be
stable! The next theorem tells when we can be sure of this. It is a strengthened
version of the previous result and depends on the observability of the plant by
the fictitious output.

Theorem 3.4-2. Let C be any matrix so that Q = CTC.
Suppose (A, C) is observable. Then (A, B) is stabilize if and only if

1. There is a unique positive definite limiting solution S (∞) to the Riccati
equation. Furthermore, S (∞) is the unique positive definite solution to the
ARE (3.4-6).

2. The closed-loop plant (3.4-3) is asymptotically stable, where K = K(∞)

is given by (3.4-9). �

The comments following Theorem 2.4-2 are relevant here. The observability
condition in the theorem is not really needed. If (A, C) is detectable, the result
still holds, but then S (∞) can be guaranteed only to be positive semidefinite.

What these theorems tell us is that if the plant is stabilizable and if we select
Q so that (A,

√
Q) is observable, then the suboptimal feedback grain (3.4-9)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 157

3.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 157

results in a stable closed-loop plant. Note that (3.4-9) is the optimal control law
for the infinite horizon performance index

J∞ = 1

2

∫ ∞

0
(xTQx + uTRu) dt. (3.4-12)

Thus, as the control interval [t0, T] gets larger, it makes more and more sense
to use a constant feedback with gain of K (∞).

A useful side result of these theorems is that we have a way of stabilizing
any multivariable plant. Let Q and R be any positive definite matrices with the
correct dimensions. Then u = −K∞x, where K∞ = R−1BTS, with S the positive
definite solution to (3.4-6), will result in a stable closed-loop plant. Different Q
and R will result in different closed-loop poles for (A − BK(∞)), but these poles
will always be in the open left half-plane. Later we show examples of how the
closed-loop poles move as Q and R vary.

Example 3.4-1. Steady-state Control of a System Obeying Newton’s Law

Let the plant

ẋ =
[

0 1

0 0

]
x +

[
0

1

]
u (1)

have the infinite-horizon cost

J (0) = 1

2

∫ ∞

0

(
xT

[
qd 0

0 qv

]
x + ru2

)
dt. (2)

We could do a computer simulation using MATLAB, and such a simulation would have
results similar to those of Example 2.4-3. However, let us instead capitalize on the simple
form of the continuous LQ regulator to get some analytic solutions.

Using A, B , Q , r in the ARE (3.4-6) yields the three coupled scalar algebraic equations:

0 = − s2
2

r
+ qd, (3)

0 = s1 − s2s3

r
, (4)

0 = 2s2 − s2
3

r
+ qv, (5)

where

S =
[
s1 s2

s2 s3

]
. (6)

These are easily solved to yield

s2 = √
qdr, (7)

s3 =
√

qvr + 2r
√

qdr, (8)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 158

158 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

s1 =
√

qdqv + 2qd

√
qdr, (9)

where we have selected the positive definite solution S (∞). (Show this.)
The optimal feedback gain is

K(∞) = R−1BTS(∞) =
⎡
⎣

√
qd

r

√
qv

r
+ 2

√
qd

r

⎤
⎦ . (10)

Since this depends only on the ratios qd/r and qv/r , let us now assume that r = 1. The
closed-loop plant is

acl = (A − BK(∞)) =
[

0 1

−√
qd −√

qv + 2
√

qd

]
, (11)

whence the optimal closed-loop characteristic equation is

s2 +
√

qv + 2
√

qds + √
qd = 0. (12)

Comparing this to s2 + 2δωns+ω2
n, we conclude that the optimal closed-loop poles are a

complex pair with a natural frequency and damping ratio of

ωn = (qd)
1/4, (13)

δ = 1√
2

√
1 + qv

2
√

qd

. (14)

In particular, if no velocity weighting is used (qv = 0), the damping ratio is the familiar
1/

√
2! Note that the natural frequency depends only on the position weighting, and the

damping ratio only on the ratio of the velocity to the square root of the position weighting.
Knowing the relations (13) and (14), we can now pick the weights qd and qv that

result in desirable closed-loop behavior. These values can even be used in a finite-horizon
(i.e., finite final time T) performance index to design optimal time-varying feedbacks with
a prescribed steady-state behavior.

It is worth remarking that if qd = 0 so that (A,
√

Q) is not detectable, then one of the
closed-loop poles is at s = 0 and the closed-loop plant is not stable. �

An Analytic Solution to the Riccati Equation

The LQ regulator Hamiltonian system is

[
ẋ

λ̇

]
= H

[
x

λ

]
, (3.4-13)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 159

3.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 159

where the Hamiltonian matrix is

H =
[

A −BR−1BT

−Q −AT

]
. (3.4-14)

By assuming
λ(t) = S(t)x(t), (3.4-15)

we were able to derive the formulation in Table 3.3-1, wherein S (t) satisfies
the Riccati equation. Instead of solving the Riccati equation, S (t) can be found
analytically in terms of the eigenvalues and eigenvectors of H .

To find an analytic expression for S (t), it is first necessary to show that if μ

is an eigenvalue of H , then so is –μ. Define

J =
[

0 I

−I 0

]
. (3.4-16)

Then by direct multiplication we see that

H = JHTJ. (3.4-17)

Therefore, if μ is an eigenvalue of H with eigenvector v ,

Hv = μv,

so that
JHTJv = μv,

HTJv = −μJv

(note J−1 = −J). Hence,

(Jv)TH = −μ(Jv)T, (3.4-18)

and (Jv) is a left eigenvector of H with eigenvalue –μ.
Now we merely repeat the steps leading up to (2.4-41). The results are as

follows.
Order the eigenvalues of H in a matrix

D =
[−M 0

0 M

]
, (3.4-19)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 160

160 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

where M is a diagonal matrix containing the right-half-plane eigenvalues. Let
the modal matrix of eigenvectors, arranged in order to correspond to D , be

W
�=

[
W11 W12

W21 W22

]
. (3.4-20)

Thus, [
W11

W21

]

are the n eigenvectors of the stable eigenvalues of H .
If S (T) is the Riccati-equation boundary condition, define

V (T) = −(W22 − S(T)W12)
−1(W21 − S(T)W11) (3.4-21)

and
V (t) = e−M(T −t)V (T)e−M(T −t). (3.4-22)

Then an analytic solution to the Riccati equation is given by

S(t) = (W21 + W22V (t))(W11 + W12V (t))−1. (3.4-23)

In the limiting case (T − t) → ∞, a bounded positive definite solution S (∞)
exists if (A, B) is stabilizable and (A,

√
Q) is observable. In this limit, V (t) → 0

since –M is stable, so
S(∞) = W21W

−1
11 . (3.4-24)

The ARE solution is thus constructed by using the stable eigenvectors of the
Hamiltonian matrix.

Design of Steady-state Regulators by Eigenstructure Assignment

We have just discovered a way to determine the optimal steady-state cost kernel
S (∞) in terms of the eigenstructure of the Hamiltonian matrix H . By pursuing
this line of thought a little further, we can find a way to determine the optimal
steady-state feedback gain K (∞) directly from the eigenstructure of H .

We assume that (A, B) is reachable and (A,
√

Q) is detectable. The optimal
steady-state closed-loop plant is

ẋ = (A − BK(∞))x. (3.4-25)

This and the Hamiltonian system (3.4-13) are both ways of characterizing the
optimal state trajectories. We can demonstrate that if μi is a stable eigenvalue of
H with eigenvector [XT

i �T
i]T, where Xi ∈ Rn, then μi is also an eigenvalue of

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 161

3.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 161

(A − BK(∞)) with eigenvector X i . The argument is a straightforward modifica-
tion of the discrete-time argument in Chapter 2.

H can be written down by inspection. Therefore, in the single-input case we
can use this result by finding the eigenvalues of H and then realizing that the
stable eigenvalues are the poles of the optimal closed-loop plant. Given these
desired poles, a technique such as Ackermann’s formula can be used to find the
optimal feedback gain K (∞).

In the multi-input case, the optimal feedback is not uniquely specified by the
closed-loop poles, so it is necessary to find the eigenvectors of H as well. A
derivation virtually identical to the one for the discrete case in Chapter 2 leads
to the following result.

Let the eigenvectors of the stable eigenvalues of H be placed into the 2n × n

matrix [XT�T]T, where X ∈ Rn. (We called this

[
W11

W21

]

in (3.4-20).) Then the optimal steady-state feedback is given by

K(∞) = R−1BT�X−1. (3.4-26)

Compare this result to the corresponding result in Chapter 2, which, interestingly
enough, includes in addition a matrix of stable eigenvalues M . (Why?)

Example 3.4-2. Eigenstructure Design of Steady-state Regulator for Harmonic
Oscillator

Let the plant

ẋ =
[

0 1

−ω2
n 0

]
x +

[
0

1

]
u (1)

have a cost index of

J (0) = 1

2

∫ ∞

0

(
xT

[
qd 0

0 qv

]
x + ru2

)
dt. (2)

a. Optimal Closed-loop Poles

The Hamiltonian matrix is

H =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

−ω2
n 0 0 −1/r

−qd 0 0 ω2
n

0 −qv −1 0

⎤
⎥⎥⎥⎥⎥⎦

, (3)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 162

162 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

whence we can compute

|sI − H | = s4 +
(

2ω2
n − qv

r

)
s2 +

(
ω4

n + qd

r

)
. (4)

Note the even form of the characteristic polynomial of H . This means that if s is a root,
then so is –s . Since only the ratios qv/r and qd/r appear, we can assume that r = 1.

Letting s
�= s2, (4) becomes

s2 + (2ω2
n − qv)s + (ω4

n + qd), (5)

which has a pair of complex roots s1, s2 with natural frequency of

ωn = (ω4
n + qd)

1/2 (6)

and damping ratio of

δ = ω2
n − qv/2

(ω4
n + qd)1/2

. (7)

The roots of (4) are given by ±√
s1 and ±√

s2. If the roots of (5) are represented as

s1 = ωne
jθ1 , (8a)

s2 = ωne
jθ2 , (8b)

where θ2 = −θ1, then the roots of (4) are

(ωn)
1/2e±jθ1/2, (9a)

(ωn)
1/2e±jθ2/2, (9b)

If δ = − cos θ1 is the damping ratio of a pole pair at angles of ±θ1 (i.e., θ1 and θ2), then

±δ = ±
√

1 − δ√
2

(10)

are the damping ratios of the two pole pairs at angles of ±θ1/2 and ±θ2/2. These four
poles are symmetric about the imaginary axis, and the pole pair corresponding to +δ is
stable, whereas the pole pair corresponding to –δ is unstable. Equation (10) follows from
the trigonometric relationship

cos
α

2
=

√
1 + cos α√

2
. (11)

In our case the stable poles of H thus have a damping ratio of

δcl = 1√
2

√
1 − ω2

n − qv/2

(ω4
n + qd)1/2

. (12)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 163

3.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 163

The natural frequency of the stable poles of H is

ωcl
n = (ω4

n + qd)
1/4. (13)

Since the stable poles of H are the optimal closed-loop poles, we can write down the
characteristic polynomial of (A − BK(∞)):

�cl(s) = s2 + 2δclωcl
n s + (ωcl

n)2

= s2 +
√

2
√

(ω4
n + qd)1/2 + (qv/2 − ω2

n)s

+ (ω4
n + qd)

1/2. (14)

b. Optimal Feedback Gain

According to Ackermann’s formula

K(∞) = [
0 1

]
U−1

2 �cl(A). (15)

The reachability matrix is

U2 = [
B AB

] =
[

0 1

1 0

]
, (16)

and substituting A2, A, and I for s2, s1, and s0 in (14) yields

�cl(A)

=

⎡
⎢⎣

−ω2
n + (ω4

n + qd)
1/2

√
2
√

(ω4
n + qd)1/2 + (qv/2 − ω2

n)

−ω2
n

√
2
√

(ω4
n + qd)1/2 + (qv/2 − ω2

n) −ω2
n + (ω4

n + qd)
1/2

⎤
⎥⎦ . (17)

The optimal feedback gain is thus

K(∞) =
[
−ω2

n + (ω4
n + qd)

1/2
√

2
√

(ω4
n + qd)1/2 + (qv/2 − ω2

n)

]
(18)

If ωn = 0, these results agree with Example 3.4-3. �

Time-varying Plant

If the plant is time varying, then we must redefine observability and reachability.
Suppose the plant is (3.4-1) with cost index in Table 3.3-1, where A, B , Q , and
R are time dependent. Let φ(t , t0) be the state transition matrix of A.

We say the plant is uniformly completely observable if for every final time T
the observability gramian satisfies

α0I ≤
∫ T

t0

φT(τ, t0)Q(τ)φ(τ, t0)dτ ≤ α1I (3.4-27)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 164

164 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

for some t0 < T, α0 > 0, and α1 > 0. Compare this with (3.3-14). We say the
plant is uniformly completely reachable if for every initial time t0 the reachability
gramian satisfies

α0I ≤
∫ T

t0

φ(t, τ)B(τ)R−1(τ)BT(τ)φT(t, τ)dτ ≤ α1I (3.4-28)

for some T > t0, α0 > 0, and α1 > 0. Compare this to the gramian (3.3-25).
Uniform complete observability and reachability (and boundedness of A(t),

B (t), Q(t), R(t)) guarantee that for large t the behavior of P (t) is unique, inde-
pendent of P (0). They also guarantee the uniform asymptotic stability of the
closed-loop plant (A − BK(t)).

3.5 FREQUENCY-DOMAIN RESULTS

Several methods for designing steady-state continuous regulators have been dis-
cussed. Here we present an approach that amounts to a root-locus design method.
The plant and weighting matrices are assumed time invarant, with (A, B) reach-
able and (A,

√
Q) observable.

A Factorization Result

The optimal steady-state regulator is given by a constant feedback (3.4-2), where
K = R−1BTSand S is the unique positive definite solution to the ARE (3.4-6).
The resulting closed-loop system (3.4-3) is asymptotically stable.

As in Section 2.5, we can show that

�cl(s) = |I + K(sI − A)−1B|�(s), (3.5-1)

which relates the closed-loop characteristic polynomial �cl(s) = |sI − A + BK|
to the open-loop polynomial �(s) = |sI − A|. According to Fig. 2.5-1 (with z –1

replaced by 1/s), I + K(sI − A)−1B can be interpreted as a return-difference
matrix (return difference = I -loop gain).

We can also show the factorization result

BT(−sI − A)−TQ(sI − A)−1B + R

= (I + K)(−sI − A)−1B)TR(I + K(sI − A)−1B), (3.5-2)

which can be interpreted as follows. Let

H(s) = C(sI − A)−1B (3.5-3)

be the transfer function from u(t) to y1(t) = Cx(t), the “top portion” of the
fictitious output y(t) in (3.4-10). Now examine Fig. 2.5-2 (with z –1, z replaced

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 165

3.5 FREQUENCY-DOMAIN RESULTS 165

by 1/s , –1/s , respectively). It is clear that H T(–s) is the transfer function from y1

to the intermediate signal w . Therefore, (3.5-2) simply expresses the equivalence
between a transfer-function product in the continuous version of Fig. 2.5-2 and
a transfer-function product in the continuous version of Fig. 2.5-1. It is just
another way of expressing the equivalence between the state–costate (3.4-13)
and the closed-loop (3.4-3) formulations of the optimal LQ regulator.

Chang-Letov Design Procedure for the Steady-state LQ Regulator

According to (3.5-1) and (3.5-2) we can write

�cl(−s)�cl(s) = |HT(−s)H(s) + R| · �(−s)�(s) · |R|−1, (3.5-4)

where H (s) is given by (3.5-3). This is the Chang-Letov equation (Kailath 1980).
It can be used to design optimal steady-state LQ regulators by a root-locus
approach. Note that the entire right-hand side is known if the plant and weighting
matrices are given, so we can use the Chang-Letov equation to determine the
optimal closed-loop poles; since (A − BK) is stable by Theorem 3.4-2, they are
just the stable roots of the right-hand side. The roots of �cl(−s)�cl(s) are always
symmetric with respect to the imaginary axis; that is, if s1 is a root, then so is –s1.

In the single-input case with Q = qI, we have

H(s) =
√

q[adj(sI − A)]B

�(s)

�=√
q

N(s)

�(s)
, (3.5-5)

where N (s) is a column vector. Then (3.5-4) becomes

�cl(−s)�cl(s) = q

r
NT(−s)N(s) + �(−s)�(s). (3.5-6)

The roots of the right-hand side are the zeros of

1 +
(q

r

) NT(−s)N(s)

�(−s)�(s)
= 1 + q

r
HT(−s)H(s), (3.5-7)

which is exactly the form required for a root-locus analysis as a function of the
parameter q/r . This shows that as q/r varies from zero (no state weighting) to
∞ (no control weighting), the optimal closed-loop poles move from the stable
poles of

G(s) = HT(−s)H(s) (3.5-8)

to its stable zeros. We can therefore select the ratio of cost weights q/r to yield
suitable closed-loop poles.

It is worth remarking that the stable poles of HT(−s)H(s) are the poles of
H (s) with unstable poles reflected into the left half-plane (i.e., s1 = −s1). The
stable zeros of HT(−s)H(s) are the zeros of H (s) with unstable zeros reflected
into the left half-plane.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 166

166 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

The next example illustrates these ideas. For a good discussion, see Kailath
(1980) or Schultz and Melsa (1967).

Example 3.5-1. Chang-Letov Design of Aircraft Longitudinal Autopilot

The short-period longitudinal dynamics for a medium-sized jet with center of gravity
unusually far aft might be described by the state equations

[
α̇

ρ̇

]
=

[−1.417 1.0

2.860 −1.183

] [
α

ρ

]
+

[
0

−3.157

]
δe, (1)

where α is the angle of attack, ρ the pitch rate, and δe the elevator deflection (Blakelock
1965). (We shall show only three decimal places.) The open-loop characteristic
polynomial is

�(s) = |sI − A| = s2 + 2.6s − 1.183, (2)

so the open-loop poles are
s = −2.995, 0.395. (3)

Evidently, the center of gravity is so far aft that the short-period poles, which usually
constitute a lightly damped complex pair, have become one stable and one unstable pole.

To stabilize the plant and keep the pitch rate small, we might select the performance
index

J (0) = 1

2

∫ ∞

0
(qρ2 + rδ2

e) dt, (4)

so that

Q =
[

0 0

0 q

]
(5)

and a root of Q is
C = [0

√
q]. (6)

Since (A, B) is reachable and (A, C) is observable (if q
= 0), we know the steady-state
LQ regulator results in a stable closed-loop plant.

Transfer function (3.5-3) is

H(s) = −√
q(3.157s + 4.473)

s2 + 2.6s − 1.183
. (7)

The Chang-Letov design procedure is based on the rational function

G(s) = H(−s)H(s). (8)

Since we know the closed-loop characteristic polynomial �cl(s) is stable, its roots are the
stable zeros of

1 + q

r
G(s). (9)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 167

PROBLEMS 167

In our case

G(s) = (3.157s − 4.473)(−3.157s − 4.473)

(s2 − 2.6s − 1.183)(s2 + 2.6s − 1.183)

= −9.97(s − 1.417)(s + 1.417)

(s + 0.395)(s − 2.995)(s − 0.395)(s + 2.995)
. (10)

The poles and zeros of G(s) are plotted in Fig. 3.5-1. Note that they are symmetrically
placed about the imaginary axis. Also shown is the root locus as q/r varies from 0 to
∞. (Note that since the gain in (10) is negative, we are really plotting a root locus for
negative gains –9.97q /r .)

FIGURE 3.5-1 Chang-Letov root locus.

If we select q/r = 1, then the stable zeros of (9) are

s = −1.094,−4.231, (11)

so the closed-loop characteristic polynomial is

�cl(s) = (s + 1.094)(s + 4.231)

= s2 + 5.324s + 4.627. (12)

Now Ackermann’s formula can be used to find the optimal feedback gain K . �

PROBLEMS

Section 3.2

3.2-1. We want to minimize

J =
∫ π

0
ẋ2 dt.

Formulate this as an optimal control problem. Find and sketch the optimal x (t).
Find J ∗.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 168

168 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

3.2-2. Determining optimal control by approximation. Consider the nonlin-
ear plant

ẋ = −x3 + u, x(0) = 1
2 , (1)

with quadratic performance index

J = 1

2
x2(2) + 1

2

∫ 2

0
(x2 + u2) dt. (2)

a. Write state and costate equations, stationarity condition, and boundary condi-
tions. Eliminate u(t) from the state and costate equations.

b. Prove that if x (t) is small on [0, 2], then an approximate solution for the
costate is

λ = x − x3. (3)

c. For this approximate costate, find the state solution x (t).
d. Find the approximate optimal control. (Note that applying this control to the

plant will tend to keep x (t) small, so that approximation (3) is valid.)

3.2-3. A model of an automobile suspension system is given by

mÿ + ky = u, (1)

where m is the mass, k the spring constant, u the upward force on the frame,
and y the vertical position.
a. Write the state equation if the state is x = [y ẏ]T.

To conduct a durability test, we repetitively apply a force u(t) and suddenly
remove it until failure occurs. To compute the force, we can solve the follow-
ing problem. Find u(t) to move the automobile from y(0) = 0, ẏ(0) = 0 to a
final position of y(T) = h, ẏ(T) = 0 at a given final time T . Minimize the
control energy

J = 1

2

∫ T

0
u2 dt. (2)

b. Write the state and costate equations, stationarity condition, and boundary
conditions. Eliminate u from the state and costate equations.

c. Solve for the costate in terms of the as yet unknown λ(0). Solve for the state
in terms of the unknown λ(0) and the known x (0).

d. Use the boundary conditions to find λ(0). Let m = k = 1, T = 2, h = −3 (i.e.,
down) for the remainder of the problem.

e. Find optimal control and optimal state trajectory.
f. Verify that x∗(T) = [h 0]T as required.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 169

PROBLEMS 169

3.2-4. See Fig. P3.2-1.

FIGURE P3.2-1

a. Find the state equation.
b. It is desired to charge up the inductance to x(T) = 2A at T = 1 if x(0) = 0

while minimizing

J =
∫ 1

0
u2 dt. (1)

Find the optimal control.
c. Find the optimal state trajectory.

3.2-5. Optimal control of a bilinear system. Let

ẋ = Ax + Dxu + bu, (1)

where x ∈ Rn, u ∈ R, and

J = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

0
(xTQx + ru2) dt. (2)

Show that the optimal control consists of a state–costate inner product. Find state
and costate equations after eliminating u . These cubic differential equations are
very hard to solve.

3.2-6. Numerical solution of bilinear system. Let

ẋ1 = x1x2 + u,

ẋ2 = x2
1 + x2

2 ,

with cost

J = s1x
2
1(T)

2
+ s2x

2
2(T)

2
+ 1

2

∫ T

0
(q1x

2
1 + q2x

2
2 + ru2) dt,

where T is fixed. Derive Euler’s equations and boundary conditions. Write sub-
routines fcni, fcnbf for use with tpoint .

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 170

170 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

3.2-7. Unit solution method. Consider the optimal control problem formulated
by (3.2-1) and (3.2-14)–(3.2-21), where the plant is linear. We want to formalize
the unit solution method by finding a system of equations to solve for the initial
costate λ(t0).
Let r(t0) be the given initial state. Let x 0(t), λ0(t) be the solutions of the Hamil-
tonian system when x(t0) = r(t0), λ(t0) = 0. Let xi(t), λi(t) for i = 1, . . . , n be
the unit solutions when x(t0) = 0, λ(t0) = ei , where ei is the i th column of the
n × n identity matrix. Then the solutions for the general initial conditions (3.2-26)
with ci scalar constants, are given by (3.2-27).
a. Final state fixed: If the final condition is x(T) = r(T) given, show that the

initial costate λ(t0) that guarantees that this final condition holds is given by
solving

[x1(T) · · · xn(T)] λ(t0) = r(T) − x0(T). (1)

b. Final state free: If the final state is free, show that the optimal initial costate
λ(t0) is given by solving

− [λ1(T) − S(T)x1(T) · · ·λn(T) − S(T)xn(T)] λ(t0)

= −(λ0(T) − S(T)x0(T)r(T). (2)

3.2-8. Unit solution method. Let

ẋ1 = x2 + u, (1a)

x2 = x1 − x2, (1b)

with

J = 5x2
1(T) + 1

2

∫ T

0
(x2

1 + x2
2 + u2) dt, (2)

where T is fixed and we require

x2(T) = 1. (3)

Solve for the optimal control by the unit solution method.

Section 3.3

3.3-1. The scalar plant

ẋ = u (1)
has performance index

J (t0) = 1

2
sx2(T) + 1

2

∫ T

t0

ru2 dt. (2)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 171

PROBLEMS 171

a. First we want a closed-loop control minimizing J .
i. Solve the Riccati equation using separation of variables.

ii. Find the optimal control.
iii. Sketch optimal feedback gain versus t .

b. Now we want an open-loop control that minimizes J and drives the state to
a given x (T). Initial state x (t0) is known.

i. Find the weighted reachability gramian.
ii. Find the optimal control as a function of x (t0) and x (T). Sketch it.

iii. Find and sketch the optimal state trajectory.
c. The open-loop control formulation of part b can be used to find a state feed-

back control law.
i. Use part b.iii to solve for x (t0) in terms of x (t) and x (T).

ii. Substitute this into your result in part b.ii to find u∗(t) in the form of
u∗(t) = g(t)x(t) + h(t). Compare to the closed-loop control in part a.

iii. Compare this control to the optimal control that minimizes the cost to go
J(t) on [t, t + T].

3.3-2. See Fig. P3.2-1.
a. Write the state equation.
b. Solve Problem 3.2-4 using the reachability gramian.
c. Now let

J = 1

2
10x2(T) + 1

2

∫ T

0
(x2 + u2) dt.

i. Solve the Riccati equation using separation of variables.
ii. Find the optimal control.

iii. Sketch optimal feedback gain versus t .

3.3-3. Optimal control of newton’s system. Let

ẋ1 = x2, (1a)

ẋ2 = u (1b)

have performance index

J = 1

2
xT(T)x(T) + 1

2

∫ T

0
(xTx + ru2) dt, (2)

where x = [
x1 x2

]T
.

a. Find the Riccati equation. Write it as three scalar differential equations.
Find the feedback gain in terms of the scalar components of S (t).

b. Write subroutines to find and simulate the optimal control using MATLAB.
c. Find analytic expressions for the steady-state Riccati solution and gain.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 172

172 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

3.3-4. Uncontrolled Newton’s system. Consider the system of Problem 3.3-3.
Solve the Lyapunov equation (3.3-9) to find the cost kernel S(t) if u = 0. Sketch
the scalar components of S (t).

3.3-5. Uncontrolled harmonic oscillator. Repeat problem 3.3-4 for the system
in Example 3.3-5. Let S(T) = I,Q = I , ω2

n = 1, δ = 0.5.

3.3-6. Cross-weighting cost terms. Repeat Problem 3.3-3 if a term like
2x 1(t)u(t) is added under the integral in J . Assume r > 1. (Why?)

3.3-7. Writing the Lyapunov equation as a vector equation. Show that
Lyapunov equation (3.3-9) can be written as the vector equation

− d

dt
s(S) = [

(AT ⊗ I) + (I ⊗ AT)
]
s(S) + s(Q),

where the Kronecker product and stacking operator are defined in Appendix A.

3.3-8. Prove that (3.3-42) and the Joseph-stabilized equation (3.3-46) are equiv-
alent to (3.3-40).

3.3-9. Open-loop control with function of final state fixed. Let ẋ = Ax + Bu
with

J = 1

2

∫ T

t0

uTRu dt.

It is required to drive x (t0) to a final state x (T) such that

Cx(T) = r(T)

for a given r(T).
Show that the optimal control is given by

u(t) = −R−1BTeAT(T −t)CT [
CG(t0, T)CT]−1

(CeA(t−t0)(t0) − r(T)).

Note that if C
= I , there may be a solution even if the system is not reachable.

3.3-10. Hamiltonian system. Let V , W be n × n solutions to the linear equation

[
V̇

Ẇ

]
=

[
A −BR−1BT

−Q −AT

][
V

W

]
,

with boundary condition W(T) = S(T)V (T). Show that the solution to (3.3-40)
is given by S(t) = W(t)V −1(t). (Hint: Note that d(V −1)/dt = −V −1V̇ V −1.)

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 173

PROBLEMS 173

3.3-11. Writing the Riccati equation as a vector equation. Show that (3.3-40)
can be written as the nonlinear vector differential equation

− d

dt
s(S) = [

(AT ⊗ I) + (I ⊗ AT)
]
s(S)

+ (S ⊗ S)s(BR−1BT) + s(Q).

3.3-12. Relation between state and costate. Show that if u(t) = 0, Q = 0, then
the inner product of the state with the costate is a constant independent of time
in the continuous linear quadratic regulator.

Section 3.4

3.4-1. Newton’s system. Let
ẋ = x2, (1a)

ẋ2 = u, (1b)

J = 1

2

∫ ∞

0
(x2

1 + 2vx1x2 + qx2
1 + u2) dt, (2)

where (q − v2) > 0.
a. Find the solution to the ARE.
b. Find the optimal control.
c. Find the optimal closed-loop system.
d. Plot loci of closed-loop poles as q varies from 0 to ∞. For which values of

q is the system stable?

3.4-2. Suboptimal control. Let
ẋ = u, (1)

J = 1

2
sx2(T) + 1

2

∫ T

0
(qx2 + ru2) dt. (2)

a. Optimal control:
i. Set up and solve the Riccati equation. Sketch solution s∗(t).

ii. Find the optimal feedback K (t). Show that the steady-state gain is

K∞ =
√

q/r. (3)

b. Suboptimal control: We shall now use the suboptimal constant feedback

u(t) = −K∞x(t). (4)

Find the resulting kernel s(t). Sketch s∗(t) and s(t) on the same graph. Note
s∗(t) ≤ s(t) for all t , but s∗(0) = s(0) so the two limiting values are the same.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 174

174 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

c. Find the steady-state closed-loop plant and plot its pole as q/r goes from
0 to ∞.

3.4-3. ARE solutions. Let
ẋ1 = x2, (1a)

ẋ2 = −ax1 − 2x2 + u, (1b)

and

J = 1

2

∫ ∞

0
(2x2

1 + x2
2 + u2) dt. (2)

a. Plot the root locus of the open-loop system as a varies from –∞ to ∞. For
which values of a is (1) stable?

b. Find all symmetric ARE solutions in terms of a . How do you know there is
a unique positive definite solution?

c. In the remainder of the problem, let a = −8. Find open-loop poles. Is (1)
stable?

d. Find all (4) symmetric ARE solutions.
e. Find the unique, negative definite solution and the unique, positive definite

solution.
f. Find the steady-state Kalman gain.
g. Find the closed-loop poles.
h. What can you say about the closed-loop poles for any value of a?

3.4-4. Suboptimal control of Newton’s system. In Example 3.4-3, the steady-
state gain for Newton’s system was found to be of the form

K∞ = [ω2
n 2δω2

n], (1)

where δ and ωn depend on the cost weights. In a suboptimal control scheme we
apply the constant feedback

u(t) = −K∞x(t). (2)

Determine the resulting suboptimal cost kernel S (t). Compare this with
Problem 3.3-3.

3.4-5. Let
ẋ = x + u, (1)

J = 1

2

∫ ∞

0
(x2 + u2) dt. (2)

a. Use the eigenstructure of the Hamiltonian matrix to determine the steady-state
Riccati solution s∞. Hence, find the steady-state gain K ∞.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 175

PROBLEMS 175

b. Find the solution to the ARE to check part a.
c. Use the eigenstructure of the Hamiltonian matrix to determine optimal closed-

loop poles. Hence, find K ∞ by Ackermann’s formula.

3.4-6. Repeat Problem 3.4-5 for the plant

ẋ1 = x1 + u, (1a)

ẋ2 = −x1 + x2 (1b)

if

J = 1

2

∫ ∞

0
(x2

1 + x2
2 + ru2) dt, (2)

with r = 1
10 .

3.4-7. ARE solutions
a. Final all symmetric solutions to (3.4-6) if

A =
[

0 1

0 0

]
, B =

[
0

1

]
, C = [1 0], R = 1, and Q = CTC.

b. How do you know a priori that there is a unique, positive definite solution?
Check all your solutions for definiteness.

c. Some of your solutions are complex. For each real solution S , check the
stability of the closed-loop system (A − BK), where K = R−1BTS. Hence,
identify the stabilizing and destabilizing solutions to the algebraic Riccati
equation as the positive definite and negative definite solutions, respectively.

3.4-8. Observability and reachability for time-varying systems
a. Show that (3.4-27) holds if and only if there is a bounded positive definite

solution for some t < T to

−Ṡ = ATS + SA + Q, S(T) = 0. (1)

Show that (3.4-28) holds if and only if there is a bounded positive definite
solution S−1(t) for some t > 0 to

d

dt
(S−1) = AS−1 + S−1AT + BR−1BT, S−1(0) = 0. (2)

b. Derive discrete counterparts to these tests.

Lewis c03.tex V1 - 10/19/2011 3:46pm Page 176

176 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

Section 3.5

3.5-1. Prove (3.5-2).

3.5-2. Change-Letov design
a. For the system of Problem 3.4-6, use the Chang-Letov equation and Acker-

mann’s formula to find the optimal feedback gain and closed-loop plant if
r = 1

10 .
b. Plot a root locus for the closed-loop plant as r varies from ∞ to 0.

3.5-3. Polynomial decomposition
a. Show that any polynomial P (s) with real coefficients can be decomposed as

P(s) = P1(s) + P2(s) (1)
where

P1(s) = 1
2 (P (s) + P(−s)),

P2(s) = 1
2 (P (s) − P(−s)). (2)

Show that

P1(s) = P1(−s), (3)

P2(s) = −P2(−s). (4)

b. Given the roots si of P(s) = 0, how can you find the roots of P(−s) = 0?

3.5-4. Chang-Letov design for systems in reachable canonical form. Let

ẋ =
[

0 1

−ω2
n −2δωn

]
x +

[
0

1

]
u,

J = 1

2

∫ ∞

0
(qxTx + ru2) dt.

a. Using the Chang-Letov procedure, plot the loci of the optimal closed-loop
poles as q /r goes from 0 to ∞. Show that the poles move from the “stabilized”
poles of the plant (i.e., if they are unstable, reflect them into the left half-s-
plane replacing s by –s) to values of s = −1, ∞.

b. Find the optimal gain by Ackermann’s formula if ωn = 1, δ = − 1
2 , q/r = 2.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 177

4
THE TRACKING PROBLEM
AND OTHER LQR EXTENSIONS

4.1 THE TRACKING PROBLEM

In this section we present an optimal control law that forces the plant to track a
desired reference trajectory r(t) over a specified time interval [t0, T].

Nonlinear Systems

Let the dynamics of the plant be described by

ẋ = f (x, u). (4.1-1)

To keep a specified linear combination of the states

y(t) = Cx(t) (4.1-2)

close to the given reference track r(t), let us specify the quadratic cost index

J (t0) = 1

2
(Cx(T) − r(T))TP(Cx(T) − r(T))

+ 1

2

∫ T

t0

[(Cx − r)TQ(Cx − r) + uTRu] dt, (4.1-3)

with P ≥ 0, Q = 0, R > 0.

177

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 178

178 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

From Table 3.2-1, the optimal control is given by solving
State system:

ẋ = f (x, u) (4.1-4)

Costate system:

−λ̇ =
(

∂f

∂x

)T

λ + CTQCx − CTQr (4.1-5)

Stationarity condition:

0 =
(

∂f

∂u

)T

λ + Ru (4.1-6)

with

Boundary conditions (note dT = 0):

x(t0) given (4.1-7)

λ(T) = CTP(Cx(T) − r(T)). (4.1-8)

According to the stationarity condition, the optimal control is given in terms of
the costate as

u(t) = −R−1
(

∂f

∂u

)T

λ(t). (4.1-9)

When fu depends on x and u in a nonlinear manner this control is a nonlinear
feedback of the state and costate.

The reference track r(t) has added two terms to these equations that were
not present in the LQ regulator. From (4.1-8) it is apparent that the final costate
is no longer a linear function of the state as it was in the regulator problem.
Furthermore, even if (4.1-9) can be used to eliminate u(t) in the state and costate
equations, the Hamiltonian system will still be nonhomogeneous, since (4.1-5) is
driven by −C TQr(t).

The LQ Tracking Problem

If the plant has linear dynamics, then the optimal controller becomes

ẋ = Ax + Bu, (4.1-10)

−λ̇ = ATλ + CTQCx − CTQr (4.1-11)

with
u = −R−1BTλ. (4.1-12)

Using this control policy in the state equation yields

ẋ = Ax − BR−1BTλ. (4.1-13)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 179

4.1 THE TRACKING PROBLEM 179

This formulation of the optimal control law has the structure shown in Fig. 2.2-1
(with z –1, z replaced by 1/s , −1/s). The control law cannot be implemented
in this form since the costate equation develops backward, and the boundary
conditions (4.1-7) and (4.1-8) are split. Although u(t) is a linear costate feedback,
it cannot be expressed as a linear state feedback because of the affine form
of (4.1-8).

By use of the sweep method it can be shown (see the problems) that the
continuous-time optimal LQ tracker can be expressed in the causal form shown
in Table 4.1-1. Note that the control input is an affine state feedback ; it consists
of a linear state feedback plus an additional term. The additional term depends
on the output v (t) of the adjoint of the closed-loop plant when driven by the
reference track r(t).

The closed-loop plant under the influence of this tracker control law is

ẋ = (A − BK(t))x + BR−1BTv. (4.1-14)

The optimal cost on [t , T] for any t using this control is

J (t) = 1

2
xT(t)S(t)x(t) − xT(t)v(t) + w(t),

where the new auxiliary function w (t) satisfies

−ẇ = 1

2
rTQr − 1

2
vTBR−1BTv, t ≤ T , (4.1-15)

TABLE 4.1-1 Continuous Linear Quadratic Tracker

System model:
ẋ = Ax + Bu, t > t0

Performance index:

J (t0) = 1

2
(Cx(T) − r(T))TP(Cx(T) − r(T))

+ 1

2

∫ T

t0

[(Cx − r)TQ(Cx − r) + uTRu] dt

Assumptions:
P ≥ 0, Q ≥ 0, R > 0 are symmetric

Optimal affine control:

K(t) = R−1BTS(t)

−Ṡ = ATS + SA − SBR−1BTS + CTQC, S(T) = CTPC

−v̇ = (A − BK)Tv + CTQr, v(T) = CTPr(T)

u = −Kx + R−1BTv

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 180

180 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

with

w(T) = 1

2
rT(T)Pr(T). (4.1-16)

For further discussion on the LQ tracker, see Athans and Falb (1966), Kirk
(1970), and Bryson and Ho (1975).

Implementation and a Suboptimal Tracker

The implementation of the tracker can be simplified by doing most of the work
implied by Table 4.1-1 offline. The matrix sequence S (t) is independent of the
state trajectory, so the Riccati equation can be solved offline, and S (t) and the
feedback gain K (t) can be stored. If the reference track r(t) is known a priori,
the auxiliary function v (t) can also be precomputed and stored. The only work
left to do during the actual control run is then to compute u(t) = −K(t)x(t) +
R−1BTv(t).

Suppose, however, that v (t) has been determined by integrating backward the
closed-loop adjoint system with v(T) = CTPr(T). Then v (0) is known. During
the actual control run we use this v (0) in the forward equation

−v̇ = (A − BK)Tv + CTQr, t > 0, (4.1-17)

to compute v (t). This avoids storage of the auxiliary function v (t).
If t0 = 0 and the final time T goes to infinity, we have the infinite-horizon

tracker problem, where we also let P = 0. Then, in the time-invariant case, if
(A, B) is reachable and (A, C

√
Q) is observable, the Riccati-equation solution

reaches a steady-state solution S (∞). The Kalman gain then reaches a corre-
sponding steady-state value of K (∞), and the closed-loop plant is stable. Under
these circumstances the optimal tracker is given by

−v̇ = (A − BK(∞))Tv + CTQr, (4.1-18)

u = −K(∞)x + R−1BTv. (4.1-19)

A steady-state tracker can be devised for a finite control interval [t0, T] by
using the steady-state gain K (∞). The initial condition v (0) can be determined
offline using (4.1-18) and then during the simulation we need use only (4.1-17)
and (4.1-19). Experience shows that this simplified tracker is often satisfactory
if (T − t0) is large. The suitability of the suboptimal tracker can be determined
in a particular application by running a computer simulation.

See Athans and Falb (1966) for a treatment of the case when r(t) is a constant.

Example 4.1-1. Scalar LQ Tracker

If the scalar plant

ẋ = ax + bu (1)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 181

4.1 THE TRACKING PROBLEM 181

has cost index

J (0) = 1

2
p(x(T) − r(T))2 + 1

2

∫ T

0
[q(x − r)2 + Ru2] dt (2)

for a given final time T and reference signal r(t), then according to Table 4.1-1 the
optimal tracker is specified by

−ṡ = 2as − b2s2

R
+ q, s(T) = p, (3)

−v̇ =
(
a − b2 s

R

)
v + qr, v(T) = pr(T), (4)

K = bs/R, (5)

u = −Kx + bv

R
. (6)

a. Computer Simulation

Equations (3) and (4) are first solved, with the minus signs to the left of the equali-
ties omitted, by a forward integrator using the MATLAB routine ode45.m . The solutions
are then reversed in time to obtain s(t) and v (t). This is accomplished by the use of
a subroutine to describe the dynamics of equations (3) and (4). The sampled times
of the integrator ode45.m are used to compute the gain K in (5) and K and v are
stored.

For the simulation run of the system use the MATLAB routine lsim.m . An alternative
method is to sample (1) to get a discrete plant, which is studied later in the chapter.

b. Steady-state Tracker

Let T → ∞ and p = 0, so that we have the infinite-horizon tracking problem.
By Example 3.4-2, the steady-state kernel, gain, and closed-loop matrix are

s(∞) = R

b2
(a + α), (7)

K(∞) = 1

b
(a + α), (8)

acl = (a − bK(∞)) = −α, (9)

where

α
�=

√
a2 + b2q

R
. (10)

The auxiliary system (4) therefore becomes

−v̇ = −αv + qr. (11)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 182

182 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

Suppose we want to track the constant reference

r(t) = hu−1(t), (12)

where h ∈ R and u−1(t) is the unit step. Then (11) can be solved to yield

v(t) =
∫ T

t

e−α(τ−t)qh dτ

= qh

α
(1 − e−α(T −t)). (13)

As T → ∞, this reaches the limiting value of

v(∞) = qh

α
. (14)

In the infinite-horizon limit, the auxiliary tracker signal is a constant.
Now the optimal control (6) is the easy-to-implement

u ∗ (t) = −K(∞)x(t) + bqh

αR
. (15)

To examine the resulting plant behavior, write the closed-loop plant (4.1-14):

ẋ = −αx + qhb2

αR
. (16)

Solving (16) results in the optimal state trajectory

x ∗ (t) = e−αt x(0) + qhb2

α2R
(1 − e−αt). (17)

Since the closed-loop plant is stable (α > 0), this reaches a steady-state value of

x ∗ (∞) = qhb2

α2R
= h

1 + a2R

b2q

. (18)

As the ratio of state to control weighting q/R becomes large, x*(∞) comes closer to the
desired constant reference value of h . �

Exercise 4.1-2. System with Known Disturbance

Suppose the plant has a known disturbance d (t), so that

ẋ = Ax + Bu + d. (1)

Let the cost function be

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

t0

(xTQx + uTRu] dt. (2)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 183

4.2 REGULATOR WITH FUNCTION OF FINAL STATE FIXED 183

Show that the optimal control is given by

−Ṡ = ATS + SA − SBR−1BTS + Q, (3)

K = R−1BTS, (4)

−v̇ = (A − BK)Tv + Sd, (5)

u = −Kx + R−1BTv. (6)

See Bryson and Ho (1975). �

Exercise 4.1-3. Formulating the Tracking Problem as a Regulator Problem

Define the tracking error

e(t) = y(t) − r(t), (1)

where r(t) is the reference signal and y(t) is the output of the scalar system

y(n) + a1y
(n−1) · · · + any = u, (2)

with u(t) the control input. Define a cost index by

J (t0) = 1

2
pe2(T) + 1

2

∫ T

t0

(qe2 + ru2) dt, (3)

and an operator by

�(s) = sn + a1s
n−1 + · · · + an, (4)

where s represents the time derivative. Then the plant is

�(s)y = u. (5)

Suppose the reference track satisfies

�(s)r = 0. (6)

a. Reformulate (5) and (3) as a regulator problem by defining a suitable state vector.

b. Show how to find the scalar feedback coefficients Ki (t) in a tracking scheme where
the error and its first n − 1 derivatives are fed back to make y(t) match r(t). See
Athans and Falb (1966). �

4.2 REGULATOR WITH FUNCTION OF FINAL STATE FIXED

To make the final state x (T) take on a fixed given value r(T) for any initial
condition x (t0), we can use the open-loop control law (3.3-27). If the desired

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 184

184 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

fixed final value is equal to zero, we can alternatively use the feedback control
of Table 3.3-1 with Q = 0 and S (T) → ∞. In this case, it is more convenient
to use not the Riccati equation, but its “inverse,” the Lyapunov equation

d

dt
(S−1) = AS−1 + S−1AT − BR−1BT, (4.2-1)

with S−1(T) = 0. (Let Q = 0 in the Riccati equation and use d(S−1)/dt =
−S−1ṠS−1.)

Now let us consider a slightly generalized problem. Suppose the plant

ẋ = Ax + Bu (4.2-2)

has performance index

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

t0

(xTQx + uTRu) dt (4.2-3)

on a fixed interval [t0, T]. It is desired to find the control that minimizes J (t0)
and guarantees that

ψ(x(T), T) = Cx(T) − r(T) = 0 (4.2-4)

for a given r(T) ∈ Rp and matrix C . This corresponds to demanding that a given
linear combination of the final-state components be equal to a given vector r(T).

The nonlinear version of this problem has the solution described in Table 3.2-1,
with dT = 0 in the final condition (3.2-10).

In this linear context, the state and costate equations are (3.3-8), with the
optimal control given by (3.3-7). The initial state x (t0) is given, and the final
condition (3.2-10) becomes

λ(T) = S(T)x(T) + CTν (4.2-5)

for some unknown multiplier ν ∈ Rp . By using the sweep method (more details
on the sweep method are given later in the discrete counterpart), the optimal
control is found to be the scheme given in Table 4.2-1.

The optimal control u(t) has a feedback portion −Kx (t) similar to the control
law in Table 3.3-1. To see what the other terms mean, note that the matrix
V ∈ Rn×p is a “modified state transition matrix” for the adjoint of the time-
varying closed-loop system. The auxiliary quadrature defining P(t) ∈ Rp×p has
solution

P(t) = −
∫ T

t

V T(τ)BR−1BTV (τ) dτ. (4.2-6)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 185

4.3 SECOND-ORDER VARIATIONS IN THE PERFORMANCE INDEX 185

TABLE 4.2-1 Function of Final-state-fixed LQ Regulator

System model:
ẋ = Ax + Bu, t ≥ t0

Performance index:

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

t0

(xTQx + uTRu) dt

S (T) ≥ 0, Q ≥ 0, R > 0

Final-state constraint:
Cx (T) = r(T)

Optimal control law:

−Ṡ = ATS + SA − SBR−1BTS + Q, t ≤ T , given S(T)

K = R−1BTS

−V̇ = (A − BK)TV, t ≤ T V (T) = CT

Ṗ = V TBR−1BTV, t ≤ T , P (T) = 0

u = −(K − R−1BTVP−1V T)x − R−1BTVP−1r(T)

By comparing this with (3.3-25), we see that −P (t) is a sort of weighted reach-
ability gramian. Now examine (3.3-27) to see that the extra terms in u(t) in
Table 4.2-1 are just a fixed-final-state type of control, which guarantees that at
the final time Cx (T) is equal to the desired r(T).

If C = 0, the control in Table 4.2-1 reduces to the free-final-state control in
Table 3.3-1. If C = I , it reduces to a feedback formulation of the fixed-final-
state control (3.3-27). If |P(t)| = 0 for all t ∈ (t0, T), the problem is said to be
abnormal and there is no solution. The nonsingularity of P (t) is a reachability
condition on a particular subspace of the state space Rn . It makes sense that
a portion of the state space must be reachable if we want to drive Cx (t) to a
particular value at time t = T .

4.3 SECOND-ORDER VARIATIONS IN THE PERFORMANCE INDEX

All the results presented in this chapter have been deduced by finding conditions
under which the first variation dJ ′ of an augmented performance index vanishes.
Therefore, Tables 3.2-1, 3.3-1, 4.1-1, and 4.2-1 give necessary conditions for
an optimal control. In this section we study the second-order variation δ2J ′ in
the augmented performance index to obtain several results, including sufficient
conditions for a minimum and an approach to the control of nonlinear systems.
See Bryson and Ho (1975).

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 186

186 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

Perturbation Control

Consider the nonlinear plant with controller as in Table 3.2-1, where the final state
is free and the final time is fixed so that boundary condition (3.2-10) becomes

λ(T) = (φx + ψT
x ν)|T . (4.3-1)

The conditions in the table constitute necessary conditions for a minimum.
These equations involve the solution of a two-point boundary-value problem,

which is not easy. But suppose we have been able to solve for the optimal
control u*(t) and state trajectory x*(t) by some means. Then dJ′ = 0. From a
Taylor series expansion, the cost J ′ is then equal to the optimal value plus the
second variation δ2J ′ and higher-order terms.

From (3.2-6) the second variation in J ′ is given by

δ2J ′ = 1

2
δxT(T)

(
φxx + (

ψT
x ν

)
x

)∣∣
T

δx(T)

+ 1

2

∫ T

t0

[δxT δuT]

[
Hxx Hxu

Hux Huu

] [
δx

δu

]
dt. (4.3-2)

The variations in x and u about x* and u* must satisfy the incremental
constraints

δẋ = fxδx + fuδu (4.3-3)

and

δψ = ψx(x(T), T)δx(T), (4.3-4)

where δψ has a given value. The initial condition is

δx(t0) given. (4.3-5)

Now examine Fig. 4.3-1. Beginning at x (t0), the optimal control u*(t) drives
the state along the trajectory x*(t), ensuring that ψ(x(T), T) = 0. Suppose, how-
ever, that the plant begins in initial state x (t0) + δx (t0), and that in addition we
want the final-state function to take on a value not of zero but of a given δψ .
Then by considering the perturbation-state equation (4.3-3) with performance
index (4.3-2) and final-state constraint (4.3-4), we can solve for the optimal con-
trol increment δu*(t) that achieves this and minimizes δ2J ′. The overall control
required to drive x (t0) + δx (t0) to a final state satisfying ψ(x(T), T) = δψ is
then equal to

u(t) = u ∗ (t) + δu ∗ (t). (4.3-6)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 187

4.3 SECOND-ORDER VARIATIONS IN THE PERFORMANCE INDEX 187

FIGURE 4.3-1 Optimal and neighboring optimal paths.

While u*(t) must be found by solving a nonlinear optimal control problem, the
perturbation control δu*(t) is found by solving the linear quadratic perturbation
problem defined by (4.3-2)–(4.3-5). Thus, once u*(t) and x*(t) have been found,
desired small changes in the objectives can be attained by solving the LQ prob-
lem, which we have seen is quite tractable.

This perturbation-control approach amounts to linearizing the plant about the
known optimal trajectory u*(t), x*(t). The state trajectory x*(t) + δx*(t) that
results when the overall control u*(t) + δu*(t) is applied to the plant is called
a neighboring optimal path. It satisfies dJ ′ = 0 and minimizes d2J ′, so that it
also minimizes J ′ in (3.2-6).

In Table 4.2-1 we gave the solution to the function of final-state-fixed LQ
regulator. Since there are off-diagonal weighting terms in d2J ′, we must use
the modified Kalman gain introduced in Exercise 3.3-6 in the solution of the
control problem (4.3-2)–(4.3-5). The resulting optimal control scheme is given
in Table 4.3-1. See McReynolds (1966) and Bryson and Ho (1975).

If the plant is linear and the cost index is quadratic, then Table 4.3-1 reduces
to Table 4.2-1 (then Hxu = 0, Hux = 0), so that the optimal control u*(t) and the
optimal increment δu*(t) are found by using the same equations.

Sufficient Conditions for a Minimizing Control

Our results on neighboring optimal paths can be used to find sufficient con-
ditions for the control u*(t) determined by using Table 3.2-1 to be one that
minimizes the cost index (as opposed to maximizing it, for example). This dis-
cussion should be compared with the derivation of the constrained curvature
matrix L

f
uu in Section 1.2 and, of course, to the discrete-time discussion in

Section 4.6.
First, we shall solve the simpler problem of determining when the optimal LQ

regulator found as in Table 3.3-1 is a minimizing control. In this case the plant

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 188

188 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

TABLE 4.3-1 Perturbation Control

Perturbation system model:
δẋ = fxδx + fuδu, δx(t0) given

Cost function second variation:

δ2J ′ = 1

2
δxT(T)(φxx + (ψT

x ν)x)|T δx(T)

+ 1

2

∫ T

t0

[δxT δuT]

[
Hxx Hxu

Hux Huu

] [
δx

δu

]
dt

Final-state incremental constraint:
ψx(x(T), T)δx(T) = δψ , δψ given

Optimal control increment:

K = H−1
uu

(
Hux + f T

u S
)

−Ṡ = f T
x S + Sfx − KTHuuK + Hxx, t ≤ T

−V̇ = (fx − fuK)T V, t ≤ T

Ṗ = V TfuH
−1
uu f T

uuV, t ≤ T

δu = − (
K − H−1

uu f T
u VP−1V T)

δx − H−1
uu f T

u VP−1δψ

Boundary conditions:
S(T) = (φxx + (ψT

x ν)x)|T
V (T) = ψT

x (x(T), T)

P (T) = 0

is linear with a quadratic performance index, and ψ(x (T), T) is identically the
zero function, since there are no final-state constraints. The Hamiltonian is

H = 1

2

(
xTQx + uTRu

) + λT(Ax + Bu). (4.3-7)

Suppose that the optimal control u*(t) has been found by using Table 3.3-1, and
that x*(t) is the resulting optimal state trajectory. Then the first variation dJ ′ in
the augmented cost index (3.2-6) is equal to zero, and the second variation is
given by (4.3-2), or

δ2J ′ = 1

2
δxT(T)S(T)δx(T) + 1

2

∫ T

t0

[
δxT δuT] [

Q 0
0 R

] [
δx

δu

]
dt. (4.3-8)

This, however, is simply J (t0) in Table 3.3-1 with u and x replaced by their
variations. The equations in Table 4.3-1 thus reduce to those in Table 3.3-1.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 189

4.3 SECOND-ORDER VARIATIONS IN THE PERFORMANCE INDEX 189

If δ2J ′ > 0 for all δu
= 0, then u*(t) is a control that locally minimizes J (t0).
Equation (3.3-47) applies since J and δ2J ′ have the same form, so the second
variation can be written in terms of the integral of a perfect square

δ2J ′ = 1

2
δxT(t0)S(t0)δx(t0) + 1

2

∫ T

t0

∥∥R−1BTSδx + δu
∥∥2

R
dt, (4.3-9)

where S (t) is the solution of the Riccati equation. The optimal control variation
is the one that minimizes δ2J ′,

δu = −R−1BTSδx, (4.3-10)

and then δ2J ′ = 0 as long as the initial condition δx (t0) equals zero.
Compare the optimal trajectory x* and any other trajectory with the same

initial point, so that δx (t0) = 0. The feedback law (4.3-10) then results in
δu = 0 as long as

R > 0, (4.3-11)

for then δx = 0 implies δu = 0. Thus, δ2J ′ > 0 if δu
= 0 whenever δx(t0) = 0.
A sufficient condition for u*(t) to be a minimizing control is therefore (4.3-11),
which is guaranteed by our assumptions. According to (3.3-47), R is the second
derivative of J with respect to the control input u , so it can be interpreted as a
constrained curvature matrix in the continuous-time case.

Now let us discuss sufficient conditions for the more general control found by
Table 3.2-1 to be a minimizing control. We consider the fixed-final-time case so
that dT = 0 in (3.2-10).

Let u* be determined as in Table 3.2-1, and let the optimal state trajectory
be x*. Then in this more general case it can be shown that, if δx(t0) = 0 and
δψ = 0,

δ2J ′ = 1

2

∫ T

t0

∥∥H−1
uu

[
Hux + f T

u

(
S − VP−1V T)]

δx + δu
∥∥2

Huu
dt, (4.3-12)

where S , V , P are found as in Table 4.3-1. The optimal control variation

δu = −H−1
uu

[
Hux + f T

u

(
S − VP−1V T)]

δx (4.3-13)

results in δ2J ′ = 0, and is the same as the control in Table 4.3-1 (for δψ = 0,
δx (t0) = 0). If δx (t) = 0, then δu(t) = 0 as long as, for t0 ≤ t < T ,

Huu > 0, (4.3-14)

P < 0, (4.3-15)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 190

190 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

and

S − VP−1V T finite. (4.3-16)

Arguing as above we see that these three are sufficient conditions for the control
law in Table 3.2-1 to yield a minimum cost for the fixed-final-time case.

4.4 THE DISCRETE-TIME TRACKING PROBLEM

Up to this point we have discussed in detail only performance indices that keep
the state small without using too much control energy. We have also mentioned
the fixed-final-state controller that drives the state to a desired value at the final
time, but this control scheme is essentially open loop.

In this section we want to construct a control scheme that makes the system
follow (or track) a desired trajectory over the entire time interval by using a
closed-loop control law. Such control strategies are important, for example, in
the control of spacecraft and robot arms.

We shall deal with time-invariant systems, but the results generalize to the
time-varying case.

Nonlinear Systems

Systems such as robot arms are nonlinear and cannot conveniently be linearlized.
Let us therefore discuss the tracking problem for nonlinear systems first. Unfor-
tunately, we shall not be able to present a solution for the control law, but we
can at least formulate the nonlinear problem to see some of the ways in which
it differs from the regulator problem.

Consider the plant dynamics

xk+1 = f (xk, uk). (4.4-1)

If we are interested in making a certain linear combination of the states

yk = Cxk (4.4-2)

follow a desired known reference signal rk over a time interval [0, N], then we
can minimize the cost function

J0 = 1

2
(CxN − rN)TP(CxN − rN)

+ 1

2

N−1∑
k=0

[
(Cxk − rk)

TQ(Cxk − rk) + uT
k Ruk

]
, (4.4-3)

where P ≥ 0, Q ≥ 0, R > 0, and the actual value of xN is not constrained.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 191

4.4 THE DISCRETE-TIME TRACKING PROBLEM 191

According to Table 2.2-1, the optimal control uk is given by solving

State system:
xk+1 = f (xk, uk) (4.4-4)

Costate system:

λk =
(

∂f

∂xk

)T

λk+1 + CTQCxk − CTQrk (4.4-5)

Stationarity condition:

0 =
(

∂f

∂uk

)T

λk+1 + Ruk (4.4-6)

with

Boundary conditions:
x0 given, (4.4-7)

λN = CTP(CxN − rN). (4.4-8)

From the stationarity condition, the optimal control is

uk = −R−1
(

∂f

∂uk

)T

λk+1. (4.4-9)

The input Jacobian depends, in general, on xk and uk in a nonlinear manner, so
that the optimal control is, in general, a nonlinear feedback of the state and the
costate.

The effect of the reference track rk is to add two terms to these equations
that were not present in the regulator program. From (4.4-8), it is evident that
the final costate is no longer proportional to the state as it was in the regulator
problem. Furthermore, although we might be able to use (4.4-9) to eliminate
uk in the state and costate equations, it is clear from (4.4-5) that the resulting
Hamiltonian system is no longer homogeneous; it is now driven by a forcing
function −C TQrk dependent on the desired trajectory.

The Linear Quadratic Tracking Problem

If the plant is linear so that

xk+1 = Axk + Buk (4.4-10)

with xk ∈ Rn, then a nice form can be found for the tracking control scheme. In
this case, (4.4-4)–(4.4-6) become

xk+1 = Axk + Buk, (4.4-11)

λk = ATλk+1 + CTQCxk − CTQrk,

0 = BTλk+1 + Ruk. (4.4-12)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 192

192 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

The boundary conditions are still given by (4.4-7) and (4.4-8).
The stationarity condition shows that

uk = −R−1BTλk+1, (4.4-13)

and using this in (2.6-11) yields the nonhomogeneous Hamiltonian system

[
xk+1

λk

]
=

[
A −BR−1BT

CTQC AT

] [
xk

λk+1

]
+

[
0

−CTQ

]
rk. (4.4-14)

The optimal control scheme given by these equations is similar to Fig. 2.2-1,
but with an added input −C TQrk . This version of the control law cannot be
implemented in practice, since the boundary conditions are split between times
k = 0 and k = N . Let us find a more useful version.

The optimal control is a linear costate feedback, but unfortunately, because
of the forcing term in the costate equation and (4.4-8), it is no longer possible to
express it as a linear state feedback as we did in Table 2.2-1 for the LQ regulator.
We can, however, express uk as a combination of a linear state variable feedback
plus a term depending on rk . To do this, we use a sweep method like the one in
Section 2.2.

From the looks of (4.4-8), it seems reasonable to assume that for all k ≤ N ,
we can write

λk = Skxk − vk (4.4-15)

for some as yet unknown auxiliary sequences Sk and vk (cf. (2.2-50)). Note that
Sk is an n × n matrix, whereas vk is an n vector. This will turn out to be a
valid assumption if consistent equations can be found for Sk and vk . To find these
equations, use (4.4-15) in the state equation portion of (4.4-14) to get

xk+1 = Axk − BR−1BTSk+1xk+1 + BR−1BT vk+1,

which can be solved for x k+1 to yield

xk+1 = (I + BR−1BTSk+1)
−1(Axk + BR−1BTvk+1). (4.4-16)

Using (4.4-15) and (4.4-16) in the costate equation gives

Skxk − vk = CTQCxk + ATSk+1(I + BR−1BTSk+1)
−1

× (Axk + BR−1BTvk+1) (4.4-17)

− ATvk+1 − CTQrk,

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 193

4.4 THE DISCRETE-TIME TRACKING PROBLEM 193

or

[−Sk + ATSk+1(I + BR−1BTSk+1)
−1A + CTQC]xk

+ [vk + ATSk+1(I + BR−1BTSk+1)
−1BR−1BTvk+1

− ATvk+1 − CTQrk] = 0. (4.4-18)

This equation must hold for all state sequences xk given any x0, so that the
bracketed terms must individually vanish. Using the matrix inversion lemma
therefore allows us to write

Sk = AT[Sk+1 − Sk+1B(BTSk+1B + R)−1BTSk+1]A + CTQC (4.4-19)

and

vk = [AT − ATSk+1B(BTSk+1B + R)−1BT]vk+1 + CTQrk. (4.4-20)

By comparing (4.4-15) and (4.4-8), the boundary conditions for these recursions
are seen to be

SN = CTPC, (4.4-21)

vN = CTPrN, (4.4-22)

Since the auxiliary sequences Sk and vk can now be computed, assumption
(4.4-15) was a valid one, and the optimal control is

uk = −R−1BTλk+1 = −R−1BT(Sk+1xk+1 − vk+1). (4.4-23)

We are still not quite done, though, since this control depends on x k+1, which
is not known at time k . Substitute the state equation (4.4-11) into (4.4-23) and
write

uk = −R−1BTSk+1(Axk + Buk) + R−1BTvk+1.

Now premultiply by R and solve for uk to see that

uk = (BTSk+1B + R)−1BT(−Sk+1Axk + vk+1). (4.4-24)

This is the control law we have been seeking.
We can improve the appearance of our equations by defining a feedback gain

Kk = (BTSk+1B + R)−1BTSk+1A (4.4-25)

and a feedforward gain

Kv
k = (BTSk+1B + R)−1BT. (4.4-26)

Then we have the formulation in Table 4.4-1.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 194

194 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

TABLE 4.4-1 Discrete Linear Quadratic Tracker

System model:
xk+1 = Axk + Buk, k > i

Performance index:
yk = Cxk

Ji = 1

2
(yN − rN)TP(yN − rN) + 1

2

N−1∑
k=i

[
(yk − rk)

T Q (yk − rk) + uT
k Ruk

]

Assumptions:
P ≥ 0, Q ≥ 0, R > 0, with all three symmetric

Optimal affine control:

Kk = (
BTSk+1B + R

)−1
BTSk+1A, SN = CTPC

Sk = ATSk+1 (A − BKk) + CTQC (4.4-27)

vk = (A − BKk)
T vk+1 + CTQrk, vN = CTPrN (4.4-28)

Kv
k = (

BTSk+1B + R
)−1

BT

uk = −Kkxk + Kv
k vk+1 (4.4-29)

FIGURE 4.4-1 Formulation of the LQ tracker as an affine state feedback.

A schematic of the optimal LQ tracker is shown in Fig. 4.4-1. It consists of
an affine state feedback (i.e., a term linear in xk plus a term independent of
xk) whose gains are dependent on the solution to the Riccati equation (4.4-19)
and whose second term is dependent on an auxiliary sequence vk derived from
reference rk by the auxiliary difference equation (4.4-28).

The closed-loop plant under the influence of this control is the nonhomoge-
neous time-varying system

xk+1 = (A − BKk)xk + BKv
kvk+1. (4.4-30)

Note that the auxiliary system (4.4-28) that generates vk is simply the adjoint
of this closed-loop plant!

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 195

4.4 THE DISCRETE-TIME TRACKING PROBLEM 195

It can be shown after two pages of tedious work that the optimal value of
the performance index on the interval [k , N] under the influence of the control
sequence defined in Table 4.4-1 is

Jk = 1

2
xT

k Skxk − xT
k vk + wk, (4.4-31)

where the new auxiliary sequence wk satisfies the backward recursion

wk = wk+1 + 1

2
rT
k Qrk − 1

2
vk+1B(BTSk+1B + R)−1BTvk+1, k < N (4.4-32)

with boundary condition

wN = 1

2
rT
NPrN. (4.4-33)

An important special case of the LQ tracker is when we select Q = 0 and
rk = 0 for k < N . Then we are interested only in driving the state near a desired
value rN without using too much control energy. As P in (4.4-3) gets larger, xN

approaches rN more closely. When Q = 0, it is easier to solve for S−1
k instead

of Sk by applying the matrix inversion lemma to (4.4-19) to get the Lyapunov
equation (2.2-71). If we want xN to be exactly equal to rN , then we would let
P → ∞, so that the boundary condition for the Lyapunov equation becomes
S−1

N = 0. It can be shown that under these circumstances, the optimal tracker
reduces to the fixed-final-state control, which can be written in the open-loop
form (2.2-38). Of course, the affine formulation in Table 4.4-1 would be used in
practice as closed-loop control is more robust.

Implementation and a Suboptimal Tracker

Much of the work in Table 4.4-1 can be done off-line to simplify the implementa-
tion of the tracker. The Riccati equation does not depend on the state trajectory;
so, sequences Sk , Kk, and Kv

k can be computed offline before the control is
applied. Then the gains Kk and Kv

k can be stored for use during the actual con-
trol run on the plant. Presumably, the desired track rk is known beforehand, so
that the auxiliary sequence vk can also be computed offline and stored. During
the actual control run, then, the only work left to do is to compute the optimal
control using (4.4-29).

An alternative to the storage of vk is as follows. First, solve (4.4-28) off-line
(backward in time) using the given values of rk to determine the initial condition
v0. Store only this value v0. Then, during the control run, at each step solve

vk+1 = (A − BKk)
−Tvk − (A − BKk)

−TCTQrk (4.4-34)

for v k+1, and use (4.4-29) to find the optimal control.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 196

196 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

In some applications, it is satisfactory to use a suboptimal tracker constructed
as follows. If (A, B) is reachable and (A, C

√
Q) is observable, the tracker gains

Kk and Kv
k reach steady-state values K ∞ and Kv

∞ as (N − k) → ∞. It is then
worth asking whether a suboptimal tracker defined by

vk+1 = (A − BK∞)−Tvk − (A − BK∞)−TCTQrk, (4.4-35)

uk = −K∞xk + Kv
∞vk+1, (4.4-36)

would perform adequately, where (4.4-35) is initialized using a value of v0 com-
puted off-line using (4.4-28). This time-invariant tracker has the advantage of
requiring storage of no sequences other than rk for the actual control run. It is
also easier to implement than the optimal tracker.

Experience shows that the time-invariant tracker is often satisfactory. Its ade-
quacy can be checked in a particular application by performing a computer
simulation. We illustrate the time-invariant tracker in a subsequent example. See
Athans and Falb (1966) for a discussion of the case where the desired track rk

is a constant. Note that the time-invariant tracker is optimal for the performance
index (4.4-3) when the final time N is infinity and P = 0 (i.e., the infinite-horizon
tracking problem).

Examples and Exercises

Example 4.4-1. Tracking for a System Obeying Newton’s Law

This belongs in the sequence containing Examples 2.3-2 and 2.4-3. The plant is the
sampled version of “Newton’s system,”

xk+1 =
[

1 T

0 1

]
xk +

[
T 2/2

T

]
uk, (1)

where x k contains the k th samples of position and velocity. Let T = 0.5, and the run
time be 5 sec so that N = 5/0.5 = 10. The tracking cost is

J0 = 1

2
(xN − rN)T

[
pd 0
0 pv

]
(xN − rN)

+ 1

2

N−1∑
k=0

[
(xk − rk)

T
[
qd 0
0 qv

]
(xk − rk) + ru2

k

]
, (2)

with rk ∈ R2 the samples of the reference track.
Suppose that we want the position d (t) to be along the parabolic track

c0 + c1t + 1

2
c2t

2 (3)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 197

4.4 THE DISCRETE-TIME TRACKING PROBLEM 197

for some given constants ci , and that we are not concerned about velocity. Then the first
component of rk is

rd
k = c0 + c1T k + 1

2
c2T

2k2, (4)

the second component can be zero, and we set pv and qv to zero in (2). (An alternative
is to reformulate (2) in terms of sampled position dk = Cx k where C = [1 0].)

According to Table 4.4-1, the LQ tracker is given by the LQ regulator equations
(7)–(15) in Example 2.3-2, with some equations added to compute feedforward gain Kv

k

and auxiliary signal v k . (In this example v k does not represent velocity, but the tracker
auxiliary signal.) Defining

Kv
k

�= [
kv

1 kv
2

]
(5)

(the time dependence of the components is not shown), and

vk
�=

[
vd

k

vv
k

]
, (6)

these equations are v k = (Acl
k)Tv k+1 + Qrk or

vd
k = acl

11v
d
k+1 + acl

21v
v
k+1 + qdr

d
k , (7)

vv
k = acl

12v
d
k+1 + acl

22v
v
k+1 (8)

and Kv
k = (BTSk+1B + B)−1BT or

kv
1 = T 2/2δ, (9)

kv
2 = T/δ, (10)

with δ defined in Example 2.3-2. The tracker control is given by

uk = −k1dk − k2x2(k) + kv
1vd

k+1 + kv
2vv

k+1, (11)

with x2(k) the second component of x k (i.e., the velocity).
A software implementation is just Fig. 2.3-9 with these added equations. �

Exercise 4.4-2. System with Known Disturbance

Suppose the plant has a known disturbance dk so that

xk+1 = Axk + Buk + dk. (1)

Let the cost function be

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(xT
k Qxk + uT

k Ruk). (2)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 198

198 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

Show that the optimal control is given by

Kk = (
BTSk+1B + R

)−1
BTSk+1A, SN given (3)

Sk = ATSk+1(A − BKk) + Q, (4)

vk = (A − BKk)
Tvk+1 − (A − BKk)

TSk+1dk, vN = 0, (5)

Kv
k = (

BTSk+1B + R
)−1

BT (6)

uk = Kkxk + Kv
k vk+1. (7)

�

Exercise 4.4-3. Formulating the Tracking Problem as a Regulator Problem

Under certain conditions on the reference track rk , the LQ tracking problem can be
reformulated as a LQ regulator problem (Athans and Falb 1966). Let yk be the output of
a scalar system described by the difference equation

yk + a1yk−1 + · · · + anyk−n = uk−1 (1)

for given ai . (Note that uk and yk could be the input and output of a state system from
which the form (1) can be determined.) We want to find a control input sequence uk to
make yk match a known reference signal rk . Define the tracking error as

ek = yk − rk (2)

and a performance index by

Ji = 1

2
pe2

N + 1

2

N−1∑
k=i

(
qe2

k + ru2
k

)
. (3)

Define an operator by

�(z−1) = 1 + a1z
−1 + · · · + anz

−n, (4)

where z −1 is the delay operator such that z−1yk = yk−1. Then the plant can be repre-
sented as

�(z−1)yk = uk−1 (5)

Suppose rk is selected from the class of signals satisfying

�(z−1)rk = 0; (6)

that is, rk is an unforced solution to the homogeneous plant (as such it must con-
sist of a sum of the plant’s natural modes). Then the scalar tracking problem (1), (3)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 199

4.5 DISCRETE REGULATOR WITH FUNCTION OF FINAL STATE FIXED 199

can be reformulated as an n-vector LQ regulator problem that can be solved using
Table 2.2-1.

a. Show that
�(z−1)ek = uk−1, (7)

so that ek is the output of a linear system driven by uk . (Note: ek is not necessarily
equal to yk . Why?)

b. Define a state vector xk ∈ Rn by rewriting (7) in reachable canonical form (Kailath
1980); that is, find A, B , and C in

xk+1 = Axk + Buk, (8a)

ek = Cxk. (8b)

c. Rewrite (3) in terms of xk ; that is, find P and Q in

Ji = 1

2
xT

NPxN + 1

2

N−1∑
k=i

(
xT

k Qxk + ru2
k

)
. (9)

Show that (A,
√

Q) is observable.

d. Hence, show how to find the scalar feedback coefficients Ki (k) in the tracking
scheme shown in Fig. 4.4-2.

FIGURE 4.4-2 Tracking scheme using feedback of the error signal ek and its
n – 1 previous values.

e. Does this scheme generalize to plants described by

Yk + a1yk−1 + · · · + anyk−n = b1uk−1 + · · · + bmuk−m? (10)
�

4.5 DISCRETE REGULATOR WITH FUNCTION OF FINAL
STATE FIXED

To obtain a given fixed final value for the state xN , we can use the open-loop
control (2.2-38), which depends on the existence of an inverse to the reachability
gramian. On the other hand, to make xN take on the value of zero, we have the

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 200

200 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

additional option of using the closed-loop formulation of Table 2.2-1 with Q = 0
and SN → ∞. Then it is convenient to use the “inverse” (2.2-71) of the Riccati
equation.

In this section we are concerned with driving a function of the final state xN to
zero. An application is the case where we want to drive some of the components
of xN to zero, and we are not concerned about the other components. If n = 4,
for example, and we want state components one and three to be zero at the final
time N , then we could zero the function

ψ(xN) =
[

1 0 0 0
0 0 1 0

]
xN . (4.5-1)

Thus, we are effectively defining an “output” ψ(xN) = CxN that we want to
make vanish.

Nonlinear Systems

Let the plant be given by

xk+1 = f (xk, uk) (4.5-2)

and the performance index by

Ji = φ(N, xN) +
N−1∑
k=i

L(xk, uk). (4.5-3)

Our objective is to define a control sequence that will minimize Ji and also
ensure that a specified function ψ of the final state is driven to zero. Thus, we
want

φ(N, xN) = 0. (4.5-4)

This is almost the problem we solved in Section 2.1. As a matter of fact,
the solution is also almost the same. Only the terminal condition in Table 2.1-1
is different. To find the new condition, we can follow through the derivation
in Section 2.1, carrying along one additional term. Since (4.5-4) is simply an
additional constraint, we need to introduce an additional Lagrange multiplier ν.
Equation (4.5-4) only applies at one time, so ν is a constant. Suppose ψ(N, xN) ∈
Rp, then ν is a p vector.

Adjoining the constraints (4.5-2) and (4.5-4) to the performance index gives
an augmented performance index

J ′ = φ(N, xN) + νTψ(N, xN)

+
N−1∑
k=i

[
L(xk, uk) + λT

k+1(f (xk, uk) − xk+1)
]
. (4.5-5)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 201

4.5 DISCRETE REGULATOR WITH FUNCTION OF FINAL STATE FIXED 201

Now we follow the work subsequent to (2.1-3). The Hamiltonian is

Hk = L + λT
k+1f, (4.5-6)

exactly is it was there, and if we write down the steps, we obtain exactly the
results of Table 2.1-1. The only difference is in the first term of (2.1-6), which
now includes yT

xNνdxN . The final condition in Table 2.1-1 must therefore be
replaced by

(
∂φ

∂xN

+
(

∂ψ

∂xN

)T

v − λN

)T

dxN = 0. (4.5-7)

This seemingly minor change results in significant changes in the control law, as
we now see.

The Linear Quadratic Case

What we intend to do next is follow the development of the free-final-state
control as closely as we can. Exactly as in the tracking problem, we shall find
it necessary to add some equations to Table 2.2-1. In fact, the LQ control with
function of final state fixed looks very much like the LQ tracker in Table 4.4-1.
Now, however, we need to solve a quadrature like (4.4-32) to determine the
optimal control sequence (in the tracking problem, (4.4-32) was needed only to
determine the optimal cost).

We shall see that if a function of the final state is fixed, the control law
has a part that is similar to the free-final-state control. If ψN (N , xN) is iden-
tically the zero function, then our results reduce to the former type of control,
and if ψN(N, xN) = xN − rN for a given rN , then our results reduce to the
latter type.

To proceed, let the plant be

xk+1 = Axk + Buk (4.5-8)

with performance index

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(
xT

k Qxk + uT
k Ruk

)
. (4.5-9)

It is desired to find a control sequence to minimize Ji and also ensure that

ψ(N, xN) = CxN − rN = 0 (4.5-10)

for a given rN ∈ Rp and matrix C . Thus, we are concerned with making a
specified linear function of the final state exactly match a given vector rN .

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 202

202 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

The state and costate equations are the same as in Section 2.2, and the optimal
control is still

uk = −R−1BTλk+1. (4.5-11)

Hence (2.2-45) and (2.2-46) hold. We reproduce them here:

xk+1 = Axk − BR−1BTλk+1, (4.5-12)

λk = Qxk + ATλk+1. (4.5-13)

The new boundary condition is (4.5-7), or

λN = SNxN + CTν. (4.5-14)

To use the sweep method of solution (Bryson and Ho 1975), assume that a
relation like (4.5-14) holds for all k (recall that ν is a constant), that is,

λk = Skxk + Vkν. (4.5-15)

Compare this with (4.4-15). Note that the postulated Vk is an n × p matrix .
Now we need to find Sk, Vk, and ν. To do this, use (4.5-15) in the state equation
(4.5-12) and solve for x k+1 to get the recursion

xk+1 = (I + BR−1BTSk+1)
−1(Axk − BR−1BTVk+1ν). (4.5-16)

This yields the optimal state trajectory. Use this equation and (4.5-15) in (4.5-13)
to obtain (cf. (4.4-18))

[−Sk + ATSk+1(I + BR−1BTSk+1)
−1A + Q]xk

+ [−Vk − ATSk+1(I − BR−1BTSk+1)
−1BR−1BTVk+1 + ATVk+1]ν = 0.

(4.5-17)

Since this equality holds for all trajectories xk arising from any initial condition
x0, each term in brackets must vanish. The matrix inversion lemma therefore
yields the Riccati equation

−Sk = AT
[
Sk+1 − Sk+1B

(
BTSk+1B + R

)−1
BTSk+1

]
A + Q (4.5-18)

and the auxiliary homogeneous difference equation

Vk =
[
AT − ATSk+1B

(
BTSk+1B + R

)−1
BT

]
Vk+1. (4.5-19)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 203

4.5 DISCRETE REGULATOR WITH FUNCTION OF FINAL STATE FIXED 203

In terms of the Kalman gain

Kk = (
BTSk+1B + R

)−1
BTSk+1A (4.5-20)

these can be written
Sk = ATSk+1(A − BKk) + Q, (4.5-21)

Vk = (A − BKk)
TVk+1, (4.5-22)

where (A − BKk) is the closed-loop system. Comparing (4.5-15) to (4.5-14), the
boundary conditions are seen to be SN and

VN = CT. (4.5-23)

Now that we can find Sk and Vk, the only thing left is to determine the Lagrange
multiplier ν. It is not obvious how to do this. Note that λ0 = S0x0 + V0ν, but, in
general, V0 is not square, so this does not help. We are forced to make another
assumption.

Accordingly, let us assume that rN = CxN is a linear combination of xk and
ν for all k ; that is,

rN = CxN = Ukxk + Pkν (4.5-24)

for some as yet unknown matrix sequences Uk and Pk . If we can find consistent
equations for these postulated variables, then the assumption is valid. Note that
this relation does indeed hold for k = N with UN = C and PN = 0.

The left-hand side of (4.5-24) is a constant, so take the first difference to
obtain

0 = Uk+1xk+1 + Pk+1ν − Ukxk − Pkν. (4.5-25)

Now use (4.5-16) for x k+1 to get, after rearrangement and application of the
matrix inversion lemma,

[
Uk+1

(
A − B

(
BTSk+1B + R

)−1
BTSk+1A

)
− Uk

]
xk

+
[
Pk+1 − Pk − Uk+1B

(
BTSk+1B + R

)−1
BTVk+1

]
ν = 0. (4.5-26)

The first term says that

Uk = Uk+1(A − BKk). (4.5-27)

Evaluating (4.5-24) for k = N yields

UN = C. (4.5-28)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 204

204 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

Clearly, then,

Uk = V T
k . (4.5-29)

The second term now yields a quadrature for Pk ,

Pk = Pk+1 − V T
k+1B

(
BTSk+1B + R

)−1
BTVk+1, (4.5-30)

with PN = 0. Compare this with (4.4-32)!
We are now in a position to solve for ν. Suppose that |Pi |
= 0 for the initial

time i . Then by (4.5-24)

ν = P −1
i

(
rN − V T

i xi

)
. (4.5-31)

If |Pi | = 0, the problem has no solution on the interval [i , N], and it is said to
be abnormal . Note that

ν = P −1
k

(
rN − V T

k xk

)
(4.5-32)

for any k where |Pk|
= 0.
We can now finally compute the optimal control, for using (4.5-31) and

(4.5-15) in (4.5-11) gives

uk = −R−1BT
[
Sk+1xk+1 + Vk+1P

−1
i

(
rN − V T

i xi

)]
. (4.5-33)

To find uk in terms of the current state xk, use (4.5-8) in (4.5-33) and solve for
uk to get

uk = − (
BTSk+1B + R

)−1
BT

[
Sk+1Axk + Vk+1P

−1
i

(
rN − V T

i xi

)]
. (4.5-34)

This is the optimal control law we have been seeking.
If |Pk|
= 0, then we can use (4.5-32) instead of (4.5-31) to determine ν. In

this case, (4.5-34) can be written

uk = − (
BTSk+1B + R

)−1
BT

[
Vk+1P

−1
k rN +

(
Sk+1A − Vk+1P

−1
k V T

k

)
xk

]
,

(4.5-35)

which contains a state feedback term plus a term dependent on the desired final
value rN of CxN .

The function of final-state-fixed LQ regulator is summarized in Table 4.5-1.
Its structure is similar to that shown in Fig. 4.4-1.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 205

4.5 DISCRETE REGULATOR WITH FUNCTION OF FINAL STATE FIXED 205

TABLE 4.5-1 Function of Final-State-Fixed LQ Regulator

System model:
xk+1 = Axk + Buk, k > i

Performance index:

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(
xT

k Qxk + uT
k Ruk

)
, SN ≥ 0, Q ≥ 0, R > 0

Final-state constraint:
CxN = rN , rN given

Optimal control law:

Kk = (
BTSk+1B + R

)−1
BTSk+1A, SN given

Sk = ATSk+1 (A − BKk) + Q

Vk = (A − BKk)
T Vk+1, VN = CT

Pk = Pk+1 − V T
k+1B

(
BTSk+1B + R

)−1
BTVk+1, PN = 0

Ku
k = (

BTSk+1B + R
)−1

BT

uk = −
(
Kk − Ku

k Vk+1P
−1
k V T

k

)
xk − Ku

k Vk+1P
−1
k rN

Let us briefly examine the structure of our controller to gain further insight.
The optimal control (4.5-35) consists of a feedback term like the one in the free-
final-state controller (Table 2.2-1) plus another term. To see what this other term
is, write the solution to (4.5-22) as

Vk = (A − BKk)
T(A − BKk+1)

T · · · (A − BKN−1)
TCT. (4.5-36)

Matrix Vk thus seems to be a modified-state transition matrix for the adjoint of
the time-varying closed-loop system. Now, write the solution of (4.5-30):

Pk = −
N∑

j=k+1

V T
j B(BTSjB + R)−1BTVj . (4.5-37)

By comparing this with (2.2-36) and identifying V T
j with the state transition

matrix AN−i−1 in that equation, we see that −Pk is nothing more than a sort of
weighted reachability gramian! We already know that the function of the final-
state-fixed problem has a solution if |Pi |
= 0, so this makes sense. Now compare
(4.5-33) with (2.2-38) to see that the additional term in our new control law is
just a fixed-final-state-type control term, which serves to guarantee that at the
final time CxN is equal to the given rN as desired.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 206

206 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

It is not difficult to implement this new control law. All we need do is add
a few lines to our software that implements the LQ regulator to incorporate the
recursions for Vk and Pk .

4.6 DISCRETE SECOND-ORDER VARIATIONS IN THE
PERFORMANCE INDEX

Up to this point in the chapter we have been concerned with the first-order
differential dJ ′ of the augmented performance index. Our results in Tables 2.2-1,
2.2-1, 4.4-1, and 4.5-1 were all derived by finding conditions under which the
differential dJ ′ of the appropriate performance index vanishes. These conditions
are necessary for a control that minimizes the value of the cost index.

In this section we study the second-order variation in the augmented cost index,
as we did for the static case in deriving the constrained curvature matrix (1.2-31).
Our results will have several applications. They will yield sufficient conditions
for a minimizing control. They will allow us to calculate changes in the optimal
control sequence that cause desired changes in the final-state constraints. And,
finally, they will provide a means for controlling nonlinear systems by linearizing
about a nominal trajectory.

Perturbation Control

Consider the nonlinear plant (4.5-2) with performance index (4.5-3). The initial
condition xi is given, and we require that a given function ψ(N , xN) of the final
state be zero. The augmented performance index J ′ is given by (4.5-5), and the
Hamiltonian is (4.5-6).

By demanding that the first variation dJ ′ be equal to zero, we derive the
optimal control in Table 2.1-1, but with the final condition there replaced by
(4.5-7), since a function of the final state is fixed. These equations constitute
necessary conditions for an optimal control. Assuming the final state is free,
(4.5-7) becomes

λN = φN
x + (

ψN
x

)T
ν. (4.6-1)

Suppose that we have solved the equations in Table 2.1-1 for an optimal control
sequence u∗

k and a resulting optimal state trajectory x∗
k . Thus, dJ′ = 0. From a

Taylor series expansion, we see that the cost J ′ is then equal to its optimal value
plus the second variation d2J ′ and higher-order terms. According to (4.5-5) this
second variation is given by

d2J ′ = 1

2
dxT

N

(
φN

xx + (
ψT

x ν
)N

x

)
dxN + 1

2

N−1∑
k=i

[
dxT

k duT
k

] [
Hk

xx Hk
xu

Hk
ux Hk

uu

] [
dxk

duk

]
,

(4.6-2)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 207

4.6 DISCRETE SECOND-ORDER VARIATIONS IN THE PERFORMANCE INDEX 207

where

Hk
ux

�= ∂

∂xk

(
∂Hk

∂uk

)
, (4.6-3)

and so on. Increments in xk and uk about x∗
k and u∗

k must satisfy the incremental
constraints

dxk+1 = f k
x dxk + f k

u duk (4.6-4)

and
dψ(N, xN) = ψN

x dxN, (4.6-5)

with initial condition

dxi given. (4.6-6)

At this point we note something quite interesting. The perturbation state
equation (4.6-4) with final constraint (4.6-5) (where dψ is specified) and perfor-
mance index (4.6-2) constitute simply a linear quadratic problem with function
of final state fixed! (Compare (4.5-8)–(4.5-10).) Thus, we can solve for a control
increment duk that minimizes d2J ′ with constraints (4.6-4) and (4.6-5).

To see why we would be interested in doing this, examine Fig. 4.6-1. To
drive the system along x∗

k beginning at xi , we would apply the optimal control
u∗

k computed by solving the equations in Table 2.1-1. Now suppose that the
system begins in initial state xi + dxi , and that in addition we want to make
the function of final state take on a value not equal to zero, but equal to a given
desired value dψ . Then we do not have to solve again the equations in the table,
which may, in general, be nonlinear. Instead, we can solve the linear quadratic
problem (4.6-2)–(4.6-6) for the optimal increment duk given dxi and the desired
dψ . The optimal control required to drive the system from xi + dxi and satisfy
ψ(N, xN) = dψ is then given by

uk = u∗
k + duk. (4.6-7)

FIGURE 4.6-1 Optimal and neighboring optimal paths.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 208

208 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

This control also minimizes the cost (4.5-3). This approach is called perturbation
control . The state trajectory x∗

k +dxk resulting when the new control (4.6-7) is
applied to the plant is called a neighboring extremal (or neighboring optimal)
path.

Now that our motivation is clear, let us solve the perturbation LQ problem. In
Table 4.5-1 we gave the solution to the LQ problem with a function of the final
state fixed. Unfortunately, our new problem is not quite the same as the one in
Section 4.5, because of the presence of the state-input cross-weighting terms Hk

xu

and Hk
ux. In Exercise 2.2-4 we gave the solution to the LQ regulator problem with

state-input cross-weighting terms. The only effect of the off-diagonal weighting
term was that a modified Kalman gain was required.

Combining the results shown in Table 4.5-1 and those of Exercise 2.2-4, we
obtain the solution to the perturbation LQ problem (4.6-2)–(4.6-6). It is presented
in Table 4.6-1. (A rigorous derivation would be along the lines of the one in
Section 4.5; see McReynolds (1966) and Bryson and Ho (1975).)

TABLE 4.6-1 Perturbation Control

Perturbation system model:

dxk+1 = f k
x dxk + f k

u duk, dxi given

Cost function second variation:

d2J ′ = 1

2
dxT

N

(
φN

xx + (
ψT

x ν
)N

x

)
dxN + 1

2

N−1∑
k=i

[
dxT

k duT
k

] [
Hk

xx Hk
xu

Hk
ux Hk

uu

] [
dxk

duk

]

Final-state incremental constraint:

ψN
x dxN = dψ(N, xN), dψ given

Optimal control increment:

Kk =
[(

f k
u

)T
Sk+1f

k
u + Hk

uu

]−1 [(
f k

u

)T
Sk+1f

k
x + Hk

ux

]

Sk = (
f k

x

)T
Sk+1f

k
x − KT

k

[(
f k

u

)T
Sk+1f

k
u + Hk

uu

]
Kk + Hk

xx

Vk = (
f k

x − f k
u Kk

)T
Vk+1

Pk = Pk+1 − V T
k+1f

k
u

[(
f k

u

)T
Sk+1f

k
u + Hk

uu

]−1 (
f k

u

)T
Vk+1

Ku
k =

[(
f k

u

)T
Sk+1f

k
u + Hk

uu

]−1 (
f k

u

)T

duk = −
(
Kk − Ku

k Vk+1P
−1
k V T

k

)
dxk − Ku

k Vk+1P
−1
k dψ

Boundary conditions:

SN = φN
xx + (

ψT
x ν

)N

x

VN = (
ψN

x

)T

PN = 0

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 209

4.6 DISCRETE SECOND-ORDER VARIATIONS IN THE PERFORMANCE INDEX 209

If the plant (4.5-2) is linear and the performance index (4.5-3) is quadratic,
then Table 4.6-1 reduces to Table 4.5-1. This means that the optimal incremental
control for the LQ case is computed using the same equations as the optimal
control itself.

It should be clearly understood that in perturbation control the, in general,
nonlinear equations in Table 2.1-1 must first be solved to obtain u∗

k in (4.6-7)
and v . Then using Table 4.6-1 to find duk corresponds to linearizing the system
about the nominal trajectory x∗

k that results when u∗
k is applied to the plant.

Sufficient Conditions for a Minimizing Control

We can use our results on neighboring optimal paths to derive sufficient con-
ditions for the control u∗

k found by using Table 2.1-1 to be one that minimizes
the performance index. This development corresponds to the derivation of the
constrained curvature matrix L

f
uu given by (1.2-31). Let us begin by finding suf-

ficient conditions for the LQ regulator found in Table 2.2-1 to be a minimizing
control.

Suppose that the optimal control u∗
k found by using Table 2.2-1 is used, result-

ing in the optimal state trajectory x∗
k . Then the differential dJ ′ in the augmented

cost index is zero, and the second variation is given by (4.6-2), or

d2J ′ = 1

2
dxT

NSn dxN + 1

2

N−1∑
k=1

[
dxT

k duT
k

] [
Q 0
0 R

] [
dxk

duk

]
. (4.6-8)

This, however, is exactly the performance index in Table 2.2-1 with uk and xk

replaced by their increments! What this means is that the equations for deter-
mining the optimal control increment duk in Table 4.6-1 reduce to those in
Table 2.2-1.

If d2J ′ > 0 for all du
= 0, then u∗
k is a control that locally minimizes Ji (as

opposed to a control that yields a local maximum, saddle point, etc.). According
to (2.2-67), which applies since Ji and d2J have the same form, we can write
the second variation as the sum of perfect squares

d2J ′ = 1

2
dxT

i Si dxi + 1

2

N−1∑
k=i

∥∥(BTSk+1B + R)−1BTSk+1A dxk + duk

∥∥2
(BTSk+1B+R)

,

(4.6-9)

where Sk is determined by solution of the Riccati equation. The optimal control
increment duk is the one that makes the sum vanish,

duk = −(BTSk+1B + R)−1BTSk+1A dxk, (4.6-10)

and then d2J ′ = 0 as long as the initial condition dxi = 0.

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 210

210 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

Now, compare the optimal trajectory x∗
k and any other trajectory with the

same initial point so that dxi = 0. Using the feedback (4.6-10) makes duk = 0
as long as

BTSk+1B + R > 0, (4.6-11)

for then the feedback gain is finite and dxk = 0 implies duk = 0. Hence, d2J ′ > 0
if duk
= 0 when dxi = 0. The sufficient conditions for a minimizing control are
therefore that u∗

k be selected according to Table 2.2-1 and that (4.6-11) hold.
Examine Example 1.2-3 to see that BTSk+1B + R is just a time-varying con-
strained curvature matrix.

Now let us discuss the more general problem of finding sufficient conditions
for the control u∗

k determined usı̈ng Table 2.1-1 to be a minimizing control. Extra
complications arise here because of the final-state constraint and the fact that Hk

xu

and Hk
ux do not necessarily vanish in (4.6-2).

Suppose that u∗
k is determined by using Table 2.1-1 and that the associated

optimal state trajectory is x∗
k . Then it can be shown that in this case, if dxi = 0

and dψ = 0, instead of (4.6-9) we obtain

d2J ′ = 1

2

N−1∑
k=i

∥∥∥(
Zk

uu

)−1
[(

f k
u

)T
Sk+1f

k
x + Hk

ux

− (
f k

u

)T
Vk+1P

−1
k V T

k

]
dxk + duk

]∥∥∥
Zk

uu
, (4.6-12)

where Sk , Vk , Pk are determined as in Table 4.6-1 and the curvature matrix is

Zk
uu = (

f k
u

)T
Sk+1f

k
u + Hk

uu. (4.6-13)

The proof of this is similar to the derivation of (2.2-67). See McReynolds (1966)
and Bryson and Ho (1975).

The optimal control increment, which is selected to make the sum vanish, is

duk = − (
Zk

uu

)−1
[(

f k
u

)T
Sk+1f

k
x + Hk

ux − (
f k

u

)T
Vk+1P

−1
k V T

k

]
dxk, (4.6-14)

exactly as in Table 4.6-1. Compare this with (1.2-35).
Now compare the optimal trajectory x∗

k with any other trajectory with the
same initial state (so that dxi = 0) and the same final constraint value (so that
dψ = 0). Using the control law (4.6-14) results in duk = 0 as long as

Zk
uu = (

f k
u

)T
Sk+1f

k
u + Hk

uu > 0 (4.6-15)

and
Pk < 0, (4.6-16)

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 211

PROBLEMS 211

for then dxk = 0 implies duk = 0. Then, d2J ′ > 0 if duk
= 0 for dxi = 0, and
dψ = 0. The sufficient conditions for guaranteeing that u∗

k is a minimizing control
are therefore (4.6-15) and (4.6-16). Technically, we should also require

Sk+1f
k
x − Vk+1P

−1
k V T

k finite for i ≤ k < N, (4.6-17)

but this always holds on a finite interval [i, N].

PROBLEMS

Section 4.1

4.1-1. Derivation of optimal LQ tracker. Use a sweep method combining the
derivations of Tables 3.3-1 and 4.4-1 to derive the LQ tracker in Table 4.1-1.

4.1-2. Design a tracker for the system in Problem 3.4-1. It is desired that x1(t)
track a reference signal r(t). Let weights q = 10, r = 1.
a. Find the system for generating the command input v (t).
b. If r(t) = u−1(t), the unit step, solve for v (t). Now solve for the closed-loop

state trajectory if x (0) = 0.
c. Solution for the finite horizon control on [0, T] is more difficult; however,

write subroutines in MATLAB to solve and simulate the tracking problem.
Simulate also the case when x (0) = [1 0]T, r(t) = u−1(t − 1).

4.1-3. For the plant of Problem 3.4-3, it is desired to construct a tracker so that
x1(t) tracks r(t) on [0, T]. Let P = 10I . Set up the equations and simulate them
using MATLAB. For the simulation, let x (0) = [1 0]T, r(t) = u−1(t − 1).

Section 4.2

4.2-1. Derivation of function of final-state-fixed control law. Use the sweep
method to derive the control scheme in Table 4.2-1. The approach is similar to
that in Section 4.5. See also the derivation of Table 3.3-1.

4.2-2. Let v = 0, q = 10 in Problem 3.4-1. It is desired to drive x1(t) to a value
of 10 at a final time of T = 5 if x (0) = 0.
a. Set up the LQ regulator equations. Write subroutines simulating it for use with

MATLAB.
b. Solve analytically for the steady-state values of S, K, V, P .

Section 4.3

4.3-1. Perturbation control. Suppose that we have just solved the nonlinear
Problem 3.2-2. The optimal state trajectory and control were found to be x ∗ (t) =
1
2e−t , u∗ = 1

8e−3t − 1
2e−t for the initial condition x(0) = 1

2 . Now the initial state

Lewis c04.tex V1 - 10/18/2011 10:53pm Page 212

212 THE TRACKING PROBLEM AND OTHER LQR EXTENSIONS

varies to 1
2 to δx (0). Rather than solve the nonlinear control problem again, we

want to determine the control perturbation δu(t) needed so that u*(t) + δu(t)
provides an optimal control to first order.
a. Set up the perturbation-control problem. Note that the linearized state in

equation is time varying.
b. Write subroutines for MATLAB to solve the Riccati equation and simulate

the optimal control δu(t) on the linearized system.
c. Write subroutines for MATLAB to simulate applying u*(t) + δu(t) to the full

nonlinear plant.

4.3-2. Perturbation control of bilinear system. Repeat Problem 4.3-1 for the
bilinear system in Problem 3.2-5.

Section 4.4

4.4-1. Prove (4.4-19) and (4.4-20).

4.4-2. LQ tracker. Add a tracking capability to the plant in Problem 2.4-1. It
is desired for the sum of state components 1 and 2 to track a reference signal rk

on the time interval [0, ∞] (i.e., C = [1 1]). Let Q = qI , where q is a given
scalar. Use the suboptimal feedback K∗

∞ in your control law.
a. Determine the system for generating the auxiliary signal vk.
b. Find the steady-state value for the feedforward gain Kv

k . Use this suboptimal
value in your control law.

c. Suppose that q = 10, r = 1, and the reference track is rk = 0.9ku−1(k). Solve
for signal vk. Now solve for the closed-loop trajectory xk if x0 = 0. Sketch
rk and xk . (u –1(k) is the unit step.)

Section 4.5

4.5-1. Derive (4.5-26).

4.5-2. Consider the system of Problem 2.4-1 with q1 = 10, q2 = 1, r = 1. It is
desired to drive state component 1 to a value of 5 at final time N = 3 if x0 = 0.
a. Determine the Riccati solution Sk and the optimal feedback gain Kk on the

time interval.
b. Find auxiliary matrices Vk and Pk . Is the problem normal on the interval

[0, 3]?
c. Find the auxiliary gain Ku

k and the control law.
d. Find the closed-loop plant.
e. Verify by simulation that the desired control objective is achieved. That is,

apply your control uk to the plant and find the resulting state trajectory.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 213

5
FINAL-TIME-FREE
AND CONSTRAINED
INPUT CONTROL

5.1 FINAL-TIME-FREE PROBLEMS

In this section we gain more of a feel for the generalized boundary condition
(3.2-10), which is

(φx + ψT
x ν − λ)T|T dx(T) + (φt + ψT

t ν + H)|T dT = 0. (5.1-1)

Specifically, we now let the final time T be free, so that it can be varied in
minimizing the performance index. Then dT �= 0.

To solve the optimal control problem using the equations in Table 3.2-1, we can
often first eliminate the control input u(t) by taking into account the stationarity
condition. Then, to solve the state and costate equations, we need the n given
components of the initial state x (t0) and n final conditions. We also need to solve
for the p components of the undetermined multiplier ν and for the final time T .
The coefficient of dx (T) in (5.1-1) provides n equations, the coefficient of dT
in (5.1-1) provides one equation, and the condition ψ(x(T), T) = 0 provides
the remaining p equations needed to specify the solution of the optimal control
problem completely.

Minimum-time Problems

One special class of final-time-free problems is defined by a performance index of

J (t0) =
∫ T

t0

1 dt, (5.1-2)

213

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 214

214 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

which arises when we are interested in minimizing the time (T − t0) required to
zero a given function of the final state ψ(x, (T), T) given some initial state
x (t0). We could equally well define this minimum-time problem by the per-
formance index J = (T − t0), but (5.1-2) is generally more convenient. Given
this performance index, the Hamiltonian is

H(x, u, t) = 1 + λTf (x, u, t). (5.1-3)

Recall that if H is not an explicit function of t , then Ḣ = 0; the Hamiltonian
is a constant on the optimal trajectory. (See (3.2-13).)

A special case of minimum-time problem occurs when the final state x (T) is
required to be fixed at a given value r(T). Then dx(T) = 0. Since in that case

ψ(x(T), T) = x(T) − r(T) = 0 (5.1-4)

is independent of T , and since φ(x(T), T) = 0 in the minimum-time problem,
(5.1-1) requires that

H(T) = 0. (5.1-5)

Hence, if H is not an explicit function of t , we must have

H(t) = 0. (5.1-6)

for all t ∈ [t0, T]. We have already discussed one minimum-time problem in
Example 3.2-5b.

The Transversality Condition

Another class of final-time-free problems occurs when both x (T) and T are free,
but they are independent. Then (5.1-1) demands that both

(φx + ψT
x ν − λ)|T = 0 (5.1-7)

and
(φt + ψT

t ν + H)|T = 0. (5.1-8)

Yet another class of final-time-free problems occurs when both x (T) and T are
free, but they are dependent. An example is when the final state x (T) is required
to be on a specified moving point p(t), but x (T) and T are otherwise free. Then

x(T) = p(T) (5.1-9)
and

dx(T) = dp(T)

dT
dT , (5.1-10)

so that (5.1-1) becomes

(φx − λ)T|T dp(T)

dT
dT + (φt + H)|T dT = 0. (5.1-11)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 215

5.1 FINAL-TIME-FREE PROBLEMS 215

(note there is no ψ(T) here, or ψ(T) is identically the zero function). Since
dT �= 0, this requires

(φx(T) − λ(T))T dp(T)

dT
+ φt (T) + H(T) = 0. (5.1-12)

The next exercise illustrates this approach, and shows that optimal control prob-
lems often have several equivalent formulations.

Exercise 5.1-1. Alternative Formulation of the Minimum-time Intercept Problem

Example 3.2-5b can be worked another way by using conditions (5.1-9) and (5.1-12). Let
us require the final state to be on the moving point

p(T) =
[
xi + V1T

h

]
, (1)

which is the target aircraft. Show that (5.1-9) and (5.1-12) lead to equations (23), (24), and
(31) in Example 3.2-5b. In this formulation of the problem, the fixed-final-state function
ψ(x(T), T) is identically the zero function, and the multiplier ν is not required. �

Another class of final-time-free problems occurs when the final state is required
to be on a surface (or target set). If the surface is defined by

ψ(x(T), T) = 0, (5.1-13)

then (5.1-7) and (5.1-8) must hold independently. Let us focus on the former
condition. We may write

ψ(T) =

⎡
⎢⎢⎢⎣

ψ1(T)

ψ2(T)
...

ψp(T)

⎤
⎥⎥⎥⎦ = 0. (5.1-14)

Each component ψi(T) = 0 defines a hypersurface in Rn , and the final state is
required to be on the intersection of these hypersurfaces, ψ(T) = 0.

Writing (5.1-7) as

(φx(T) − λ(T)) = −

⎡
⎢⎢⎢⎢⎢⎣

∂ψT
1 (T)

∂x
...

∂ψT
p (T)

∂x

⎤
⎥⎥⎥⎥⎥⎦

T

ν

= −
[
∂ψ1(T)

∂x
· · · ∂ψp(T)

∂x

]⎡
⎢⎣

ν1
...

νp

⎤
⎥⎦ , (5.1-15)

it is apparent that the n vector (φx(T) − λ(T)) must be a linear combination
of the gradient vectors ∂ψi(T)/∂x. This vector must therefore be normal or

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 216

216 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

transversal to the surface defined by (5.1-13). As a special case, if the final-state
weighting φ(T) is equal to zero, then λ(T) itself must be normal to the surface
ψ(T) = 0.

The requirement (5.1-7)/(5.1-15) on the final costate is known as the transver-
sality condition . If x (T) and dT are dependent (i.e., the surface is moving), the
transversality condition looks like (5.1-12). Since (5.1-8) is also a condition on
the final costate, it is often called the transversality condition. For further dis-
cussion on these concepts, see Kirk (1970), Athans and Falb (1966), and Bryson
and Ho (1975). Some examples will help in understanding these ideas.

Examples

Example 5.1-2. Zermelo’s Problem

This problem is taken from Bryson and Ho (1975).
A ship must travel through a region of strong currents, which depend on position. The

ship has a constant speed V , and its heading θ (t) can be varied. The current is directed
in the x direction with a speed of

u = Vy

h
, (1)

for a given h . See Fig. 5.1-1.

FIGURE 5.1-1 Geometry for Zermelo’s problem.

It is desired to find the ship’s heading θ (t) required to move from a given initial
position (x(t0), y(t0)) to the origin in minimum time. The equations of motion are

ẋ = V cos θ + Vy

h
(2)

ẏ = V sin θ, (3)

and the performance index is

J (t0) =
∫ T

t0

1 dt. (4)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 217

5.1 FINAL-TIME-FREE PROBLEMS 217

The Hamiltonian is
H = 1 + λx(V cos θ + Vy/h) + λyV sin θ, (5)

so that the costate equations are

−λ̇x = ∂H

∂x
= 0 (6)

−λ̇y = ∂H

∂y
= λxV

h
. (7)

The control input is θ (t), and so the stationarity condition is

0 = ∂H

∂θ
= −λxV sin θ + λyV cos θ. (8)

According to (8), we can express the control in terms of the costate as

tan θ = λy

λx

. (9)

Integrating (6) and (7) and substituting into (9) yields the linear tangent control law

tan θ(t) = λy(T)

λx

+ V (T − t)

h
, (10)

where the costate component λx is constant. See Example 3.2-5. We could not use this
to substitute for θ(t) in the state equations (2), (3) and solve for x (t), y(t). To find λx ,
λy(T), and the final time T , we could then use the boundary conditions. Unfortunately,
this approach is tedious and unfruitful. Let us try another one.

The initial conditions are (x(t0), y(t0)). The final state is fixed at (0, 0), so that

ψ(T)
�=

[
x(T)

y(T)

]
= 0. (11)

Since the final state is fixed, (3.2-10) requires that

H(T) = 0. (12)

The Hamiltonian is not an explicit function of t ; therefore, Ḣ = 0 and

H(t) = 1 + λx

(
V cos θ + Vy

h

)
+ λyV sin θ = 0 (13)

for all t ∈ [t0, T].
We can now use (8) and (13) to solve for the costate in terms of θ (t), for we have

[
V cos θ + Vy

h
V sin θ

−V sin θ V cos θ

][
λx

λy

]
=

[−1
0

]
. (14)

which yields

λx = − cos θ

V + V (y/h) cos θ
, (15)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 218

218 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

λy = − sin θ

V + V (y/h) cos θ
. (16)

Substitute λx into (6) (using λx and λy in (7) would also work) to get

λ̇x = ∂λx

∂θ
θ̇ + ∂λx

∂y
ẏ

= sin θ [V + V (y/h) cos θ] + cos θ [−V (y/h) sin θ]

[V + V (y/h) cos θ]2
· θ̇

+ (V/h) cos2 θ

[V + V (y/h) cos θ]2
· ẏ = 0. (17)

Now use state equation (3) in this and solve for θ̇ to see that

θ̇ = −V

h
cos2 θ. (18)

What we need to do at this point is to solve (2), (3), and (18) using the given boundary
conditions. One approach is to integrate (18) about the final time T , use the resulting θ (t)
to determine y(t) by integrating (3), and then use θ (t) and y(t) in (2) to determine x (t).
The unknowns T and θ (T) could then be determined using (11). This gives a very messy
solution and no intuition.

Let us instead take θ , not the time t , as the independent variable. This will have two
benefits: one is that the problem is easier to solve. We shall point out the second benefit
later.

According to (6), λx is a constant, so we can use (15) evaluated at t and at T to write
(y(T) = 0)

cos θ

V + V (y/h) cos θ
= cos θ(T)

V
. (19)

This allows us to see that

cos θ = cos θ(T)

1 − (y/h) cos θ(T)
, (20)

which expresses the required ship’s heading θ (t) at the current time in terms of the as yet
unknown final heading θ (T) and the current y position.

It is easy to express y(t) in terms of θ (t), for according to (20)

y(t)

h
= sec θ(T) − sec θ(t). (21)

To obtain x (t) as a function of θ (t), use (2) to write

dx

dθ
θ̇ = V cos θ + Vy

h
, (22)

or, by (18) and (21),

dx

dθ
= V cos θ + V sec θ(T) − V sec θ

−(V/h) cos2 θ

= −h(sec θ + sec θ(T) sec2 θ − sec3 θ). (23)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 219

5.1 FINAL-TIME-FREE PROBLEMS 219

This can be integrated to yield (x(T) = 0)

x(t)

h
= 1

2

[
sec θ(T)(tan θ(T) − tan θ) − tan θ(sec θ(T) − sec θ)

+ ln
sec θ(T) + tan θ(T)

sec θ + tan θ

]
. (24)

Equations (21) and (24) give the current ship’s position (x, y) in terms of current
heading θ (t) and final heading θ (T) along the minimum-time trajectory. Although this
may not seem to be exactly what we are after, a little thought will show that our problem
is now solved.

Given the current position (x (t)), y(t), (21) and (24) can be used to solve for the
current required heading θ (t) and the final heading θ (T) of the minimum-time path to the
origin. Although these equations are a little messy to solve, we can express the control law
in a convenient tabular or graphical form. A simple computer program can be written to
compute x and y as θ and θ (T) vary, and a graph can be made like the one in Fig. 5.1-2.
Then, given x (t) and y(t), the solution θ (t), θ (T) can be read off the graph. (Of course,
for an actual application a graph with finer increments in θ (t) and θ (T) would be needed.)

FIGURE 5.1-2 Feedback control law for Zermelo’s problem.

The second benefit of using θ instead of t as the independent variable is now apparent,
for the control law we have found is a closed-loop feedback control! Although it is highly
nonlinear and of an unfamiliar form, it is a state variable feedback since the current
optimal control θ (t) is given in terms of the current state (x (t), y(t)). Since (21) and (24)
are implicit equations for θ (t), we could say they specify an implicit feedback law .

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 220

220 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

We have even more than this at our disposal, for according to (18)

∫ θ(T)

θ(t)

sec2 θ dθ = −V

h

∫ T

t

dt (25)

(T − t) = h

v
(tan θ(t) − tan θ(T)). (26)

Thus, once we have read θ (T) and the required control θ (t) off our graph, we can use (26)
to determine the time to go to the origin; that is, the optimal value of the performance
index J (t)!

A sample minimum-type trajectory through the region of currents is shown in
Fig. 5.1-3. Since the initial position is x(t0) = 4.9, y(t0) = 1.66, the initial and final
headings are found from Fig. 5.1-2 to be θ(t0) = 255◦

, θ(T) = 117◦. The required
headings at values of t ∈ [t0, T] are determined in a similar manner from (x (t), y(t)).

FIGURE 5.1-3 Sample minimum-time trajectory for Zermelo’s problem.

�

Example 5.1-3. The Brachistochrone Problem

Brachistochrone is Greek for shortest time. This problem was proposed and solved
by Johann Bernoulli in 1696 and is one of the earliest applications of the calculus of
variations.

A mass m moves in a constant force field of magnitude g starting at rest at the origin
at time t0. It is desired to find the path of minimum time to a specified final point (x1, y1).
See Fig. 5.1-4.

If there is no friction, the field is conservative and the kinetic plus potential energy is
a constant:

1
2 mV 2(t) − mgy(t) = 1

2mV 2(t0) − mgy(t0) = 0. (1)

Hence, the velocity at any time t ≥ t0 is given in terms of the y coordinate as

V =
√

2gy. (2)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 221

5.1 FINAL-TIME-FREE PROBLEMS 221

FIGURE 5.1-4 Geometry for the brachistochrone problem.

The state equations are

ẋ = V cos θ, (3)

ẏ = V sin θ, (4)

where the path angle θ (t) is the control input to be determined in order to minimize the
minimum-time performance index

J (t0) =
∫ T

t0

1 dt. (5)

According to Table 3.1-1, the Hamiltonian is

H(t) = 1 + λx(t)V)(t) cos θ(t) + λy(t)V (t) sin θ(t), (6)

so the Euler equations are

−λ̇x = ∂H

∂x
= 0, (7)

−λ̇y = ∂H

∂y
= g

V
(λx cos θ + λy sin θ), (8)

0 = ∂H

∂θ
= −λxV sin θ + λyV cos θ. (9)

From the stationarity condition we can express the control in terms of the costate as

tan θ = λy

λx

(10)

where λx is constant due to (7). We shall not use (10), but will instead proceed as we
did in Example 5.1-2, using θ , not t , as the independent variable. This will result in a
feedback law, not simply in a description of the optimal path as a time function.

The initial conditions are x(t0) = 0, y(t0) = 0, and the fixed function of the final
state is

ψ(T) =
[
x(T) − x1

y(T) − y1

]
= 0. (11)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 222

222 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

Therefore, the terminal condition (3.2-10) requires that

H(T) = 0, (12)

and since H (t) is not explicitly dependent on t ,

H(t) = 1 + λxV cos θ + λyV sin θ = 0 (13)

for all t ∈ [t0, T].
Using (9) and (13) we can express the costate in terms of the state and the control as

λx = −cos θ

V
, (14)

λy = − sin θ

V
. (15)

Now use (14) in (7) (or (14) and (15) in (8)) to see that

λ̇x = ∂λx

∂θ
θ̇ + ∂λx

∂y
ẏ

= θ̇V sin θ + ẏ(g/V) cos θ

V 2
= 0. (16)

Taking (4) into account yields

θ̇ = − g

V
cos θ. (17)

What we could now do is solve (3), (4), and (17) using the boundary conditions to
get x, y , and θ as functions of time. This is a mess, and besides that, we want a feedback
control law that gives θ (t) in terms of x (t) and y(t). Let us, therefore, use θ as the
independent variable (Bryson and Ho 1975).

According to (7), λx is a constant, so evaluate (14) at both t and T to get

cos θ(t)

V (t)
= cos θ(T)

V (T)
, (18)

or, using (2) and y(T) = y1,

cos θ =
√

y(t)

y1
cos θ(T). (19)

This can be used to express y(t) in terms of θ (t) and the as yet unknown θ (T) as

y = y1

cos2 θ(T)
cos2 θ. (20)

To get x as a function of θ , use (3) to write

dx

dθ
θ̇ = V cos θ, (21)

so that, by (2) and (17),
dx

dθ
= −V 2

g
= −2y. (22)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 223

5.1 FINAL-TIME-FREE PROBLEMS 223

Using (20),
dx

dθ
= −2y1

cos2 θ(T)
cos2 θ, (23)

which can easily be integrated about the final time to give (x(T) = x1)

x = x1 + y1

2 cos2 θ(T)
[2(θ(T) − θ) + sin 2θ(T) − sin 2θ]. (24)

We are now done. Given the current position (x (t), y(t)), equations (20) and (24) can
be solved for the current required path angle θ (t) and the final path angle θ (T). These
equations are messy to solve, but they can easily be converted to a tabular or graphical
form as in the previous example by the use of a MATLAB program. It should be clearly
understood that (20) and (24) specify an implicit feedback control law , since the control
θ (t) is given once the state (x (t), y(t)) is known.

It is not difficult to see that given (x (t), y(t)) we can also calculate the time to go to
(x 1, y1), that is, the optimal value of J (t). Using (17), (14), and (7) we have

θ̇ = gλx = const, (25)

and integrating yields
θ(T) − θ = gλx(T − t),

or (evaluating λx in (14) at the final time)

(T − t) =
√

2y(T)

g

θ − θ(T)

cos θ(T)
. (26)

Thus, (x (t), y(t)) gives (θ (t), θ (T)), which then gives (T – t).
Equation (25) is interesting in its own right; it shows that the rate of change of the

optimal path angle is constant. It is also worth noting that according to (20), the initial
path angle θ (t0) is always 90

◦
; the motivation being, of course, to increase y , and hence

the velocity V , as quickly as possible at the outset.
Although the optimal control problem is now solved, it is quite instructive to derive

the solution to the bachistochrone problem in the form presented by Bernoulli. Let

φ = π − 2θ. (27)

Then (20) becomes
y = a(1 + cos(π − φ))

or
y = a(1 − cos φ), (28)

where
a

�= y1

2 cos2 θ(T)
= y1

1 − cos φ(T)
. (29)

We can also write (24) in terms of φ(t) as

x − x(T) + a(φ(T) − sin φ(T)) = a(φ − sin φ). (30)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 224

224 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

Equations (28) and (30) describe a cycloid that passes through (x 1, y1). The final path
angle θ (T) must be selected so that the cycloid passes through (x (t0), y(t0)). (A cycloid is
the curve generated by a point on the circumference of a circle that rolls without slipping,
in our case along the x axis.) �

Example 5.1-4. Minimum-time Orbit Injection

A spacecraft of mass m is to be placed into orbit in minimum time. See Fig. 5.1-5,
where φ(t) is the thrust direction angle, F the thrust, γ (t) the flight path angle, total
velocity V (t) has radial component w (t) and tangential component v(t), and μ = GM

the gravitational constant of the attracting center. The Coriolis force

Fc = mV v

r
(1)

is directed perpendicular to V .

FIGURE 5.1-5 Geometry for orbit injection.

Assuming that the mass m of the spacecraft is constant, the state equations are found
by summing forces to be

ṙ = w, (2)

ẇ = v2

r
− μ

r2
+ F

m
sin φ, (3)

v̇ = −wv

r
+ F

m
cos φ. (4)

We assume that the thrust F is constant, and it is desired to select the control input φ(t)

so that elapsed time

J (t0) =
∫ T

t0

1 dt (5)

is minimized.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 225

5.1 FINAL-TIME-FREE PROBLEMS 225

Using Table 3.2-1, the Hamiltonian is

H(t) = 1 − λrw + λw

(
v2

r
− μ

r2
+ F

m
sin φ

)

+ λv

(−wv

r
+ F

m
cos φ

)
, (6)

where a costate component is associated with each state component. The Euler equations
are

−λ̇r = ∂H

∂r
=

(−v2

r2
+ 2μ

r3

)
λw + wv

r2
λv, (7)

−λ̇w = ∂H

∂w
= λr − v

r
λv, (8)

−λ̇v = ∂H

∂v
= 2v

r
λw − w

r
λv, (9)

0 = ∂H

∂φ
= F

m
(λw cos φ − λv sin φ). (10)

According to (10), the optimal control is expressed in terms of the costate as

tan φ = λw/λv. (11)

Suppose the spacecraft is launched from the surface of a planet of radius R. For
simplicity, we assume the planet is not rotating. Then the initial conditions are

r(t0) = R, w(t0) = 0, v(t0) = 0. (12)

If the desired orbit is circular with a radius of r(T) = D, then the fixed function of the
final state is

ψ(T) =

⎡
⎢⎢⎣

r(T) − D

w(T)

v(T) −
√

μ

r(T)

⎤
⎥⎥⎦ = 0, (13)

since in orbit we require the centrifugal and gravitational forces to balance:

mv2

r
= μm

r2
. (14)

In this problem dx (T) and dT are independent, so final condition (3.2-10) requires
both the transversality conditions (ν = [νr νw νv]T)

λr(T) = ∂ψT(T)

∂r
ν = νr + νv

2

√
μ

r3(T)
, (15)

λw(T) = ∂ψT(T)

∂w
ν = νw, (16)

λv(T) = ∂ψT(T)

∂v
ν = νv, (17)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 226

226 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

and
H(T) = 1 + F

m
(λw(T) sin φ(T) + λv(T) cos φ(T)) = 0. (18)

(We have taken (13) into account to write (18).) Since H (t) is not an explicit function of
time, Ḣ = 0 and

H(t) = 0 (19)
for all t ∈ [0, T].

To find the optimal thrust angle φ(t), we need to solve state equations (2)–(4) and
costate equations (7)–(9), taking into account (11) and the six boundary conditions (12),
(15)–(17). The unknowns νr , νw , νv must furthermore be selected to ensure that (13) is
satisfied. Equation (18) provides an additional condition that allows the unknown final
time T to be determined. This approach would yield the optimal φ as a function of time.

Alternatively, we could use (10) and (19) to solve for λw, λv as in previous problems.
Then we could try to express r, w , and v in terms of φ. This approach would yield a
feedback control law for φ.

Either approach is very complicated in this example, so we shall stop at this point. To
solve the problem, a numerical approach is probably the best one.

See Bryson and Ho (1975) and Kirk (1970) for additional insight on the orbit injection
problem. �

Example 5.1-5. Shortest Distance from a Point to a Line

To minimize the distance from the origin to a given target set of admissible final states,
we can define

ẋ = u, (1)

J =
∫ T

0

√
1 + u2 dt, (2)

where T is in general free. See Fig. 5.1-6. In Example 3.2-2, the set of admissible final
states was a single point, and T was fixed.

FIGURE 5.1-6 Shortest distance from the origin to a given target set.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 227

5.1 FINAL-TIME-FREE PROBLEMS 227

The Hamiltonian is
H =

√
1 + u2 + λu, (3)

and the Euler equations are

−λ̇ = ∂H

∂x
= 0, (4)

0 = ∂H

∂u
= u√

1 + u2
+ λ. (5)

The initial condition is
x(0) = 0. (6)

According to the stationarity condition (5),

λ = −u/
√

1 + u2 (7)

and
u = λ/

√
1 − λ2. (8)

The costate equation (4) shows that λ is a constant; hence, by (8), u is also. Therefore,
state equation (1) yields

x(t) = ut, (9)

where the initial condition (6) has been taken into account. The constant u is to be
determined.

Now, suppose the target set is the line − mt + c. Let us solve for the optimal slope
u by two methods.

a. Fixed Function of Final State

Define
ψ(x(T), T) = x(T) + mT − c = 0, (10)

which ensures that x (T) is in the target set. Then, by (3.2-10) the transversality condition
on the costate is

λ = ∂ψ(T)

∂x
ν = ν, (11)

where ν is to be determined. The generalized boundary condition also requires

H(T) + ∂ψ(T)

∂T
ν =

√
1 + u2 + λu + mν = 0. (12)

Using (7) and (11) in (12) yields

√
1 + u2 − u2

√
1 + u2

− mu√
1 + u2

= 0, (13)

which is solved to give the optimal control

u = 1

m
. (14)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 228

228 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

The optimal path from the origin to the line is, therefore,

x = t

m
, (15)

a line perpendicular to the target set. Using (7), the costate is

λ = ν = −1√
1 + m2

, (16)

and (10) can be used to solve for the final time

T = mc

1 + m2
. (17)

b. Final State on Moving Point

An alternative formulation of the terminal conditions is to require that x (t) be on the
moving point

p(t) = −mt + c (18)

at the final time t = T. Then we have no final state function (i.e., ψ(x(T), T) is identically
the zero function), and transversality condition (5.1-12) applies. It becomes

mλ + H(T) = 0. (19)

This is identical to (12), and the remainder of the work in part a applies. Note that in this
formulation the additional multiplier ν is not introduced. �

Linear Quadratic Minimum-time Design

We now concern ourselves with finding an optimal control for the linear system

ẋ = Ax + Bu (5.1-16)

that minimizes the performance index

J = 1

2
xT (T)S(T)x(T) + 1

2

∫ T

t0

(
ρ + xT Qx + uT Ru

)
dt (5.1-17)

with S(T) ≥ 0, Q ≥ 0, R > 0, and with the final time T free. There is no con-
straint on the final state; thus, the control objective is to make the final state
sufficiently small. Due to the term ρ(T − t0)/2 arising from the integral, there
is a concern to accomplish this in a short time period.

This is a general sort of performance index that allows for a trade-off between
the minimum-time objective and a desire to keep the states and the controls small.
Thus, if we select smaller Q and R, the term ρ(T − t0)/2 in the performance
index dominates, and the control tries to make the transit time smaller. We call

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 229

5.1 FINAL-TIME-FREE PROBLEMS 229

this the linear quadratic minimum-time (LQMT) problem. On the other hand, if
we select smaller ρ the term 1

2 ∫T
t0
(xTQx + uTRu) dt in the performance index

dominates and thus at the limit where ρ tends to 0 we retrieve the LQR problem.
From Table 3.2-1, the Hamiltonian is

H = 1

2
(ρ + xTQx + uTRu) + λT(Ax + Bu), (5.1-18)

with λ(t) the costate. The costate equation and the boundary condition are

−λ̇ = ATλ + Qx, (5.1-19)

0 = Ru + BTλ, (5.1-20)

whence
u = −R−1BTλ. (5.1-21)

In (3.2-10) both dx (T) and dT are nonzero, however, they are independent in
this situation so that the final conditions are

λ(T) = S(T)x(T) (5.1-22)

H(T) = 0. (5.1-23)

Indeed, since the system and the performance index are not explicitly dependent
on t , (3.2-13) shows that, for all t ,

Ḣ (t) = 0. (5.1-24)

We now remark that, with the exception of (5.1-24) this is the same boundary-
value problem we solved in the closed-loop LQR problem in Section 3.3. That
is, Table 3.3-1 still provides the optimal solution. The difficulty, of course, is that
the final time T is unknown. To find the final time T , recall that for all times t

λ = Sx, (5.1-25)

u = −R−1BTSx. (5.1-26)

Using these at t = t0 in (5.1-18) and taking into account (5.1-24) we have

0 = H(t0)

= ρ

2
+ 1

2
xT(t0)[SBR−1BTS + Q + (SA + ATS) − 2SBR−1BTS]x(t0),

(5.1-27)

Therefore,

0 = ρ + xT(t0)[A
TS + SA + Q − SBR−1BTS]x(t0), (5.1-28)

or, taking into account the Riccati equation from Table 3.3-1,

xT(t0)Ṡx(t0) = ρ. (5.1-29)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 230

230 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

We have shown that the solution procedure for the LQ minimum-time problem
is to integrate the Riccati equation

−Ṡ = ATS + SA + Q − SBR−1BTS (5.1-30)

backward from some time τ using as the final condition S(τ) = S(T). At each
time t , the left-hand side of (5.1-29) is computed using the known initial state
and Ṡ(t). Then, the minimum interval (T − t0) is equal to (τ − t), where t is
the time for which (5.1-29) first holds. This specifies the minimum final time
T . Finally, the Kalman gain and the optimal control are given using exactly the
design equations from Table 3.3-1, namely

K = R−1BTS, (5.1-31)

u = −K(t)x. (5.1-32)

It is interesting to note that Ṡ is used to determine the optimal time interval,
while S is used to determine the optimal feedback gain.

We mention that condition (5.1-29) may never hold. Then, the optimal solution
is T − t0 = 0; that is, the performance index is minimized by using no control.
Roughly speaking, if x (t0) and/or Q and S (T) are large enough, then it makes
sense to apply a nonzero control u(t) to make x (t) decrease. On the other hand, if
Q and S (T) are too small for the given initial state x (t0), then it is not worthwhile
to apply any control to decrease x (t), for both a nonzero control and a nonzero
time interval will increase the performance index.

Example 5.1-6. LQ minimum time for a scalar system (Verriest and Lewis 1991).

Let the scalar plant
ẋ = ax + bu

x(0) = x0, with performance index

J = 1

2
S(T)x2(T) + 1

2

∫ T

0
(ρ + qx2 + ru2) dt.

The Riccati equation is

−ṡ = 2as − b2s2

r
+ q, sf = S(T).

The steady-state solution is

S∞ = q

γ

(
1 +

√
1 + γ

a

)
,

where γ = b2q2/ar (see Example 3.3-4a).
If x0 = 0 the minimum time is T = 0. Otherwise, the LQMT condition (5.1.29) for

the minimum time T is
ṡ(0)x2

0 = ρ. (1)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 231

5.1 FINAL-TIME-FREE PROBLEMS 231

At the steady-state, we have
ṡ∞x2

0 = 0.

Since s(t) is continuous, a necessary and sufficient condition for (1) to hold for some
t ≤ T is

ṡf x2
0 ≥ ρ. (2)

According to the Riccati equation, this is equivalent to

[
b2s2

f

r
− 2asf − q

]
x2

0 ≥ ρ

or

g(sf) = b2s2
f

r
− 2asf −

(
q + ρ

x2
0

)
≥ 0.

The largest root of g(sf) = 0 is given by

σ = 1

δ

⎡
⎣1 +

√√√√1 + δ

a

(
q + ρ

x2
0

)⎤
⎦ ,

with

δ = b2

ar
.

Thus, for (2) to hold it is necessary and sufficient that

S(T) ≥ 1

δ

⎡
⎣1 +

√√√√1 + δ

a

(
q + ρ

x2
0

)⎤
⎦ . (3)

If this condition holds, the minimum time T is greater than zero. Otherwise, it is not
worthwhile to move the state from x 0 and T is equal to 0. That is the minimum time T
is nonzero if x0 �= 0 and we weight the final state x (T) sufficiently in the performance
index.

Some insight may be gained by noting the following points in connection with (3).

1. Parameters q , ρ, and 1/x2
0 have a similar effect. In fact, we could define

k = q + ρ

x2
0

.

Then as k increases, a larger final state weighting S (T) is required for T > 0. As k
decreases, a smaller S (T) suffices for T > 0.

2. As r increases, δ decreases and the influence of parameter k wanes. Moreover, a
larger S (T) is required for T > 0. As the control weight r decreases, the influence
of k increases, however, a smaller final weighting S (T) is sufficient to make T > 0.

�

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 232

232 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

5.2 CONSTRAINED INPUT PROBLEMS

The optimal control law in Table 3.2-1, on which the entire chapter up to this point
has been based, gives the control as a continuous implicit function of the state
and costate. Under some smoothness assumptions on f (x , u , t) and L(x, u, t),
the control is also a smooth function of time. Furthermore, it is found by solving
a continuous two-point boundary-value problem.

In this section we investigate a fundamentally different sort of control law.

Pontryagin’s Minimum Principle

Let the plant
ẋ = f (x, u, t) (5.2-1)

have an associated cost index of

J (t0) = φ(x(T), T) +
∫ T

0
L(x, u, t) dt, (5.2-2)

where the final state must satisfy

ψ(x(T), T) = 0 (5.2-3)

and x (t0) is given. If the control is unconstrained, the optimal control problem
is solved in Table 3.2-1, where the condition for optimality is

∂H

∂u
= 0 (5.2-4)

with
H(x, u, λ, t) = L(x, u, t) + λTf (x, u, t). (5.2-5)

Now suppose the control u(t) is constrained to lie in an admissible region ,
which might be defined by a requirement that its magnitude be less than a given
value. It was shown by Pontryagin et al. (1962) that in this case, Table 3.2-1 still
holds, but the stationarity condition (5.2-4) must be replaced by the more general
condition

H(x∗, u∗, λ∗, t) ≤ H(x∗, u∗ + δu, λ∗, t), all admissible δu,

where * denotes optimal quantities. That is, any variation in the optimal control
occurring at time t while the state and costate maintain their optimal values at t
will increase the value of the Hamiltonian. This condition can be written

H(x∗, u∗, λ∗, t) ≤ H(x∗, u, λ∗, t), all admissible u. (5.2-6)

The optimality requirement (5.2-6) is called Pontryagin’s minimum principle:
“the Hamiltonian must be minimized over all admissible u for optimal values
of the state and costate.” We shall soon see how useful the minimum principal

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 233

5.2 CONSTRAINED INPUT PROBLEMS 233

is. Note particularly that it does not say H(x∗, u∗, λ∗, t) ≤ H(x, u, λ, t), which
must certainly be true. Supplementary references are Bryson and Ho (1975),
Athans and Falb (1966), and Kirk (1970).

Example 5.2-1. Optimization with Constraints

Suppose we want to minimize

L = 1
2 u2 − 2u + 1 (1)

subject to
|u| ≤ 1. (2)

See Fig. 5.2-1. The minimum principle

L(u∗) ≤ L(u), all admissible u, (3)

clearly shows that the optimal value of u is

u∗ = 1. (4)

The optimal value of L is
L∗ = L(1) = − 1

2 . (5)

The unconstrained minimum is found by solving

∂L

∂u
= u − 2 = 0 (6)

to be
u = 2, (7)

FIGURE 5.2-1 Optimization with constraints.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 234

234 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

and
L(2) = −1 (8)

is less than (5); but u = 2 is inadmissible since it violates (2). �

Bang-bang Control

Let us discuss the linear minimum-time problem with constrained input magni-
tude. Thus, the plant is

ẋ = Ax + Bu (5.2-7)

with performance index

J (t0) =
∫ T

t0

1 dt, (5.2-8)

with T free. Suppose the control is required to satisfy

|u(t)| ≤ 1 (5.2-9)

for all t ∈ [t0, T]. This constraint means that each component of the m vector
u(t) must have magnitude no greater than 1.

The optimal control problem is to find a control u(t) that minimizes J (t0),
satisfies (5.2-9) at all times, and drives a given x (t0) to a final state x (T) satisfying
(5.2-3) for a given function ψ .

A requirement like (5.2-9) arises in many problems where the control mag-
nitude is limited by physical considerations. For example, the thrust of a rocket
certainly has a maximum possible value.

In Section 5.1 we talked about minimum-time problems, but only for nonlinear
systems. The reason is the following. The Hamiltonian for our current problem is

H = L + λTf = 1 + λT(Ax + Bu). (5.2-10)

If we naively try to use Table 3.2-1, then the stationarity condition is found to be

0 = ∂H

∂u
= BTλ. (5.2-11)

This does not involve u . This is because the Hamiltonian is linear in u . Clearly,
to minimize H we should select u(t) to make λT(t)Bu(t) as small as possible.
(Small means as far to the left as possible on the real number line; −∞ is the
smallest value λTBucan possibly take on!) If there is no constraint on u(t), then
this calls for infinite (positive or negative) values of the control variables. For
this reason, we have avoided the linear minimum-time problem until we could
include control input constraints.

Before we solve the linear minimum-time problem, let us consider a simple
example that will give us a feel for the properties of constrained minimum-time
control.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 235

5.2 CONSTRAINED INPUT PROBLEMS 235

Example 5.2-2. A One-dimensional Intercept Problem (Kirk 1970)

A pursuit aircraft starts out at rest a distance of h behind its target. See Fig. 5.2-2. The
target is initially at rest also, but has an acceleration such that its motion is described by

yT (t) = h + 0.1t3. (1)

FIGURE 5.2-2 A one-dimensional intercept problem.

The pursuer obeys Newton’s laws
ẏ = v, (2)

v̇ = u, (3)

where v(t) is its velocity and u(t) its thrust per unit mass, which is constrained by

|u(t)| ≤ 1. (4)

For a minimum-time intercept, we want to determine u(t) to minimize

J (0) =
∫ T

0
1 · dt. (5)

This performance index is evidently minimized by selecting the maximum admissible
control for all t . Therefore,

u∗(t) = 1. (6)

Using this control and taking into account the initial state y(0) = 0, v(0) = 0, we can
integrate the state equations (2) and (3) to get

v(t) = t, (7)

y(t) = t2

2
. (8)

For intercept, the target’s position yT and the pursuer’s position y must be equal for some
final time:

yT(T) = y(T), (9)

so T must satisfy
0.1T 3 − 0.5T 2 + h = 0. (10)

A root locus for (10) as h varies from 0 to ∞ is shown in Fig. 5.2-3, where the values
of h are shown in parentheses. For the intercept problem to have a solution, equation (10)
must have a real positive root. From the root locus, this occurs only if h ≤ 1.85; if the

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 236

236 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

target starts out too far ahead, the pursuer cannot overtake it. For h < 1.85, equation (10)
has two real positive roots; the smaller root is the value of T for which the pursuer first
overtakes and passes the target, and the larger root is where the target again passes the
pursuer.

FIGURE 5.2-3 Root locus of final-time equation.

�
From this example we have learned two important properties of the linear

minimum-time problem: a solution may not exist, and if one does, the optimal
control strategy appears to be to apply maximum effort (i.e., plus or minus 1)
over the entire control time interval. When the control takes on a value at the
boundary of its admissible region, it is said to be saturated.

Now let us show how to find the linear minimum-time control law. For the
problem formulated in (5.2-7)–(5.2-9), the Hamiltonian is given by (5.2-10).
According to Pontryagin’s minimum principle (5.2-6), the optimal control u*(t)
must satisfy

1 + (λ∗)T
(Ax∗ + Bu∗) ≤ 1 + (λ∗)T

(Ax∗ + Bu).

Now we see the importance of having the optimal state and costate on both sides
of the inequality, for this means we can say that for optimality the control u*(t)
must satisfy

(λ∗)T
Bu∗ ≤ (λ∗)T

Bu (5.2-12)

for all admissible u(t). This condition allows us to express u*(t) in terms of the
costate. To see this, let us first discuss the single-input case.

Let u(t) be a scalar, and let b represent the input vector. In this case it is easy
to choose u*(t) to minimize the value of λT(t)bu(t). (Note: Minimize means that
we want λT(t)bu(t) to take on a value as close to −∞ as possible.)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 237

5.2 CONSTRAINED INPUT PROBLEMS 237

FIGURE 5.2-4 Sample switching function and associated optimal control.

If λT(t)b is positive, we should select u(t) = −1 to get the largest possible
negative value of λT(t)bu(t). On the other hand, if λT(t)b is negative, we should
select u(t) as its maximum admissible value of 1 to make λT(t)bu(t) as negative
as possible. If λT(t)b is zero at a single point t in time, then u(t) can take on
any value at that time, since then λT(t)bu(t) is zero for all values of u(t).

This relation between the optimal control and the costate can be expressed in
a neat way by defining the signum function sgn(w) as

sgn(w) =
⎧⎨
⎩

1, w > 0
indeterminate, w = 0

−1, w < 0.

(5.2-13)

Then the optimal control is given by

u∗(t) = −sgn(bTλ(t)). (5.2-14)

This expression for u* in terms of the costate should be compared to the expres-
sion (3.3-7), which holds for linear systems with quadratic performance indices.

The quantity bTλ(t) is called the switching function . A sample switching
function and the optimal control it determines are shown in Fig. 5.2-4. When the
switching function changes sign, the control switches from one of its extreme
values to another. The control in the figure switches four times. The optimal
linear minimum-time control is always saturated since it switches back and forth
between its extreme values, so it is called a bang-bang control .

If the control is an m vector, then according to the minimum principle (5.2-12),
we need to select u*(t) to make λT(t)Bu(t) take on a value as close to −∞ as
possible. To do this, we should select component ui (t) to be 1 if component

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 238

238 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

bT
i λ(t) is negative, and to be −1 if bT

i λ(t) is positive, where bi is the i th column
of B . This control strategy makes the quantity

λT(t)Bu(t) =
m∑

i=1

ui(t)b
T
i λ(t) (5.2-15)

as small as possible for all t ∈ [t0, T]. Thus, we can write

u∗(t) = −sgn(BTλ(t)) (5.2-16)

if we define the signum function for a vector w as

v = sgn (w) if vi = sgn (wi) for each i, (5.2-17)

where vi , w i are the components of v and w .
It is possible for a component bT

i λ(t) of the switching function BTλ(t) to be
zero over a finite time interval. If this happens, component ui (t) of the optimal
control is not well defined by (5.2-6). This is called a singular condition. If this
does not occur, the time-optimal problem is called normal .

If the plant is time-invariant, then we can present some simple results on
existence and uniqueness of the minimum-time control. First, we present a test
for normality. See Athans and Falb (1966) and Kirk (1970) for more detail on
the following results.

The time-invariant plant (5.2-7) is reachable if and only if the reachability
matrix

Un = [B AB · · · An−1B] (5.2-18)

has full rank n . If bi is the i th column of B ∈ Rn×n, then the plant is normal if

Ui = [bi Abi · · · An−1bi] (5.2-19)

has full rank n for each i = 1, 2, . . . , m; that is, the plant is reachable by each
separate component ui of u ∈ Rm. Normality of the plant and normality of the
minimum-time control problem are equivalent.

The next results are due to Pontryagin et al. (1962). Let the plant be normal
(and hence reachable), and suppose we want to drive a given x (t0) to a desired
fixed final state x (T) in minimum time with a control satisfying [u(t)] ≤ 1.

1. If the desired final state x (T) is equal to zero, then a minimum-time control
exists if the plant has no poles with positive real parts (i.e., no poles in the
open right half-plane).

2. For any fixed x (T), if a solution to the minimum-time problem exists, then
it is unique.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 239

5.2 CONSTRAINED INPUT PROBLEMS 239

3. Finally, if the n plant poles are all real and if the minimum-time control
exists, then each component ui (t) of the time-optimal control can switch
at most n − 1 times.

In both its computation and its final appearance, bang-bang control is fun-
damentally different from the smooth controls we have seen previously. The
minimum principle leads to the expression (5.2-16) for u*(t), but it is difficult to
solve explicitly for the optimal control. Instead, we shall see that (5.2-16) spec-
ifies several different control laws, and that we must then select which among
these is the optimal control. Thus, the minimum principle keeps us from hav-
ing to examine all possible control laws for optimality, giving a small subset of
potentially optimal controls to be investigated.

To demonstrate these notions and show that u*(t) can still be expressed as a
state feedback control law, let us consider a two-dimensional example, since the
two-dimensional plane is easy to draw.

Example 5.2-3. Bang-bang Control of Systems Obeying Newton’s Laws

Let the plant obey Newton’s laws so that

ẏ = v, (1)

v̇ = u, (2)

with y the position and v the velocity. The state is x = [yv]T. Let the acceleration input
u be constrained in magnitude by

|u(t)| ≤ 1. (3)

The control objective is to bring the state from any initial point (y(0), v(0)) to the origin
in the minimum time T . The final state is thus fixed at

ψ(x(T), T) =
[
y(T)

v(T)

]
= 0. (4)

a. Form of the Optimal Control

The Hamiltonian (5.2-10) is
H = 1 + λyv + λvu, (5)

where λ = [λyλv]T is the costate, so according to Table 3.2-1, the costate equations are

λ̇y = 0, (6)

λv = −λy. (7)

The transversality condition is, from (3.2-10),

0 = H(T) = 1 + λy(T)v(T) + λv(T)u(T), (8)

or, using (4),
λv(T)u(T) = −1. (9)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 240

240 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

Pontryagin’s minimum principle requires (5.2-16), or

u(t) = −sgn(λv(t)) (10)

so that costate component λv(t) is the switching function. To determine the optimal
control, we need only determine λv(t).

Solving (6) and (7) with respect to the final time T yields

λy(t) = const
�=λy, (11)

λv(t) = λv(T) + (T − t)λy. (12)

Using (9) and the fact that u*(t) is saturated at 1 or −1 requires either

u∗(T) = 1 and λ∗
v(T) = −1 (13)

or
u∗(T) = −1 and λ∗

v(T) = 1. (14)

There are several possibilities for the switching function λ∗
v(t), depending on the values

of λ∗
v(T) and λy . Some possibilities are shown in Fig. 5.2-5. The actual λ∗

v(t) depends on
the initial state (y(0), v(0)). Note, however, that since λ∗

v(t) is linear, it crosses the axis at
most one time, so that there is at most one control switching. This agrees with our result
on the maximum number of switchings when the plant poles are all real (n − 1 = 1).
Therefore, the optimal control is one of the choices below:

1. −1 for all t

2. −1 switching to + 1

FIGURE 5.2-5 Possible switching functions λv (t).

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 241

5.2 CONSTRAINED INPUT PROBLEMS 241

3. +1 switching to −1

4. +1 for all t

These control policies correspond to the switching functions of the forms shown in
Fig. 5.2-5a , b, c, and d , respectively.

It remains to determine which of the choices 1 through 4 is the correct optimal control.
We must also find the switching time ts (see Fig. 5.2-5) if applicable. We can find a state
feedback control law that tells us all this by working in the phase plane.

b. Phase-plane Trajectories

Let us determine the state trajectories under the influence of the two possible control
inputs: u(t) = 1 for all t , and u(t) = −1 for all t . Since in either of these two cases the
input u is constant, we can easily integrate state equations (2) and (1) to get

v(t) = v(0) + ut, (15)

y(t) = y(0) + v(0)t + 1
2 ut2. (16)

To eliminate the time variable, use (15) to say t = (v(t) − v(0))/u, and then substitute
into (16) to see that

u(y − y(0)) = v(0)(v − v(0)) + 1
2 (v − v(0))2. (17)

This is a parabola passing through (y(0), v(0)) and, as the initial state varies, a family
of parabolas is defined.

The phase plane is a coordinate system whose axes are the state variables. The phase-
plane plots of several members of the family of state trajectories (17) are shown for
u = 1 and for u = −1 in Fig. 5.2-6. The arrows indicate the direction of increasing time.
Hence, for example, if the initial state is (y(0), v(0)) as shown in Fig. 5.2-6a, then under
the influence of the control u = 1, the state will develop along the parabola with velocity
passing through zero and then increasing linearly, and position decreasing to zero and
then increasing quadratically. For the particular initial condition shown, the state will be
brought exactly to the origin by the control u = 1. For the same initial state, if the control
u = −1 is applied, the trajectory will move along the parabola in Fig. 5.2-6b.

c. Bang-bang Feedback Control

Since the control input is saturated at 1 or −1, the parabolas in Fig. 5.2-6 are minimum-
time paths in the phase plane. Unfortunately, they do not go through the origin for all
initial states, so, in general, (4) is not satisfied. We can construct minimum-time paths to
the origin by superimposing the two parts of Fig. 5.2-6. See Fig. 5.2-7. We shall now
demonstrate that this figure represents a state feedback control law , which brings any state
to the origin in minimum time.

We have argued using the minimum principle and the costate trajectories (11), (12)
that at any given time t there are only two control alternatives: u(t) = 1 or u(t) = −1.
Furthermore, at most one control switching is allowed.

Suppose the initial state is as shown in Fig. 5.2-6. Then the only way to arrive at
the origin while satisfying these conditions is to apply u = −1 to move the state along a
parabola to the dashed curve. At this point (labeled 1), the control is switched to u = 1

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 242

242 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

FIGURE 5.2-6 Phase plane trajectories. (a) u = 1. (b) u = −1.

to drive the state into the origin. Hence, the resultant seemingly roundabout trajectory is
in fact a minimum-time path to the origin.

The dashed curve is known as the switching curve. For initial states on this curve, a
control of u = 1 (if v(0) < 0) or u = −1 (if v(0) > 0) for the entire control interval will
bring the state to zero. For initial states off this curve, the state must first be driven onto
the switching curve, and then the control must be switched to its other extreme value to
bring the final state to zero. By setting v(0) = 0, y(0) = 0 in (17), we can see that the
equation of the switching curve is

y =
{

1
2 v2, v < 0

− 1
2 v2, v > 0

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 243

5.2 CONSTRAINED INPUT PROBLEMS 243

FIGURE 5.2-7 Bang-bang feedback control law.

or
y = − 1

2 v|v|. (18)

Simply put, for initial states above the switching curve, the optimal control is u = −1,
followed by u = 1, with the switching occurring when y(t) = 1

2 v2(t). For initial states
below the switching curve, the optimal control is u = 1, followed by u = −1, with the
switching occurring when y(t) = − 1

2v2(t). Since the control at each time t is completely
determined by the state (i.e., by the phase plane location), Fig. 5.2-7 yields a feedback
control law .

This feedback law, which is represented graphically in the figure, can be stated as

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if y > − 1
2v|v|

or if y = − 1
2v|v| and y < 0

1 if y < − 1
2v|v|

or if y = − 1
2v|v| and y > 0

(19)

This control scheme should be contrasted with the control laws developed in Examples
2.3-2, 2.4-3, 3.3-3, and 3.4-3.

d. Simulation

It is easy to implement the feedback control (19) and simulate its application using
MATLAB. The function ex5_2_8 in Fig. 5.2-8 implements (19). It is based on the function

SW = y + 1
2v|v|. (20)

Note that SW is considered equal to zero if it is within a threshold of 10−4 on either side
of zero. Note also that the control input must be turned off (i.e., set to zero) when the
state is sufficiently close to the origin, in order to bring the plant to rest there.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 244

244 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

function [x, u, t]=ex5_2_8 (a, b, x0, T, N)
% Simulation of Bang_Bang Control for Newton’s System
x(:,1)=x0;
epsilon=le–4;
t=0:T:T*N;
for k=1:N
% Compute the Switching Function
sw=x(1,k)+0.5*x(2,k)*abs(x(2,k));
if (abs (sw) <epsilon)
if (x(1, k) > 0) u(k) = 1; end
if (x(1, k) < 0) u(k) = –1; end
else
if (sw < 0) u(k) = 1; end
if (sw > 0) u(k) = –1; end
end
if (x(1,k) ˆ 2+x(2,k) ˆ 2 < epsilon) u(k) =0; end
% Harmonic Oscillator System State Equations
y=lsim (a, b, eye(2), zeros (2, 1), u(k)*ones(1, 2),[(k–1)*T,

k*T], x(:,k));Q1
x(:,k+1) =y(2,:)’;
end

FIGURE 5.2-8 MATLAB simulation of bang-bang control.

Function lsim.m from the Control Toolbox is used to implement the plant dynamics
(1), (2) at each time interval. The state trajectories resulting from the simulation when
y(0) = 10 and v(0) = 10 are shown in Fig. 5.2-9. The time interval at each step of the

FIGURE 5.2-9 Optimal bang-bang state trajectories.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 245

5.2 CONSTRAINED INPUT PROBLEMS 245

iteration for lsim was 25 msec. The number of iterations was N = 1200. It can be seen
from the slope of v(t) that the control input switches from u = −1 to u = 1 at ts = 16 sec,
and that the minimum time to the origin is 26 sec. These trajectories should be compared
to the results of Examples 2.3-2 and 2.4-3.

e. Computation of Time to the Origin

It is not difficult to compute the minimum time to the origin in terms of the initial state
(y(0), v(0)). Let us suppose that the initial state is above the switching curve, that is

y(0) > − 1
2 v(0)|v(0)|. (21)

This situation is shown in Fig. 5.2-7. Then the initial control of u = −1 is applied to
drive the state along the parabola passing through (y(0), v(0)) to the switching curve, at
which time t s the control is switched to u = 1 to bring the state to the origin.

The switching curve for v < 0 is described by y = 1
2 v2. We can find the switching

time t s by determining when the state is on this curve. Using (15) and (16) with u = −1
yields

y(t) = y(0) + v(0)t − t2

2

= v2(t)

2
= v2(0)

2
= −v(0)t + t2

2

on the switching curve, or

t2 − 2v(0)t + v2(0)

2
− y(0) = 0. (22)

The switching time is therefore

ts = v(0) +
√

y(0) + v2(0)

2
, (23)

where the positive root is selected to make t s positive for all v(0).
At the switching time, the state is on the switching curve (at point 1 in Fig. 5.2-7),

and using (15)
v(ts) = v(0) − ts . (24)

Also using (15) for the remaining time (T − ts) yields (now u = 1!)

0 = v(T) = v(ts) + (T − ts). (25)

Taking (24) into account gives the minimum time to the origin of

T = 2ts − v(0)

or

T = v(0) + 2

√
y(0) + v2(0)

2
. (26)

To check (23) and (26), let y(0) = 10, v(0) = 10. Then ts = 17.75 and T = 25.49. These
numbers agree with Fig. 5.2-9. A similar development holds if (y(0), v(0)) is below the
switching curve. �

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 246

246 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

Bang–Off-bang Control

We now discuss the linear minimum-fuel problem with constrained input magni-
tude. Minimum-fuel control is important in aerospace applications, where fuel is
limited and must be conserved. Let the plant be

ẋ = Ax + Bu. (5.2-20)

Assuming the fuel used in each component of the input is proportional to the
magnitude of that component, define the cost function

J (t0) =
∫ T

t0

m∑
i=1

ci |ui(t)| dt, (5.2-21)

where we allow the possibility of penalizing differently the fuel burned in each
of the m input components ui (t) by using the scalar weights ci . By defining the
vector absolute value as

|u| =

⎡
⎢⎣

|u1|
...

|um|

⎤
⎥⎦ (5.2-22)

(this is the same definition used in (5.2-9)) and the vector C = [c1c2 · · · cm]T, we
have

J (t0) =
∫ T

t0

CT|u(t)| dt. (5.2-23)

Suppose the control is required to satisfy

|u(t)| ≤ 1 (5.2-24)
for all t ∈ [t0, T].

We want to find a control that minimizes J (t0), satisfies (5.2-24), and drives
a given x (t0) to a final state satisfying (5.2-3) for a given function ψ . The final
time T can be either free or fixed; we shall discuss this further in an example.
Note, however, that T must be at least as large as the minimum time required to
drive x (t0) to a final state x (T) satisfying (5.2-3).

The Hamiltonian is

H = CT|u| + λT(Ax + Bu), (5.2-25)

and according to the minimum principle (5.2-6), the optimal control must satisfy

CT|u∗| + (λ∗)T
(Ax∗ + Bu∗) ≤ CT|u| + (λ∗)T

(Ax∗ + Bu) (5.2-26)

for all admissible u(t). Since the optimal state and costate appear on both sides,
we require

CT|u∗| + (λ∗)T
Bu∗ ≤ CT|u| + (λ∗)T

Bu (5.2-27)

for all admissible u(t).

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 247

5.2 CONSTRAINED INPUT PROBLEMS 247

To translate (5.2-27) into a rule for determining u*(t) from the costate λ(t),
assume that the m components of the control are independent so that for each
i = 1, . . . , m we require for all admissible ui (t) the scalar inequality

|u∗
i | + (λ∗)Tbiu

∗
i

ci

≤ |ui | + (λ∗)Tbiui

ci

, (5.2-28)

where bi denotes the i th column of B . We must now demonstrate how to select
control component u∗

i (t) from λT(t)bi . Since

|ui | =
{

ui, ui ≥ 0
−ui, ui ≤ 0

(5.2-29)

we can write the quantity we are trying to maximize by selection of ui (t) as

qi(t)
�= |ui | + bT

i λui

ci

=

⎧⎪⎪⎨
⎪⎪⎩

(
1 + bT

i λ

ci

)
|ui |, ui ≥ 0

(
1 − bT

i λ

ci

)
|ui |, ui ≤ 0.

(5.2-30)

This quantity is plotted in Fig. 5.2-10 for ui = 1, ui = 0, and ui = −1. In
general, for values of ui (t) between −1 and 1, the quantity qi (t) will take on
values inside the cross-hatched region.

To minimize qi so that (5.2-28) holds, we should select values for u∗
i (t) cor-

responding to the lower boundary of the cross-hatched region in the figure.
However, if bT

i λ/ci is equal to 1, then any nonpositive value of ui (t) will make

FIGURE 5.2-10 The quantity to be minimized by selecting u∗
i plotted versus bT

i λ/ci .

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 248

248 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

qi equal to zero (see (5.2-30)). On the other hand, if λTbi/ci is equal to −1,
then any non-negative value of ui (t) will make qi equal to zero. Therefore, the
minimum-fuel control law expressed as a (nonlinear!) costate feedback is, for
i = 1, . . . , m,

ui(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, bT
i λ(t)/ci < −1

non-negative, bT
i λ(t)/ci = −1

0, −1 < bT
i λ(t)/ci < 1

non-positive, bT
i λ(t)/ci = 1

−1, 1 < bT
i λ(t)/ci

(5.2-31)

If we define the dead-zone function (Athans and Falb 1966) by

dez (w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 w < −1
between − 1 and 0, w = −1

0, −1 < w < 1
between 0 and 1, w = 1

1, w > 1

, (5.2-32)

then we can write the minimum-fuel control as

u∗
i (t) = −dez

(
bT

i λ(t)

ci

)
, i = 1, . . . , m. (5.2-33)

Since each component of u(t) is either saturated or equal to zero, we call this a
bang–off-bang control law.

If bT
i λ(t)/ci is equal to 1 or −1 over a finite nonzero time interval, then the

minimum principle does not define the component ui (t) there. This is called a
singular interval . If bT

i λ(t)/ci is equal to 1 or −1 only at a finite number of
isolated times t , the minimum-fuel problem is said to be normal .

If the plant is time-invariant and the final time T is fixed, then we have the
following results (Athans and Falb 1966). The minimum-fuel problem is normal if
|A| �= 0 and if the plant is normal, that is, if U i defined by (5.2-19) is nonsingular
for i = 1, . . . , m. If the minimum-fuel problem is normal and a minimum-fuel
control exists, then it is unique.

The next example will impart a feel for minimum-fuel control.

Example 5.2-4. Bang–Off-bang Control of System Obeying Newton’s Laws

Let the plant dynamics be described by

ẏ = v, (1)

v̇ = u, (2)

as in the previous example, with x = [yv]T the state. The input is constrained by

|u(t)| ≤ 1. (3)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 249

5.2 CONSTRAINED INPUT PROBLEMS 249

Suppose the objective is to determine a control input to bring any given initial state
(y(0), v(0)) to the origin so that

ψ(x(T), T) =
[
y(T)

v(T)

]
= 0. (4)

The control should use minimum fuel, so let

J (0) =
∫ T

0
|u(t)| dt. (5)

We do not yet care whether the final time T is free or fixed, although we shall end up
covering both cases.

a. Form of the Optimal Control

The Hamiltonian is

H = |u| + λyv + λvu, (6)

where the costate is λ = [
λy λv

]T
. Therefore, the costate equations, as in Example

5.2-3, are
λ̇y = 0, (7)

λ̇v = −λy. (8)

Transversality demands

0 = H(T) = |u(T)| + λv(T)u(T), (9)

where (4) has been taken into consideration.
The solution of (7), (8) is

λy(t) = const
�=λy, (10)

λy(t) = λv(T) + (T − t)λy. (11)

Costate component λv(t) is linear. Depending on the as yet unknown λy and λv(T)

(which depend on the initial state), λv(t) can be constant (λy = 0), increasing (λy < 0),
or decreasing (λy > 0). See Fig. 5.2-5.

Pontryagin’s minimum principle requires

u(t) = −dez(λv(t)); (12)

so the optimal control is

u(t) = 1, if λv(t) < −1,

0 ≤ u(t) ≤ 1, if λv(t) = −1,

u(t) = 0, if − 1 < λv(t) < 1,

−1 ≤ u(t) ≤ 0, if λv(t) = 1,

u(t) = −1, if λv(t)> 1. (13)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 250

250 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

Taking into account the linearity of λv(t), we therefore realize that u = 1 cannot switch to
u = −1 without the intermediate value of u = 0, and vice versa. Furthermore, at most two
switchings are allowed. The control laws that are admissible candidates for the optimal
control must satisfy these requirements.

Now we must determine which is the optimal control law and find the times when the
control switches to a new value.

b. Phase-plane Trajectories

Ignoring the possibility of singular intervals, there are three possible values for u(t) :
−1, 0, and 1. Figure 5.2-6 shows the phase-plane trajectories for u = 1 and u = −1.

If u(t) = 0 for all t , then the state is given by (Example 5.2-3, equations (15), (16))

v(t) = v(0), (14)

y(t) = y(0) + v(0)t. (15)

These contours of constant v are horizontal lines in the phase plane as shown in Fig.
5.2-11, where the motion over a one-second interval with y(0) = 0 is shown by a vector
on each contour. Since v is smaller nearer the origin, the system moves more slowly
along paths nearer the origin.

The phase-plane paths for u = 0 represent paths of zero fuel consumption. To minimize
the fuel used, we should take advantage of the system drift by using u = 1 or −1 to drive
the state onto one of these paths letting it drift along the path toward the origin, and then
applying u = −1 or 1 to drive the state exactly to zero.

FIGURE 5.2-11 Phase-plane trajectories for u = 0.

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 251

5.2 CONSTRAINED INPUT PROBLEMS 251

To obtain a bang–Off-bang control law, we can superimpose the trajectories of
Figs. 5.2-6 and 5.2-11. See Fig. 5.2-12.

Let us now discuss separately the free- and fixed-final-time situations.

FIGURE 5.2-12 Bang–off-bang control law.

c. Free Final Time

Suppose that T is not specified. If the initial state is (y(0), v(0)) as shown in Fig. 5.2-12,
then there is only one candidate control history that drives the plant to zero and satisfies
(13): −1, 0, 1, with switchings at times t1 and t2, as shown in the figure. We shall show
that if the final time T in this example is free, then a minimum-fuel control law does not
generally exist!

To define the optimal control law, the switching times t1 and t2 must be specified.
Let us postulate a candidate for the minimum-fuel control law. We need to apply u = −1
long enough to drive v to a negative value. Suppose we use u = −1 until v = v1 = − ∈,
a small quantity, and then set u = 0. On removing the control, the state will drift to the
left along the u = 0 path shown according to

y(t) = y(t1)− ∈ (t − t1), t > t1. (16)

When the state hits the curve defined by

y = − 1
2 v|v| (17)

at time t2, we should apply u = 1 to drive the state to zero.
The shorter the interval of application of u = −1, the less fuel is consumed; but for

any given ∈ , we can always find a control law that uses less fuel than the candidate law
by turning off the control u = −1 when v = v1 = − ∈ /2. This will result in a leftward
drift described by

y(t) = y(t1) − ∈
2

(t − t1), t > t1. (18)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 252

252 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

FIGURE 5.2-13 Minimum-fuel state trajectory.

When (17) is satisfied, we again apply u = 1. This second control law will take longer to
zero the state, but it will require less fuel. Therefore, if T is not limited, no minimum-fuel
control exists for the given problem. (Does one exist for any initial states other than the
one we used?)

d. Fixed Final Time

Let the initial state be as shown in Fig. 5.2-13. The minimum-time control law is manufac-
tured by applying u = −1 until t = ts , and then switching to u = 1 (i.e., the minimum-time
trajectory contains the dashed path in the figure). According to Example 5.2-3, the asso-
ciated minimum final time is

Tmin = v(0) + 2

√
y(0) + v2(0)

2
. (19)

Suppose that T for the minimum-fuel problem is fixed at a value

T > Tmin. (20)

Then the minimum-fuel control law is −1, 0, 1 with switching times t1 and t2 to be
determined. The minimum-fuel trajectory must now satisfy (4) with a fixed given T . This
allows us to determine t1, t2, and v1 in terms of (y(0), v(0)) and T .

For 0 < t < t1, u(t) = −1, so that (15) and (16) in Example 5.2-3 yield

v1 = v(t1) = v0 − t1, (21)

y(t1) = y(0) + v(0)t1 − t2
1

2
. (22)

For t1 < t < t2, we apply u(t) = 0, so that the state equation solution yields

v(t2) = v1, (23)

y(t2) = y(t1) + v1(t2 − t1). (24)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 253

5.2 CONSTRAINED INPUT PROBLEMS 253

For t2 < t < T , u(t) = 1, so that

0 = v(T) = v(t2) + (T − t2), (25)

0 = y(T) = y(t2) + v(t2)(T − t2) + (T − t2)
2

2
, (26)

where we have used the boundary conditions (4).
Now, use (21) and (23) in (25) to get

t2 = v0 + T − t1. (27)

Substituting (21), (22), (23), (24), and (27) into (26) and simplifying results in

t2
1 − (v0 + T)t1 +

(
y0 + v0T + v2

0

2

)
= 0, (28)

whence

t1 =
(v0 + T) ±

√
(v0 − T)2 − (4y0 + 2v2

0)

2
. (29)

Now, (27) and the fact that t1 < t2 show that

t1 =
(v0 + T) −

√
(v0 − T)2 − (4y0 + 2v2

0)

2
(30)

and

t2 =
(v0 + T) +

√
(v0 − T)2 − (4y0 + 2v2

0)

2
. (31)

Note that T >Tmin guarantees the quantity under the radical sign is positive.
We can express the minimum-fuel control in open-loop form as

u∗(t) =
⎧⎨
⎩

−1, t < t1
0, t1 ≤ t < t2
1, t2 ≤ t.

(32)

According to (21) and (30), the minimum value of v(t) attained under the influence of
this control is the negative quantity

v1 =
(v0 + T) +

√
(v0 − T)2 − (4y0 + 2v2

0)

2
. (33)

e. Computer Simulation

It is not difficult to implement (30), (31), (32) in a computer simulation. The result when
y(0) = 10, v(0) = 10, and T = 35 sec is shown in Fig. 5.2-14. Compare to Fig. 5.2-9.

Switching times t1 = 12.7 and t2 = 32.3 in the figure agree with (30) and (31). The
drift velocity during the interval when u(t) = 0 is v1 = −2.7, agreeing with (33). �

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 254

254 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

Constrained Minimum-energy Problems

To round out this section on constrained input control, let us consider the linear
minimum-energy problem. Suppose the plant

ẋ = Ax + Bu (5.2-34)

has associated cost index of

J (t0) = 1

2

∫ T

t0

uT(t)Ru(t) dt (5.2-35)

with R > 0 and T either free or fixed. A control must be found to minimize J (t0),
while satisfying the constraint |u(t)| ≤ 1 and driving a given x (t0) to a final state
such that ψ(x(T), T) = 0 for a given ψ .

The Hamiltonian is

H = 1
2uTRu + λT(Ax + Bu) (5.2-36)

and so the costate equation is

−λ̇ = ∂H

∂x
= ATλ (5.2-37)

as given in Table 3.2-1.

function [x, u, t]=ex5_2_4 (a, b, x0, Tf, N)
% Simulation of Bang-off-bang Control for Newton’s System
epsilon = 1e–4; x(:,1)=x0; Ti=Tf/N; t=0:Ti:Tf;
% Compute the Switching Times
ts=0;
p=[1 –(x0(2)+Tf) (x0(1)+x0(2)*Tf+x0(2) ˆ 2/2)];
t_sw=sort(roots(p));
for k=1:N
ts=ts+Ti;
% Compute the Switching Function
u(k)=0;
if (ts<t_sw(1)) u(k)=–1;end
if (ts>t_sw(2)) u(k)=1; end
% Harmonic Oscillator System State Equations
y=lsim(a, b, eye (2), zeros(2, 1), u(k)*ones(1, 2), [(k–1)*Ti,

k*Ti], x(:,k)); x(:,k+1) =y(2, :)’;Q2
end

(a)

FIGURE 5.2-14 (a) MATLAB simulation ozf bang–off-bang control. (b) Optimal
bang–off-bang state trajectories. (c) Switching function u*(t).

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 255

5.2 CONSTRAINED INPUT PROBLEMS 255

FIGURE 5.2-14 (continued)

Pontryagin’s minimum principle (5.2-6) requires that

1
2 (u∗)TRu∗ + (λ∗)TBu∗ ≤ 1

2uTRu + λTBu (5.2-38)

for all admissible u(t). We must therefore select the input to minimize 1
2uTRu +

λTBu. Adding to this the term 1
2λTBR−1BTλ, which does not depend on u(t),

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 256

256 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

we can alternatively minimize

1
2 (u + R−1BTλ)TR(u + R−1BTλ)

�= 1
2 wTRw. (5.2-39)

We want to work separately with each component ui (t) of the input. To do this,
we must first diagonalize R. As a matter of fact, we can show by the following
argument that R can be simply deleted from the right-hand side of (5.2-39). See
Athans and Falb (1966).

Since R > 0, there is an orthogonal (MMT = I) matrix M such that

D = MRMT (5.2-40)

is diagonal. Then (5.2-39) can be written

1
2 (Mw)TD(Mw) = 1

2

m∑
i=1

div
2
i (t), (5.2-41)

where D = diag(di) and vi(t) is the i th component of v(t)
�= Mw(t).

Since di > 0, it can be seen that

min
u

(
1

2
wTRw

)
= 1

2

m∑
i=1

di min
vi

(v2
i). (5.2-42)

Hence, u(t) minimizes (5.2-39) if and only if w (t) is such that

vTv = (Mw)TMw (5.2-43)

is a minimum. The orthogonality of M , however, implies that

wTw = (Mw)TMw (5.2-44)

Therefore, if R > 0, then selecting u(t) to minimize (5.2-39) is equivalent to
selecting u(t) to minimize

1
2 (u + R−1BTλ)T(u + R−1BTλ) = 1

2 wTw. (5.2-45)

Depending on the magnitude of the i th component of the quantity

q(t) = R−1BTλ(t), (5.2-46)

there are three cases for component ui (t) of the control. If |qi(t)| ≤ 1, then u∗
i (t)

is determined by setting to zero the derivative of (5.2-45) with respect to ui (t):

[u + R−1Bλ]i = 0, (5.2-47)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 257

PROBLEMS 257

where [w]i represents the i th component of a vector w . Hence,

ui(t) = −qi(t) if |qi(t)| ≤ 1. (5.2-48)

Note that this is the same result obtained by using the stationarity condition

0 = ∂H

∂u
= Ru + BTλ (5.2-49)

from Table 3.2-1.
On the other hand, if |qi(t)| > 1, then the minimum along the i th direction

found by (5.2-49) corresponds to an inadmissible value of ui (t). In this case,
the best we can do is select ui (t) to make w i (t) as small as possible; we cannot
make it equal to zero. Hence,

ui(t) =
{

1, qi(t) < −1
−1, qi(t) > 1 .

(5.2-50)

Defining the saturation function as

sat(qi) =
⎧⎨
⎩

−1, qi < −1
qi, |qi | ≤ 1
1, qi > 1

, (5.2-51)

we can express (5.2-48) and (5.2-50) as

u∗
i (t) = −sat([R−1BTλ(t)]i), i = 1, . . . , m. (5.2-52)

This is the minimum-energy constrained-input control expressed as a costate
feedback. If |R−1BTλ(t)| ≤ 1 for all t , then (5.2-52) is identical to the control
given in Table 3.2-1.

PROBLEMS

Section 5.1

5.1-1. Thrust direction programming in a gravitational field. Redo Example
3.2-5 if there is a gravitational acceleration of g in the negative y direction.

5.1-2. Minimum-time problem with control weighting. Let

ẋ = f (x, u, t), x(0) given, (1)

have the associated cost index

J =
∫ T

0

(
1 + 1

2
uTRu

)
dt (2)

Lewis c05.tex V1 - 10/19/2011 4:52pm Page 258

258 FINAL-TIME-FREE AND CONSTRAINED INPUT CONTROL

with R > 0. We require that

ψ(x(T), T) = Cx(T) − r(T) = 0, (3)

where r(T) is given. The final time T is free.
Write Euler equations and boundary conditions. Show that for all t ∈ [0, T]

1 + 1
2uTRu = −λTf. (4)

5.1-3. Linear minimum-time problem with control weighting. In Problem
5.1-2, let ẋ = Ax + Bu.
a. Write Euler equations and boundary conditions.
b. Let r(T) ∈ Rp. Write p + 1 equations that can be solved for the undetermined

multiplier ν ∈ Rp and the final time T (cf. Problem 3.3-9).
c. Show that in the scalar case x ∈ R, u ∈ R, the optimal control can be

expressed as the nonlinear state feedback

u = −a

b
x ±

√
a2x2

b2
+ 2

r
.

How is the correct sign selected?

5.1-4. Numerical solution of Zermelo’s problem. Consider the state equations
for Zermelo’s problem in Example 5.1-2 with the cost index

J = sx(x(T) − rx(T))2

2
+ sy(y(T) − ry(T))2

2
+ 1

2

∫ T

0
(q1x

2 + q2y
2) dt,

where T is fixed and reference values rx (T) and ry (T) are given. Derive Euler’s
equations and the boundary conditions. Write subroutines fcni.m, fcnbf.m for use
with tpoint.m in Appendix B.2 and hence solve the optimal control problem.

Section 5.2

5.2-1. Minimum-time control of a scalar system. Let

ẋ = x − u,

where x ∈ R. It is desired to drive any initial state x (0) to zero in minimum time
if |u(t)| ≤ 1.
a. Write state equation, costate equation, boundary conditions, and Pontryagin’s

“stationarity condition.”
b. Solve the costate equation in terms of unknown λ(T). Sketch λ(t).

Lewis c05.tex V1 - 10/19/2011 4:52pm

PROBLEMS 259

c. Express u∗(t) in terms of λ(T) for all possible cases to find the possible values
for u∗(t).

d. Solve the state equation for all possible values of u∗(t) if x(T) = 0. Sketch
x (t) for u∗ = +1,−1.

e. Sketch switching curve and sample trajectories in the phase plane.
f. Find the optimal feedback control.
g. Find the optimal cost J * in terms of x (0).
h. In terms of x (0), when does this optimal control problem have a solution?

5.2-2. Minimum-time control of harmonic oscillator. The plant is

ẋ =
[

0 1
−ω2

n 0

]
x +

[
0
1

]
u. (5)

It is desired to drive any initial state to zero in minimum time if

|u(t)| ≤ 1 (6)
for all t .
a. Find and solve the costate equations. Use Pontryagin’s minimum principle to

derive the form of the optimal control law.
b. Sketch phase plane trajectories for u = 1 and u = −1.
c. Find the switching curve and derive a minimum-time feedback control law.

5.2-3. Bang–Off-bang control of a scalar system. For the plant in Problem
5.2-1, find the minimum-fuel control law to drive any x (0) to the origin in a
given time T if |u(t)| ≤ 1.

5.2-4. Bang–Off-bang control of a harmonic oscillator. Repeate Problem 5.2-3
for the harmonic oscillator in Problem 5.2-2.

5.2-5. Minimum-energy control of a scalar system. For the system in Problem
5.2-1, find the minimum-energy control to drive x (0) to zero in a given time T
if |u(t)| ≤ 1.

5.2-6. Minimum-energy control of Newton’s system. Repeat Problem 5.2-5 for
Newton’s system in Example 5.2-3.

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 260

6
DYNAMIC PROGRAMMING

The purpose of this chapter is to present a brief introduction to dynamic pro-
gramming , which is an alternative to the variational approach to optimal control
discussed in Chapters 2 and 3. We show how some of our results from those
chapters can be derived by this new approach.

Dynamic programming was developed by R. E. Bellman in the later 1950s
(Bellman 1957, Bellman and Dreyfus 1962, Bellman and Kalaba 1965). It can
be used to solve control problems for nonlinear, time-varying systems, and it is
straightforward to program. The optimal control is expressed as a state-variable
feedback in graphical or tabular form.

Additional references for this material include Kirk (1970), Bryson and Ho
(1975), Schultz and Melsa (1967), Athans and Falb (1966), and Elbert (1984).

6.1 BELLMAN’S PRINCIPLE OF OPTIMALITY

Dynamic programming is based on Bellman’s principle of optimality :

An optimal policy has the property that no matter what the previous
decision (i.e., controls) have been, the remaining decisions must
constitute an optimal policy with regard to the state resulting from
those previous decisions. (6.1-1)

We shall see that the principle of optimality plays a role similar to that played
by Pontryagin’s minimum principle (5.2-6) in the variational approach to system
control. It serves to limit the number of potentially optimal control strategies
that must be investigated . It also implies that optimal control strategies must

260

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 261

6.1 BELLMAN’S PRINCIPLE OF OPTIMALITY 261

be determined by working backward from the final stage; the optimal control
problem is inherently a backward-in-time problem .

A simple routing example will serve to demonstrate all the points made so far.

Example 6.1-1. An Aircraft Routing Problem

An aircraft can fly from left to right along the paths shown in Fig. 6.1-1. Intersections
a, b, c, . . . represent cities, and the numbers represent the fuel required to complete each
path. Let us use the principle of optimality to solve the minimum-fuel problem.

FIGURE 6.1-1 Aircraft routing network.

We can quickly construct a state-variable feedback that shows both the optimal cost
and the optimal control from any node to i . First, however, we must define what we mean
by state in this example.

We can label stages k = 0 through k = N = 4 of the decision-making process as shown
in Fig. 6.1-2. (The arrowheads and numbers in parentheses should initially be disregarded:
we shall show how to fill them in later.) At each stage k = 0, 1, . . . , N − 1 a decision is
required, and N is the final stage.

FIGURE 6.1-2 Minimum-fuel state feedback control law.

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 262

262 DYNAMIC PROGRAMMING

The current state is the node where we are making the current decision. Thus, the
initial state is x0 = a. At stage 1, the stage can be x1 = b or x1 = d . Similarly x2 = c,
e, or g ; x3 = f or h; and the final state is constrained to be xN = x4 = i. The control
uk at stage k can be considered to be uk = ±1, where uk = 1 results in a move up, and
uk = −1 results in a move down at stage k + 1. Now it is clear that all we have on our
hands is a minimum-fuel problem with fixed final state and constrained control and state
values.

To find a minimum-fuel feedback control law using the principle of optimality, start
at k = N = 4. No decision is required here, so decrement k to 3. If x3 = f , the optimal
(only) control is u3 = −1, and the cost is then 4. This is indicated by placing (4) above
node f , and placing an arrowhead on path f → i. If x3 = h, the optimal control is u3 = 1,
with a cost of 2, which is now indicated on the figure.

Now decrement k to 2. If x2 = c, then u2 = −1 with a cost to go of 4 + 3 = 7. This
information is added to the figure. If x2 = e, then we must make a decision. If we apply
u2 = 1 to get to f , and then go via the optimal path to i , the cost is 4 + 3 = 7. On the
other hand, if we apply u2 = −1 at e and go to h , the cost is 2 + 2 = 4. Hence, at e the
optimal decision is u2 = −1 with a cost to go of 4. Add this information to the figure. If
x2 = g, there is only one choice: u2 = 1 with a cost to go of 6.

By successively decrementing k and continuing to compare the control possibilities
allowed by the principle of optimality, we can fill in the remainder of the control decisions
(arrowheads) and optimal costs to go shown in Fig. 6.1-2. It should be clearly realized
that the only control sequences we are allowed to consider are those whose last portions
are optimal sequences . Note that when k = 0, a control of either u0 = 1 or u0 = −1
yields the same cost to go of 8; the optimal control for k = 0 is not unique.

To examine what we have just constructed, suppose we now are told to find the
minimum-fuel path from node d to the destination i . All we need to do is begin at
d and follow the arrows! The optimal control u∗

k and the cost to go at each stage k
are determined if we know the value of xk . This, however, is exactly the meaning of
state-variable feedback. Therefore, the grid labeled with arrows as in Fig. 6.1-2 is just a
graphical state feedback control law for the minimum-fuel problem!

This control law formulation should be compared to those in the examples of
Section 5.2. Our feedback law tells us how to get from any state to the fixed final state
x4 = xN = i. If we change the final state, however (e.g., to x3 = xN = f), then the
entire grid must be redone.

Several points should be noted about this example. First, note that, according to
Fig. 6.1-2, there are two paths from a to i with the same cost of 8: a → b → e → h → i

and a → d → e → h → i. Evidently, the optimal solution found by dynamic program-
ming may not be unique.

Second, suppose we had attempted, in ignorance of the optimality principle, to deter-
mine an optimal route from a to i by working forward . Then a near-sighted decision
maker at a would compare the costs of traveling to b and d , and decide to go to d . The
next myopic decision would take him to g . From there on there is no choice: he must go
via h to i . The net cost of this strategy is 1 + 2 + 4 + 2 = 9, which is nonoptimal. We
can say that “any portion of an optimal path is optimal.” For example, an optimal route
from a to e is a → b → e, while the optimal route from e to i is e → h → i.

Finally, let us point out that Bellman’s principle of optimality has reduced the number
of required calculations by restricting the number of decisions that must be made. We
could determine the optimal route from a to i by comparing all possible paths from
a to i . This would require many more calculations than we used. �

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 263

6.2 DISCRETE-TIME SYSTEMS 263

Example 6.1-2. Computational Savings

In Example 6.1-1, determine the number of calculations we used to solve the minimum
fuel problem. Now, determine the number of calculations that would be required to solve
the problem by comparing all possible paths from a to i . �

Example 6.1-3. Maximizing a Performance Index

For the routing network in Fig. 6.1-1, find the maximum fuel route from a to i . �

Example 6.1-4. Target Set of Final States

In Fig. 6.1-3, the cost of traveling from one node to another is given by the numbers, and
motion is allowed only from left to right.

a. Find the minimum cost path from node a to the desired final state j .

b. Now, define the target set S as {h, i, j}. That is, any value of the final state within
this set is acceptable. Find the minimum cost path from a to S .

c. Find the minimum cost path from b to S .

FIGURE 6.1-3 Irregular routing grid.

�
We now discuss the application of Bellman’s principle of optimality to the

control of dynamical systems.

6.2 DISCRETE-TIME SYSTEMS

In Chapters 2–5 we discussed the variational approach to optimal control for
dynamical systems. We discovered that for nonlinear systems the state and costate
equations are hard to solve, and that constraints on the control variables fur-
ther complicate things. Dynamic programming, on the other hand, can easily be
applied to nonlinear systems, and the more constraints there are on the control
and state variables, the easier the solution!

Let the plant be

xk+1 = f k(xk, uk), (6.2-1)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 264

264 DYNAMIC PROGRAMMING

where the superscript k on f indicates that it can be time varying. Suppose we
associate with this plant the performance index

Ji(xi) = φ(N, xN) +
N−1∑
k=i

Lk(xk, uk), (6.2-2)

where [i, N] is the time interval of interest. We have shown the dependence of
J on the initial time and state.

We want to use the principle of optimality (6.1-1) to select the control sequence
uk to minimize (6.2-2). First, we need to determine what (6.1-1) looks like in
this situation. Let us express it in a more mathematical form.

Suppose we have computed the optimal cost J ∗
k+1(xk+1) from time k + 1 to the

terminal time N for all possible states xk+1, and that we have also found the opti-
mal control sequences from time k + 1 to N for all xk+1. The optimal cost results
when the optimal control sequence u∗

k+1, u∗
k+2, . . . , u∗

N−1 is applied to the plant
with a state of xk+1. (Note that the optimal control sequence depends on xk+1.)

If we apply any arbitrary control uk at time k and then use the known optimal
control sequence from k + 1 on, the resulting cost will be

Lk(xk, uk) + J ∗
k+1(xk+1), (6.2-3)

where xk is the state at time k , and xk+1 is given by (6.2-1). According to
Bellman, the optimal cost from time k on is equal to

J ∗
k (xk) = min

uk

(Lk(xk, uk) + J ∗
k+1(xk+1)), (6.2-4)

and the optimal control u∗
k at time k is the uk that achieves this minimum.

Equation (6.2-4) is the principle of optimality for discrete systems. Its impor-
tance lies in the fact that it allows us to optimize over only one control vector at a
time by working backward from N . It is called the functional equation of dynamic
programming and is the basis for computer implementation of Bellman’s method.
In general, we can specify additional constraints, such as the requirement that uk

belong to some admissible control set.
Without realizing it, we worked Example 6.1-1 by applying (6.2-4). Let us

consider next a systems-oriented example.

Example 6.2-1. Optimal Control of a Discrete System Using Dynamic Programming

Let the plant
xk+1 = xk + uk (1)

have an associated performance index of

J0 = x2
N + 1

2

N−1∑
k=0

u2
k, (2)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 265

6.2 DISCRETE-TIME SYSTEMS 265

where the final time N is 2. The control is constrained to take on values of

uk = −1, −0.5, 0, 0.5, 1, (3)

and the state is constrained to take on only the values

xk = 0, 0.5, 1.0, 1.5. (4)

The control value constraint is not unreasonable, since we found in Section 5.2 that a
minimum-time optimal control takes on only values of ±1, whereas a minimum-fuel
optimal control takes on only values of 0, ±1. The state value constraint in this problem
is also reasonable, since if the state initially takes on one of the admissible values (4), then
under the influence of the allowed controls (3) subsequent states will take on integer or
half-integer values. An equivalent constraint to (4) is therefore x0 = 0, 0.5, 1.0, 1.5, and

0 ≤ xk ≤ 1.5. (5)

This is a positivity condition and a magnitude constraint on the state, which is often
reasonable in physical situations. In an actual application N would almost certainly be
greater than 2, but to handle large N we would use a computer program designed on the
basis of our work in this example.

Now, the optimal control problem is to find an admissible control sequence u∗
0, u∗

1 that
minimizes J0 while resulting in an admissible state trajectory x∗

0 , x∗
1 , x∗

2 . We should like
for u∗

k to be specified as a state feedback control law.
To solve this problem, we can use the principle of optimality in the form (6.2-4).

First, we set up a grid of xk versus k as shown in Fig. 6.2-1. (Disregard the arrowheads,
numbers above the lines, and numbers in parentheses for now.) The lines on the figure
are drawn according to the state equation (1). For each admissible xk , the lines extend
toward xk+1 = xk + uk , with the control value uk written at the end of each line. Only
uk that are both admissible by (3) and result in admissible values of xk+1 given in (4) are
considered. Thus, for example, if x0 = 1.0, then the admissible u0 are –1, –0.5, 0, 0.5,
which result, respectively, in

x1 = x0 + u0 = 1 − 1 = 0,

x1 = 1 − 0.5 = 0.5,

x1 = 1 + 0 = 1,

x1 = 1 + 0.5 = 1.5.

The lines emanating from the node x0 = 1.0 are directed toward these values of x1.
Figure 6.2-1 incorporates all of the information in the state equation (1) and the

constraints (3), (4). To compute the optimal control using (6.2-4), we need to work with
the cost function (2). Write

Jk = 1
2 u2

k + J ∗
k+1 (6)

as the admissible costs at time k ; an admissible cost Jk is one whose last portion J ∗
k+1 is

optimal. In terms of these Jk, (6.2-4) becomes

J ∗
k = min

uk

(Jk). (7)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 266

266 DYNAMIC PROGRAMMING

FIGURE 6.2-1 Decision grid for solving the optimal control problem by dynamic pro-
gramming.

(The dependence of Jk and J ∗
k on xk is not explicitly shown.) Write down (6) for each k

beneath the grid in Fig. 6.2-1.
To compute u∗

k and J ∗
k for each xk using (7), we need to work backward from k = N .

First, let k = N = 2. The final costs

J ∗
N = x2

N (8)

must be evaluated for each admissible final state. J ∗
N represents the penalty for being in

the final state with value xN . These costs are written down in parentheses in Fig. 6.2-1 at
the location of each of the final states xN = 0, xN = 0.5, xN = 1.0, and xN = 1.5. They
are J ∗

2 (x2 = 1.5) = 1.52 = 2.25, J ∗
2 (x2 = 1.0) = 1.0, and so on.

Now decrement to k = 1. For each possible state x1 and for each admissible
control u1 we must now compute (6). Begin with x1 = 1.5. If we apply u1 = 0, then

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 267

6.2 DISCRETE-TIME SYSTEMS 267

x2 = x1 + u1 = 1.5, so that J ∗
2 = 2.25. According to (6),

J1 = u2
1/2 + J ∗

2 = 02/2 + 2.25 = 2.25. (9)

This cost is written above the line representing u1 = 0 at x1 = 1.5.
Now suppose we apply u1 = −0.5 when x1 = 1.5. Then x2 = x1 + u1 = 1.0, and so

J ∗
2 = 1.0. Thus,

J1 = u2
1

2
+ J ∗

2 = (−0.5)2

2
+ 1.0 = 1.125. (10)

Write this above the line for u1 = −0.5 applied to x1 = 1.5. If we apply u1 = −1 when
x1 = 1.5, then x2 = x1 + u1 = 0.5, so that J ∗

2 = 0.25. Thus, in this case,

J1 = u2
1

2
+ J ∗

2 = (−1)2

2
+ 0.25 = 0.75. (11)

Having computed J1 for each control possibility with x1 = 1.5, we now need to decide
on the value of u∗

1 if x1 = 1.5. According to (7), u∗
1 is simply the value of u1 that yields

the smallest J1. Therefore,

u∗
1 = −1, J ∗

1 = 0.75. (12)

This can be shown in the figure by placing an arrowhead on the u1 = −1 control path lead-
ing from x1 = 1.5 and placing the value of J ∗

1 in parentheses at the location corresponding
to x1 = 1.5.

Now we focus our attention on x1 = 1.0. Using (6) to determine J1 for the admissible
values of control uk = 0.5, 0,−0.5,−1, we get the numbers shown above each line
emanating from x1 = 1.0 in the figure. The smallest value of J1 is 0.375, which occurs
for u1 = −0.5. Hence, if x1 = 1.0, then

u∗
1 = −0.5, J ∗

1 = 0.375. (13)

This is indicated by placing an arrowhead on the u1 = −0.5 path and J ∗
1 = 0.375 in

parentheses at the location x1 = 1.0. In a similar manner we obtain u∗
1 and J ∗

1 for x1 = 0.5
and x1 = 0.0. See the figure for the results.

Now we decrement k to 0. Let x0 = 1.5. For this value of the initial state, we use (6)
with each of the possible control values u0 = 0,−0.5, and –1 to compute the associated
values of J0 = u2

0/2+J ∗
1 , where J ∗

1 is the number in parentheses at the state x1 resulting
from x1 = 1.5 + u0. The values of J0 found are shown in the figure. The smallest value
of J0 is 0.5, which occurs for u0 = −0.5; so if x0 = 1.5, then

u∗
0 = −0.5, J ∗

0 = 0.5. (14)

In a similar fashion we compute u∗
0 and J ∗

0 for x0 = 1.0, 0.5, and 0.0. The resulting
values are indicated in the figure. Note that if x0 = 0.5, then a control of either u0 = 0 or
u0 = −0.5 results in the optimal cost of J ∗

0 = 0.125; the optimal control for this initial
state is not unique.

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 268

268 DYNAMIC PROGRAMMING

To see what we have just constructed, we can redraw Fig. 6.2-1 showing only the
optimal controls u∗

k and costs to go J ∗
k . See Fig. 6.2-2. Now, suppose x0 = 1.0. Then to

find the optimal state trajectory we need only follow the arrows. It is

x∗
0 = 1.0, x∗

1 = 0.5, x∗
0 = 0. (15)

Before we even apply the control , we know the optimal cost will be

J ∗
0 = 0.25. (16)

The optimal control sequence to be applied to the plant is

u∗
0 = −0.5, u∗

1 = −0.5. (17)

Whatever the initial state x0 is, the optimal control u∗
0 and cost to go J ∗

0 are determined
by Fig. 6.2-2 once x0 is given. The current control u∗

k is given once the current state xk

is known; hence, the figure is just the optimal control law given in state feedback form.
In the variational approach to optimal control of Chapters 4 and 5, constraints make the

problem solution more difficult. In the dynamic programming approach, however, more
constraints mean that fewer control possibilities must be examined; constraints simplify
the dynamic programming problem.

FIGURE 6.2-2 State feedback control law found by dynamic programming.

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 269

6.2 DISCRETE-TIME SYSTEMS 269

Figure 6.2-2 has the form of a vector field that tends to force the state down toward
the origin as k increases. By changing the control weighting in J0 in (2), the shape of the
vector field changes. For instance, if we modify the cost index to

J0 = x2
2 + 2

1∑
k=0

u2
k (18)

and repeat the above procedure, the state feedback control law of Fig. 6.2-3 results. A
heavier control weighting has resulted in a tendency to use less control effort. The family
of optimal state trajectories shown in figures like these is called a field of extremals .

FIGURE 6.2-3 State feedback control for modified performance index.

This problem could be solved without using the optimality principle; but then every
possible control sequence would need to be examined, and the required number of cal-
culations would drastically increase. �

In the problems we see how easy it is to extend the dynamic programming
approach to nonlinear systems. It is instructive to compare the number of compu-
tations required to find the optimal control by investigating all possible control
sequences to the number of computations required if dynamic programming is
used. Let the plant be first order with a scalar control. Suppose the state has 10
admissible values and the control has 4 admissible values.

If the final time is N = 1, then comparing all 10 × 4 = 40 control possibilities
requires 40 calculations. In this case, dynamic programming also requires 40

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 270

270 DYNAMIC PROGRAMMING

calculations. As N increases, however, the number of calculations required to
investigate possible control sequences increases exponentially as �N

k=110 · 4k.
By contrast, the number of calculations required if we use the principle of
optimality to restrict the set of potentially optimal controls increases linearly as
40N (Kirk 1970).

The next example shows that we can derive the linear quadratic regulator of
Table 2.2-1 by using the dynamic programming approach.

Example 6.2-2. Discrete Linear Quadratic Regulator via Dynamic Programming

Let the plant
xk+1 = Axk + Buk (1)

have associated performance index

Ji = 1

2
xT

NSNxN + 1

2

N−1∑
k=i

(xT
k Qxk + uT

k Ruk), (2)

with SN ≥ 0,Q ≥ 0, and R > 0. (If the plant and weighting matrices are time varying,
the development to follow still holds.) It is desired to find the optimal control u∗

k on the
fixed time interval [i, N] that minimizes Ji . The initial state xi is given and the final state
xN is free.

The determination of u∗
k by using the principle of optimality (6.2-4) looks very much

like our derivation of the zero-input cost (2.2-21), (2.2-22). To begin, let k = N and write

J ∗
N = 1

2xT
NSNxN, (3)

which is the penalty for being in state xN at time N . Now decrement k to N − 1 and
write

JN−1 = 1
2xT

N−1QxN−1 + 1
2 uT

N−1RuN−1 + 1
2xT

NSNxN . (4)

According to (6.2-4), we need to find u∗
N−1 by minimizing (4). To do this, use state

equation 1 to write

JN−1 = 1
2 xT

N−1QxN−1 + 1
2uT

N−1RuN−1

+ 1
2 (AxN−1 + BuN−1)

TSN(AxN−1 + BuN−1). (5)

Since there are no constraints, the minimum of JN−1 is found by setting

0 = ∂JN−1

∂uN−1
= RuN−1 + BTSN(AxN−1 + BuN−1). (6)

Solving for the optimal control yields

u∗
N−1 = −(BT SNB + R)−1BTSN AxN−1. (7)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 271

6.3 CONTINUOUS-TIME SYSTEMS 271

Defining the Kalman gain as

KN−1
�= (BTSNB + R)−1BTSNA, (8)

we can write
u∗

N−1 = −KN−1xN−1. (9)

The optimal cost to go from k = N − 1 is found by substituting (9) into (5). If we do
this and simplify, the result is

J ∗
N−1 = 1

2xT
N−1[(A − BKN−1)

TSN(A − BKN−1) + KT
N−1RKN−1 + Q]xN−1. (10)

If we define

SN−1
�=(A − BKN−1)

TSN(A − BKN−1) + KT
N−1RKN−1 + Q, (11)

this can be written
J ∗

N−1 = 1
2 xT

N−1SN−1xN−1. (12)

Now decrement to k = N − 2. Then

JN−2 = 1
2 xT

N−2QxN−2 + 1
2uT

N−2RuN−2 + 1
2 xT

N−1SN−1xN−1 (13)

are the admissible costs for N − 2, since these are the costs that are optimal from
k = N − 1 on. To determine u∗

N−2, according to (6.2-4), we must minimize (13).
Now, let us be a little tricky to save some work. Note that (13) is of the same form as

(4). The optimal control and cost to go for k = N − 2 are therefore given by (8), (9) and
(11), (12) with N there replaced by N − 1. If we continued to decrement k and apply the
optimality principle, the result for each k = N − 1, . . . , 1, 0 is

Kk = (BTSk+1B + R)−1BTSk+1A, (14)

u∗
k = −Kkxk, (15)

Sk = (A − BKk)
TSk+1(A − BKk) + KT

k RKk + Q, (16)

J ∗
k = 1

2xT
k Skxk, (17)

where the final condition SN for (16) is given in (2). Equation 16 is the Joseph stabilized
Riccati equation, and so these results are identical to those found in Table 2.2-1 using the
variational approach! �

6.3 CONTINUOUS-TIME SYSTEMS

There are basically two approaches to the optimal control of continuous-time
systems. We can discretize, solve for the optimal discrete control, and then use a
zero-order hold to manufacture a digital control. Alternatively, we can solve the
continuous optimal control problem to obtain a continuous input. Let us discuss
both approaches.

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 272

272 DYNAMIC PROGRAMMING

Digital Control

Let the plant
ẋ = f (x, u, t) (6.3-1)

have cost index of

J (0) = φ(x(T), T) +
∫ T

0
L(x(t), u(t), t) dt. (6.3-2)

To discretize the plant with a sampling period of τ sec, we can use the first order
approximation

ẋ(kτ) = (xk+1 − xk)/τ (6.3-3)

to write (6.3-1) as
xk+1 = xk + τf (xk, uk, kτ), (6.3-4)

where we have defined xk
�= x(kτ), uk

�= u(kτ) for notational convenience. Defin-
ing the discrete function

f k(xk, uk)
�= xk + τf (xk, uk, kτ), (6.3-5)

this can be written
xk+1 = f k(xk, uk), (6.3-6)

which is exactly (6.2-1).
To discretize the cost index, we can write

J (0) = φ(x(T), T) +
N−1∑
k=0

∫ (k+1)τ

kτ

L(x(t), u(t), t) dt, (6.3-7)

where
N = T

τ
. (6.3-8)

Using a first-order approximation to each integral yields

J (0) = φ(x(T), T) +
N−1∑
k=0

τL(xk, uk, kτ). (6.3-9)

By defining the discrete functions

J0
�= J (0),

φs(N, xN)
�=φ(x(Nτ), Nτ),

Lk(xk, uk)
�= τL(xk, uk, kτ), (6.3-10)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 273

6.3 CONTINUOUS-TIME SYSTEMS 273

this becomes

J0 = φs(N, xN) +
N−1∑
k=0

Lk(xk, uk), (6.3-11)

which is just (6.2-2).
In the case of a time-invariant linear plant with quadratic cost index,

ẋ = Ax + Bu, (6.3-12)

J (0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

0
(xTQx + uTRu) dt, (6.3-13)

this first-order approximation to the discretized plant becomes

xk+1 = (I + Aτ)xk + Bτuk, (6.3-14)

J0 = 1

2
xT

NSNxN + 1

2

N−1∑
k=0

(xT
k Qsxk + uT

k Rsuk), (6.3-15)

where
SN

�= S(Nτ), (6.3-16)

Qs = Qτ, (6.3-17)

Rs = Rτ. (6.3-18)

In this case, however, we can do better than the Euler’s approximation (6.3-14)
by using the exact discrete representation of (6.3-12) including a sampler and
zero-order hold

xk+1 = Asxk + Bsuk, (6.3-19)

where
As = eAτ , (6.3-20)

Bs =
∫ τ

0
eAτB dt. (6.3-21)

Now that the plant has been discretized, dynamic programming can be used to
compute u∗

k as in Section 6.2. The digital control to be applied to the actual plant
(6.3-1) is then given by

u(t) = u∗
k, kτ ≤ t < (k + 1)τ. (6.3-22)

To use dynamic programming, the state and control values must first be quan-
tized , that is, restricted to belong to some finite set of admissible values. The
finer we quantize, the more accurate our digital control will be; however, as the

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 274

274 DYNAMIC PROGRAMMING

number of admissible values of xk and uk increases, so does the number of calcu-
lations required to find u∗

k . The problem can quickly become intractable even for
a large digital computer. Bellman called this growth in the number of required
calculations as the quantization is made finer and the number of state variables
increases the curse of dimensionality .

An additional problem is the following. No matter how finely we quantize
xk , the relation xk+1 = Asxk + Bsuk might result in values for xk+1 that do not
coincide with quantization levels. In this event we need to interpolate to find the
values of J ∗

k+1(xk+1) to use in (6.2-4).
For further discussion on these topics, see Kirk (1970). Let us now do an

example.

Example 6.3-1. Discretization, Quantization, and Interpolation

Consider the scalar plant
ẋ = ax + bu (1)

with cost index

J (0) = 1

2
x2(T) + 1

2

∫ T

0
u2(t)dt. (2)

and a final time of T = 1. The state and control are constrained by

0 ≤ x(t) ≤ 1 (3)

|u(t)| ≤ 1. (4)

To compute a control minimizing J (0) by discrete dynamic programming, let us select
a sampling period of τ = 0.5. (In practice, a smaller τ should be selected for more
accurate control, but this sampling period will serve for purposes of illustration.) Then
the discretized plant is

xk+1 = eaτ xk +
∫ τ

0
eatb dt · uk. (5)

For simplicity, let a = 0 and b = 1 so that

xk+1 = xk + τuk = xk + 0.5uk. (6)

The discretized performance index is

J0 = 1

2
x2

N + 1

4

N−1∑
k=0

u2
k, (7)

with N = 2.
We must now quantize xk and uk . Let us select the quantization levels

uk = −1,−0.5, 0, 0.5, 1, (8)

xk = 0, 0.5, 1. (9)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 275

6.3 CONTINUOUS-TIME SYSTEMS 275

(While these levels for uk might be satisfactory, in an actual application we would select
a finer quantization for xk .) To apply discrete dynamic programming, let us use the grid
in Fig. 6.3-1, which is filled in by working backward as follows.

FIGURE 6.3-1 Discrete dynamic programming for continuous systems. Illustration of
interpolation to find J ∗

k .

Setting k = N = 2, we find J ∗
2 (x2) for admissible values of x2 to be

J ∗
2 (x2 = 1) = 12

2
= 0.5, (10)

J ∗
2 (x2 = 0.5) = 0.52

2
= 0.125, (11)

J ∗
2 (x2 = 0) = 0. (12)

These values are indicated in the figure in parentheses above the respective values of x2.
Stepping back to k = N − 1 = 1, we first consider the possibility x1 = 1. Applying

each admissible control value as u1, the resulting values of x2 are given by (6):

x2 = x1 + 0

2
= 1, (13)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 276

276 DYNAMIC PROGRAMMING

x2 = x1 − 0.5

2
= 0.75, (14)

x2 = x1 − 1
2 = 0.5. (15)

Lines are added to the figure between x1 = 1 and these values of x2. Below each line is
indicated the corresponding value of u1. Note that x2 = 0.75 as given by (14) is not a
quantization level for xk .

We need to compute the admissible costs

J1 = u2
1

4
+ J ∗

2 (16)

so that we can use (6.2-4) to find J ∗
1 and u∗

1 when x1 = 1. If u1 = 0, then

J1 = 0 + J ∗
2 (x2 = 1) = 0.5. (17)

This is placed above the line corresponding to u1 = 0 at x1 = 1.
Now we run into a problem. For u1 = −0.5, we need to compute

J1 = u2
1

4
+ J ∗

2 (x2 = 0.75). (18)

Unfortunately, J ∗
2 (x2 = 0.75) was not calculated at stage k = N = 2, since 0.75 is not a

value for xk listed in (9). It can be approximated by linear interpolation as

J ∗
2 (x2 = 0.75) = J ∗

2 (x2 = 0.5) + J ∗
2 (x2 = 1) − J ∗

2 (x2 = 0.5)

2
= 0.3125. (19)

Then (18) yields
J1 = 0.375. (20)

Write this above the u1 = −0.5 line in the figure.
For u1 = −1, we obtain

J1 = u2
1

4
+ J ∗

2 (x2 = 0.5) = 0.375. (21)

Applying the principle of optimality (6.2-4), we select

u∗
1 = −0.5 or − 1.0,

J ∗
1 = 0.375, (22)

when x1 = 1. (The optimal control is not unique.) To indicate this in the figure, place J ∗
1

above x1 = 1 in parentheses, and place arrowheads on the lines corresponding to the two
possible optimal controls u1 = −0.5 and u1 = −1.

The remainder of the optimal control law is determined exactly as in Example 6.2-1,
using interpolation as necessary to approximate J ∗

k (xk) for the values of xk not listed
in (9). �

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 277

6.3 CONTINUOUS-TIME SYSTEMS 277

Continuous Control and the Hamilton-Jacobi-Bellman Equation

The plant
ẋ = f (x, u, t) (6.3-23)

has a performance index of

J (x(t0), t0) = φ(x(T), T) +
∫ T

t0

L(x, u, t) dt. (6.3-24)

We are interested in determining a continuous optimal control u*(t) on a given
interval [t0, T] that minimizes J and drives a given initial state x(t0) to a final
state satisfying

ψ(x(T), T) = 0 (6.3-25)

for a given function ψ . Let us first see what form the principle of optimality
(6.1-1) takes on for this problem.

Suppose t is the current time and t + �t is a future time close to t . Then the
cost to go J (x (t), t) can be written

J (x, t) = φ(x(T), T) +
∫ T

t+�t

L(x, u, τ)dτ +
∫ t+�t

t

L(x, u, τ)dτ. (6.3-26)

(We are using τ as a dummy variable since t is the current time.) We can
therefore say

J (x, t) =
∫ t+�t

t

L(x, u, τ)dτ + J (x + �x, t + �t), (6.3-27)

where x + �x is the state at time t + �t that results when the current x (t) and
u(t) are used in (6.3-23). Note that, to first order,

�x = f (x, u, t)�t. (6.3-28)

Equation (6.3-27) describes all possible costs to go from time t to final time
T . According to the optimality principle (6.1-1), however, the only candidates for
J *(x , t) are those costs J (x, t) that are optimal from t + �t to T . Suppose that the
optimal cost J ∗ (x + �x, t + �t) is known for all possible x + �x. Suppose
also that the optimal control has been determined on the interval [t + �t, T]
for each x + �x. Then it remains only to select the current control u(t) on the
interval [t, t + �t]. Hence,

J ∗(x, t) = min
u(τ)

t≤τ≤t+�t

[∫ t+�t

t

L(x, u, τ)dτ + J ∗(x + �x, t + �t)

]
. (6.3-29)

This is the principle of optimality for continuous-time systems; it should be com-
pared with (6.2-4).

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 278

278 DYNAMIC PROGRAMMING

Unfortunately, (6.3-29) does not provide a straightforward means of finding the
optimal control and cost analytically, although some numerical solution methods
use it. Let us therefore perform some further manipulations to find a way to
compute these quantities.

Perform a Taylor series expansion of J ∗(x + �x, t + �t) about (x , t) and
take an approximation to the integral in (6.3-29) to write, to first order,

J ∗(x, t) = min
u(τ)

t≤τ≤t+�t

(
L�t + J ∗(x, t) +

(
∂J∗

∂x

)T

�x + ∂J∗

∂t
�t

)
. (6.3-30)

Now use (6.3-28) and note that J * and J ∗
t �t are independent of u(τ), t ≤ τ ≤

t + �t , to see that

J ∗(x, t) = J ∗(x, t) + J ∗
t �t = min

u(τ)
t≤τ≤t+�t

(L�t + (J ∗
x)Tf �t), (6.3-31)

or
−J ∗

t �t = min
u(τ)

t≤τ≤t+�t

(L�t + (J ∗
x)Tf �t). (6.3-32)

Letting �t → 0 yields finally

−∂J∗

∂t
= min

u(t)

(
L +

(
∂J∗

∂x

)T

f

)
. (6.3-33)

This is a partial differential equation for the optimal cost J *(x , t). It is called the
Hamilton-Jacobi-Bellman (HJB) equation. It is solved backward in time from
t = T , and by setting t0 = T in (6.3-24), its boundary condition is seen to be

J ∗(x(T), T) = �(x(T), T) on the hypersurface ψ(x(T), T) = 0. (6.3-34)

If we define the Hamiltonian function as

H(x, u, λ, t) = L(x, u, t) + λTf (x, u, t), (6.3-35)

then the HJB equation can be written

−∂J∗

∂t
= min

u
(H(x, u, J ∗

x , t)). (6.3-36)

The HJB equation provides the solution to the optimal control problem for
general nonlinear systems; however, it is in most cases impossible to solve ana-
lytically. When it can be solved it provides an optimal control in state-variable
feedback (i.e., closed-loop) form.

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 279

6.3 CONTINUOUS-TIME SYSTEMS 279

The next examples show how to use the HJB equation to find the optimal cost
and control. They also demonstrate that the nonlinear optimal control scheme of
Table 3.2-1 and the linear quadratic regulator of Table 3.3-1 can both be retrieved
from the HJB equation.

Example 6.3-2. Optimal Control by Solution of HJB Equation

The scalar plant
ẋ = x + u (1)

has a cost index of

J (t0) = 1

2
x2(T) + 1

2

∫ T

t0

ru2dt. (2)

The initial time is t0 = 0, the final time T is fixed, and the final state x (T) is free. It is
desired to find the control u*(t) minimizing J (0).

The Hamiltonian is

H(x, u, λ, t) = ru2

2
+ λ(x + u) (3)

and the HJB equation is

−J ∗
t = min

u

(
ru2

2
+ J ∗

x (x + u)

)
. (4)

Since there are no constraints on the control u , we can determine the value of u minimizing
the right-hand side of (4) by setting

0 = ∂H(x, u, J ∗
x , t)

∂u
= ru + J ∗

x . (5)

The optimal control is therefore given in terms of J ∗
x , the derivative of the optimal cost

with respect to x , by

u∗(t) = −1

r

∂J∗(t)
∂x

. (6)

Since
∂2H

∂u2
= r > 0, (7)

u* in (6) does indeed minimize H (x , u , J ∗
x , t). To find J ∗

x , use (6) to evaluate

H ∗ �= H(x, u∗, J ∗
x , t) = r

2

(
J ∗

x

r

)2

+ J ∗
x

(
x − J ∗

x

r

)
= xJ∗

x − (J ∗
x)2

2r
. (8)

Using H * as the right-hand side of (4) yields

−J ∗
t = xJ∗

x − (J ∗
x)2

2r
. (9)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 280

280 DYNAMIC PROGRAMMING

We must now solve the HJB equation (9) for the optimal cost J *. Evaluating (2) at t0 = T ,
we see that the boundary condition for (9) is

J ∗(T) = x2(T)

2
, (10)

a quadratic function of the state. Let us assume that J *(t) is a quadratic function of the
state for all t ≤ T . Then

J ∗(t) = 1
2 s(t)x2(t) (11)

for some function s(t) that is yet to be determined.
Taking partial derivatives of (11) gives

∂J∗

∂x
= sx, (12)

∂J∗

∂t
= ṡx2

2
, (13)

which we substitute into (9) to obtain

−ṡx2

2
= sx2 − s2x2

2r
. (14)

This must hold for all x (t), so we obtain the Riccati equation in s(t)

ṡ = s2

r
− 2s. (15)

Comparing (10) and (11), the boundary condition for (14) is found to be

s(T) = 1. (16)

Equation (15) can be integrated using separation of variables:

∫ T

t

ds

s2/r − 2s
=

∫ T

t

dt. (17)

The result is

s(t) = 2re2(T −t)

e2(T −t) + (2r − 1)
. (18)

This consistent solution for s(t) shows that assumption (11) was valid.
Collecting our results, we see that the optimal cost is given by (11) with s(t) given by

(18). The optimal control (6) is

u∗(t) = −1

r
J ∗

x (t) = − s(t)

r
x(t). (19)

This is in the form of a time-varying state-variable feedback. �

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 281

6.3 CONTINUOUS-TIME SYSTEMS 281

Example 6.3-3. Deriving the Euler Equations from the HJB Equation

We can easily show that the function

λ(t)
�= ∂J∗

∂x
(1)

is a costate for the plant (6.3-23) if J *(x , t) satisfies the HJB equation

−∂J∗

∂t
= min

u
(L + λTf). (2)

See Athans and Falb (1966) and Bryson and Ho (1975).
Since u(t) is unconstrained, the minimization in (2) can be carried out by setting

0 = ∂L

∂u
+ ∂f T

∂u
λ. (3)

This is just the stationarity condition from Table 3.2-1.
To examine the dynamics of λ(t), write

−dλ

dt
= −∂2J ∗

∂t∂x
− ∂2J ∗

∂x2
ẋ. (4)

Next, take the partial derivative of (2) with respect to x , realizing that u = u(x, t) to see
that

−∂2J ∗

∂x∂t
= min

u

(
∂L

∂x
+ ∂uT

∂x

∂L

∂u
+ ∂λT

∂x
f + ∂f T

∂x
λ +

(
∂f

∂u

∂u

∂x

)T

λ

)
. (5)

At the minimum, (3) holds so that

−∂2J ∗

∂x∂t
= ∂L

∂x
+ ∂λT

∂x
f + ∂f T

∂x
λ. (6)

Use (1), (6), and ẋ = f (x, u, t) in (4) to obtain

−dλ

dt
= ∂f T

∂x
λ + ∂L

∂x
, (7)

which is exactly the costate equation in Table 3.2-1.
If u(t) is constrained, then we must select the optimal control u*(t) from the set of

admissible controls to minimize H (x , u , λ*, t). It is apparent that the right-hand side of
the HJB equation is just Pontryagin’s minimum principle from Section 5.2. �

Example 6.3-4. Deriving the Continuous Linear Quadratic Regulator from the HJB
Equation

Let the plant be

ẋ = Ax + Bu (1)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 282

282 DYNAMIC PROGRAMMING

with cost index

J (t0) = 1

2
xT(T)S(T)x(T) + 1

2

∫ T

t0

(xTQx + uTRu)dt. (2)

It is desired to find the optimal control to drive the state from a given x(t0) so that J (t0)

is minimized. The final time T is fixed and the final state x (T) is free. We can derive the
Riccati-equation-based linear quadratic regulator of Table 3.3-1 from the HJB equation
as follows.

Form the Hamiltonian

H = 1
2 (xTQx + uTRu) + λT(Ax + Bu). (3)

To minimize H , set

0 = ∂H

∂u
= Ru + BTλ, (4)

so the optimal control is

u∗ = −R−1BTλ. (5)

Since
∂2H

∂u2
= R > 0, (6)

u*(t) is a minimizing control. Use (5) in (3) to find the optimal Hamiltonian

H ∗ = 1
2 xTQx + λTAx − 1

2λTBR−1BTλ. (7)

Setting λ = J ∗
x , the HJB equation is

−J ∗
t = 1

2 xTQx + (J ∗
x)TAx − 1

2 (J ∗
x)TBR−1BTJ ∗

x . (8)

The boundary condition is

J ∗(T) = 1
2 xT(T)S(T)x(T). (9)

Since J *(T) is quadratic in the state, let us assume that this is true for J ∗ (t), t ≤ T .
That is, assume there is a symmetric matrix S (t) such that

J ∗(t) = 1
2xT(t)S(t)x(t) (10)

for all t ≤ T . Substituting (10) into (8) yields

0 = 1
2 xTṠx + 1

2xTQx + xTSAx − 1
2 xTSBR−1BTSx, (11)

or

xT(Ṡ + 2SA − SBR−1BTS + Q)x = 0. (12)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 283

PROBLEMS 283

The matrix in parentheses, which we shall call M , is not symmetric, since SA is not
symmetric (the other terms are). Write

M = MS + Ma (13)

where MS is symmetric, MS = MT
S , and Ma is antisymmetric, Ma = −MT

a . Then

xTMx = xTMSx + xTMax. (14)

But, since (14) is a scalar,

xTMax = xTMT
a x = −xTMax = 0, (15)

hence,
xTMx = xTMSx. (16)

The symmetric part of a matrix is given by

MS = (M + MT)/2. (17)

Therefore, (12) is equivalent to

xT(Ṡ + ATS + SA − SBR−1BTS + Q)x = 0 (18)

Since (18) holds for all x(t0) and hence for all state trajectories x (t), we require

−Ṡ = ATS + SA − SBR−1BTS + Q. (19)

This is the Riccati equation in Table 3.3-1. The optimal control is given by (5) as the
state feedback

u∗(t) = −R−1BTSx(t), (20)

and the optimal cost is given by (10). �

PROBLEMS

Section 6.1

6.1-1. A routing network is shown in Fig. P6.1-1. Find the optimal path from
x0 to x6 if only movement from left to right is permitted. Now find the optimal
path from any node as a state-variable feedback.

Section 6.2

6.2-1. Dynamic programming for bilinear system. Consider the scalar bilinear
system

xk+1 = xkuk + u2
k, (1)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 284

284 DYNAMIC PROGRAMMING

FIGURE P6.1-1 A routing network.

with cost index

J0 = x2
N +

N−1∑
k=0

xkuk. (2)

Let N = 2. The control is constrained to take on values of

uk = −1 or 1 (3)

and the state to take on values of

xk = −1, 0, 1, or 2. (4)

a. Use dynamic programming to find an optimal state feedback control law.
b. Let x0 = 2. Find the optimal cost, control sequence, and state trajectory.

6.2-2. Software for dynamic programming. Write a MATLAB program to gen-
erate Fig. 6.2.2.

6.2-3. Effect of control weighting on field of extremals. Redo Example 6.2-1
if

J0 = x2
N + 1

2

N−1∑
k=0

ru2
k

for r = 1
4 , 4, 8 and compare the resulting fields of extremals.

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 285

PROBLEMS 285

6.2-4. Cargo loading. A vessel is to be loaded with stocks of N items. Each
item k = 1, . . . , N has a weight of wk and a known value of vk . The maximum
allowed weight of the cargo is W . We want to determine the most valuable cargo
load without overloading the vessel.
Define

uk = number of units of item loaded,

xk = weight capacity available foritems k, k + 1, . . . , N.

Then the problem becomes the following: Maximize

J1 =
N∑

k=1

vkuk

subject to the constraint
N∑

k=1

wkuk ≤ W.

a. Write the state equation.
b. List the constraints for xk and uk .

6.2-5. Cargo loading. A ship is to be loaded with stocks of three items, whose
weights and values are given in the following table:

Item Weight (lb) Value ($)

Dishwashers 100 360
Washing machines 125 475
Refrigerators 250 1000

a. Let
u1 = number of refrigerators loaded,

u2 = number of washing machines loaded,

u3 = number of dishwashers loaded.

Use the results of Problem 6.2-4 to find the optimal loading policy if the
maximum weight allowed is 730 lb.

b. By ordering the decision stages in order of increasing value per weight, show
how to solve the same problem in a trivial manner.

Section 6.3

6.3-1. Software for dynamic programming
a. Write a MATLAB program to generate a feedback law in the tabular form of

Fig. 6.2-2 for the scalar system

xk+1 = axk + buk, (1)

Lewis c06.tex V1 - 10/19/2011 4:59pm Page 286

286 DYNAMIC PROGRAMMING

with cost index

J0 = 1

2
sNx2

N + 1

2

N−1∑
k=0

(qx2
k + ru2

k). (2)

The state xk can take on values of

XA(1), XA(2), . . . , XA(NS) (3)

and the control uk can take on values

UA(1), UA(2), . . . , UA(NU), (4)

all of which are specified. Assume that xk+1 can take on only the values (3).
b. Add to your program an interpolation scheme to find J ∗

k+1(xk+1) in the event
that xk+1 takes on a value not listed in (3).

6.3-2. Optimal control by solution of the HJB equation. Let

ẍ = u, (1)

J (t0) = 1

2
x2(T) + 1

2

∫ T

t0

ru2dt, (2)

with t0 = 0, T = 2.
a. Write the HJB equation, eliminating u(t).
b. Assume that

J ∗(t) = 1
2 s1(t)x

2(t) + s2(t)x(t)ẋ(t) + 1
2 s3(t)ẋ

2(t) (3)

for some s1(t), s2(t), s3(t). Use the HJB equation to determine coupled differ-
ential equations for these si(t). Compare with Example 3.3-5. Find boundary
conditions for the equations. Express the optimal control as a linear state
feedback in terms of the si(t).

6.3-3. Continuous-time tracker via the HJB equation. Use the HJB equation to
solve the linear quadratic tracking problem of Section 4.1. The procedure should
basically follow Example 6.3-4. (Assume J (x, t) = 1

2xTsx − xTv + w and find
equations for s(t), v (t), and w (t).)

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 287

7
OPTIMAL CONTROL
FOR POLYNOMIAL SYSTEMS

All of our discussion of optimal control has been based on a state-variable-
system description. In this chapter some results are presented for optimal control
of systems described by transfer functions. We shall present these results for
discrete time systems, showing how to use them for digital control of continuous
systems. They can also be used to design continuous controllers.

The results of this chapter are important in the area of adaptive control, and
although we cover only the single-input–single-output case, they generalize to
multivariable systems without too much trouble. Additional references are Clarke
and Gawthrop (1975), Gawthrop (1977), and Koivo (1980). See Wolovich (1974)
for further insight into the multivariable case.

7.1 DISCRETE LINEAR QUADRATIC REGULATOR

If a plant with input uk and output yk is described by the discrete proper (i.e.,
n ≥ m) transfer function

H(z) = b0z
m + b1z

m−1 + · · · + bm

zn + a1zn−1 + · · · + an

= Y (z)

U(z)
, (7.1-1)

we can multiply by z−n to obtain

H(z) = z−d(b0 + b1z
−1 + · · · + bmz−m)

1 + a1z−1 + · · · + anz−n
, (7.1-2)

where
d = n − m ≥ 0 (7.1-3)

287

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 288

288 OPTIMAL CONTROL FOR POLYNOMIAL SYSTEMS

is the relative degree or control delay . Let us therefore write the system descrip-
tion in the time domain as

A(z−1)yk = z−dB(z−1)uk, (7.1-4)
where

A(z−1) = 1 + a1z
−1 + · · · + anz

−n

B(z−1) = b0 + b1z
−1 + · · · + bmz−m (7.1-5)

are polynomials in the delay operator z−1 (i.e., z−1yk = yk−1). We assume b0 �= 0.
In this chapter all polynomials are written in terms of z−1, not z , so some attention
is required to prevent confusion.

With the plant (7.1-4) we associate the quadratic performance index

Jk =
(

nP∑
i=0

piyk+d−i −
nQ∑
i=0

qiwk−i

)2

+
(

nR∑
i=0

riuk−i

)2

(7.1-6)

for given integers nP , nQ, nR and weighting coefficients pi, qi, ri . The signal wk

is a reference or command input. For optimal control of state systems, we used
quadratic cost indices that had the form of a sum of squares of state and control
components. Our new Jk contains squares of sums. At time k , it depends on the
output values yk+d , yk+d−1, . . . , yk+d−np , the control values uk, uk−1, . . . , uk−nR

,

and the reference input values wk, wk−1, . . . , wk−nQ
. See Fig. 7.1-1.

We can make Jk look neater by defining weighting polynomials

P(z−1) = 1 + p1z
−1 + · · · + pnP

z−nP ,

Q(z−1) = q0 + q1z
−1 + · · · + qnQ

z−nQ,

R(z−1) = r0 + r1z
−1 + · · · + rnR

z−nR , (7.1-7)

where we have selected p0 = 1 with no loss in generality. Then

Jk = (Pyk+d − Qwk)
2 + (Ruk)

2. (7.1-8)

FIGURE 7.1-1 Illustration of time dependence of cost index Jk .

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 289

7.1 DISCRETE LINEAR QUADRATIC REGULATOR 289

We have chosen this cost index for two reasons: it results in a very nice solution,
and it can be selected to specify a wide range of designs that result in desirable
closed-loop behavior for different applications.

To keep the output small without using too much control energy, we might
simply select P = 1,Q = 0, R = r0, so that

Jk = y2
k+d + r2

0 u2
k. (7.1-9)

(In this case the reference input is not needed.) If we are more concerned about
keeping small the changes in the control input, we could select P = 1, Q = 0,

R = r0(1 − z−1) so that

Jk = y2
k+d + r2

0 (uk − uk−1)
2. (7.1-10)

By choosing P = Q = 1, R = r0, we get the cost index

Jk = (yk+d − wk)
2 + r2

0 u2
k, (7.1-11)

which is a polynomial tracker; the controlled output will follow a (delayed)
reference signal wk.

We can also design a regulator that makes the plant Bz−d/A behave like any
designed model, for if R is chosen as zero, then the optimal controller will attempt
to ensure that

Pyk+d = Qwk. (7.1-12)

This results in model-following behavior , where the plant output tracks the output
of a desired model Q(z−1)z−d/P (z−1) that has input wk. To see this, write
(7.1-12) as

yk = Q(z−1)z−d

P (z−1)
wk. (7.1-13)

Therefore, Q(z−1), P (z−1) in (7.1-8) need only be selected to be the specified
model numerator and denominator dynamics.

Our objective now is to select control input sequence uk to minimize Jk for
given polynomials P, Q, R and reference wk. Suppose uk−1, uk−2, . . . are known.
Then we want a way of finding uk. We cannot simply differentiate Jk as it is with
respect to uk , since yk+d also depends on uk . To make this dependence explicit,
we can find a d-step-ahead predictor for the output.

Divide A(z−1) into 1 to define quotient F(z−1) and remainder z−dG(z−1):

A(z−1)

F(z−1)∣∣1
. . .

z−dG(z−1)

(7.1-14)

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 290

290 OPTIMAL CONTROL FOR POLYNOMIAL SYSTEMS

The division is carried out for d steps, that is, until the remainder has z−d as a
factor. Then

1 = AF + z−dG, (7.1-15)
where

F(z−1) = 1 + f1z
−1 + · · · + fd−1z

−(d−1),

G(z−1) = g0 + g1z
−1 + · · · + gn−1z

−(n−1). (7.1-16)

Equation (7.1-15) is a simple form of Diophantine equation (Kučera 1979).
Now use (7.1-4) and (7.1-15) to write

yk+d = B

A
uk = B

(
F + z−d G

A

)
uk = BFuk + G

B

A
uk−d ,

or
yk+d = BFuk + Gyk. (7.1-17)

This is a predictive formulation of the plant (7.1-4), which expresses yk+d in terms
only of quantities that occur at time k and before. Using (7.1-17) in (7.1-8) yields

Jk = (PBFuk + PGyk − Qwk)
2 + (Ruk)

2, (7.1-18)

which explicitly reveals all dependence on uk. To find the optimal uk , we can
now differentiate Jk with respect to uk. Note that

(Ruk)
2 = (r0uk + r1uk−1 + · · · + rNR

uk−NR
)2

so that
∂

∂uk

(Ruk)
2 = 2r0Ruk. (7.1-19)

Note also that polynomial PBF(z−1) has a leading coefficient of b0. Therefore,

∂Jk

∂uk

= 2b0(PBFuk + PGyk − Qwk) + 2r0Ruk = 0. (7.1-20)

Solving for the optimal control at time k yields

(
PFB + r0

b0
R

)
uk = −PGyk + Qwk. (7.1-21)

Equation (7.1-21) provides a recursive equation for uk in terms of uk−1, uk−2,
. . . , yk, yk−1, . . . , wk, wk−1, . . . , all of which are known. It is a two-degrees-of-
freedom regulator with a feedback term depending on yk and a feedforward term
depending on wk. The optimal linear quadratic regulator defined by this recursion
is shown in Fig. 7.1-2.

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 291

7.1 DISCRETE LINEAR QUADRATIC REGULATOR 291

FIGURE 7.1-2 Optimal polynomial LQ regulator drawn as a two-degree-of-freedom
regulator.

Several points are worth mentioning. First, note that the optimal uk depends
only on the output, the reference, and the previous control values. Unlike the
optimal controls for state systems, it does not depend on the internal state of
the plant. It is given in the form of a dynamic output feedback . We surmise
that what state information is required by the controller is somehow provided by
the dynamics (7.1-21): that is, the two-degrees-of-freedom regulator contains an
implicit observer for the state.

Second, the polynomial linear quadratic regulator does not depend on first
solving a recursive Riccati equation, as is the case in Table 2.2-1. The role of the
Riccati equation in the design phase is taken over by the Diophantine equation
(7.1-15).

Under the influence of control (7.1-21) the closed-loop transfer function
(Fig. 7.1-2) is

H cl(z) = Q

P ′
(B/A)z−d

1 + (B/A)(PG/P ′)z−d
, (7.1-22)

where

P ′(z−1)
�= PBF + r0R/b0. (7.1-23)

Simplifying yields (use (7.1-15))

H cl(z) = Q

P ′
BP′z−d

AP′ + z−dBPG
= QBz−d

PB + r0AR/b0
(7.1-24)

so the closed-loop characteristic equation is

�cl(z) = (PB + r0AR/b0)z
h, (7.1-25)

where h is the highest power of z−1 in (7.1-24) (after canceling P ′).

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 292

292 OPTIMAL CONTROL FOR POLYNOMIAL SYSTEMS

7.2 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS

If the continuous plant is

H(s) = b0s
m + b1s

m−1 + · · · + bm

sn + a1sn−1 + · · · + an

, (7.2-1)

then we can discretize it and design regulator (7.1-21) for the sampled plant.
Based on the optimal uk , we can determine a digital control for (7.2-1).

To discretize H (s), we can write it in reachable canonical form

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

⎤
⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦ u,

y = [
bm bm−1 · · · b0 0 · · · 0

]
x, (7.2-2)

or
ẋ = Ax + Bu,

y = Cx. (7.2-3)

Next we discretize this system to get

xk+1 = Asxk + Bsuk,

yk = Cxk, (7.2-4)

where
As = eAT,

Bs =
∫ T

0
eAτBdτ, (7.2-5)

with sample period T . Finally, the discretized transfer function is given by

Hs(z) = C(zI − As)−1Bs, (7.2-6)

which has the form of (7.1-1). The relative degree of Hs(z) is always 1, since it
is obtained by sampling, but in some cases it may be useful, or necessary, to add
an integer delay to the plant to make d in (7.1-4) greater than 1 (e.g., to account
for computation time).

The linear quadratic regulator (7.1-21) can be designed for (7.2-6), yielding
uk , and hence giving a digital control that can be applied to (7.2-1) as described
in Section 2.3.

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 293

7.2 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 293

Example 7.2-1. Helicopter Longitudinal Autopilot

Suppose a helicopter has longitudinal dynamics described by the short-period approx-
imation

H(s) = s + 0.1

(s − 0.1)2 + 0.25
= q(s)

δc(s)
, (1)

with q(t) the pitch rate and δc(t) the pilot pitch command. It is desired to design a
regulator to keep q(t) near zero without using abrupt changes in the command δc(t). The
transfer function is unstable with poles at

s = 0.1 ± j0.5. (2)

a. Discretization

Since the characteristic polynomial is �(s) = s2 − 0.2s + 0.26, the reachable canonical
form is

ẋ =
[

0 1
−0.26 0.2

]
x +

[
0
1

]
u,

y = [
0.1 1

]
x. (3)

Using a sampling period of T = 0.001 yields the discretized system (this can be easily
computed using the subroutine c2dm.m , from the Control System Toolbox)

xk+1 =
[

1 0.01
−0.003 1.002

]
xk +

[
0

0.01

]
uk,

yk = [
0.1 1

]
xk. (4)

(In this example we only show three decimal places.) Computing the transfer function of
(4) yields

Hs(z) = 0.01z − 0.01z

z2 − 2.002z + 1.002
, (5)

which has poles outside the unit circle at

z = 1.001 ± j0.005. (6)

b. Design of Discrete Polynomial Regulator

The relative degree of Hs(z) is 1, but let us set delay d = 2 to allow an additional interval
of T = 10 msec for computation of the control uk . Therefore, the discrete plant is

Ayk = z−2Buk (7)

with
A(z−1) = 1 − 2.002z−1 + 1.002z−2, (8)

B(z−1) = 0.01 − 0.01z−1. (9)

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 294

294 OPTIMAL CONTROL FOR POLYNOMIAL SYSTEMS

Long division of A into 1 yields

AF + z−2G = 1 (10)

where

F(z−1) = 1 + 2.002z−1, (11)

G(z−1) = 3.006 − 2.006z−1. (12)

Hence, the predictive system is

yk+2 = BFuk + Gyk

= (0.01 + 0.01 z−1 − 0.02 z−2)uk + (3.006 − 2.006 z−1)yk, (13)

or
yk+2 = 0.01 uk + 0.01 uk−1 − 0.02 uk−2 + 3.006 yk − 2.006 yk−1. (14)

We must now select the performance index. To make yk+d small and prevent large changes
in uk , we could use

Jk = y2
k+d + [0.1(uk − uk−1)]

2, (15)

which penalizes changes in the control input. Then the weighting polynomials are

P(z−1) = 1, (16)

Q(z−1) = 0, (17)

R(z−1) = 0.1 − 0.1z−1. (18)

Computing the regulator polynomials in (7.1-21) we obtain

P ′ �= PBF + r0R

b0

= 1.009 − 0.988z−1 − 0.02z−2, (19)

PG = 3.006 − 2.006z−1; (20)

so the regulator is

P ′uk = −PGyk, (21)
or

1.009uk = 0.988uk−1 + 0.02uk−2 − 3.006yk + 2.006yk−1. (22)

This recursion for uk is easily implemented. To simulate applying it to the continuous
plant (1), we use the method of Section 2.3.

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 295

PROBLEMS 295

c. Closed-loop Dynamics

According to (7.1-25) the closed-loop characteristic equation is

�cl(z) = (1.0085 − 3.0075z−1 + 2.9995z−2 − 1.0005z−3 + 0.z−4)z4, (23)

which yields closed-loop poles of

z = 0, 0.999, 0.992 ± j0.099. (24)

Note that the closed-loop plant is stable. �

PROBLEMS

Section 7.1

7.1-1. Predictive formulation. The plant

yk − 0.75 yk−1 = uk−3 − uk−4

has zero initial conditions and an input of uk = 2(0.9)ku−1(k).
a. Find yk for k = 0, . . . , 10.
b. Find the predictive formulation. Using this formulation, again find yk for

k = 0, . . . , 10. Your answer will agree with part a, but now yk is found for
each k using data occurring at times k − 3 and before.

7.1-2. Discrete polynomial regulator. It is desired for the plant

yk − 2yk−1 + 3
4yk−2 = uk−d − 1

2uk−d−1 (1)

to follow a reference signal wk without using too many changes in the control.
Hence, select the cost index

Jk = (yk+d − wk)
2 + r2(uk − uk−1)

2. (2)

a. Design a two-degrees-of-freedom regulator for d = 1. Is the closed-loop plant
stable? Draw a block diagram of your regulator in terms of unit delays z−1.
Implement your regulator using MATLAB/SIMULINK.

b. Repeat part a for a control delay of d = 2.

7.1-3. Continuous polynomial regulator. The continuous plant is

ẋ1 = x2,

ẋ2 = −ω2
nx1 − 2δwnx2 + bu. (1)

Lewis c07.tex V1 - 10/19/2011 5:18pm Page 296

296 OPTIMAL CONTROL FOR POLYNOMIAL SYSTEMS

If δ < 0, the plant is unstable. Let y = x1. To keep y(t) small without using too
much control, we can select the cost index

J = ÿ2 + r2u2. (2)

We want to work directly with (1) without sampling.
a. Derive the continuous analog to (7.1-21) to find the transfer function H (s) of

the optimal feedback regulator

u = −H(s)y. (3)

b. Find the closed-loop characteristic polynomial.

7.1-4. Model-following regulator. It is desired for the plant in Problem 7.1-2
to behave like the model

z − 1
2

z2 − z + 1
4

. (1)

Let d = 1.
a. Find the required controller (set R = 0).
b. Check your result by finding the closed-loop transfer function.

7.1-5. Continuous model-following regulator. In Problem 7.1-3, let ωn = 1,
δ = −0.5, b = 1. It is desired for the plant to behave like the model

1

(s + 1
2)2 + 3

4

. (1)

a. Determine the original plant poles.
b. Find the required P , Q , R in (7.1-8).
c. Design the optimal continuous controller u = −H(s)y + K(s)w.
d. Find the resulting closed-loop system.

7.1-6. Model follower with control weighting. To follow a model z−dQB/D

without using too much control, we could solve the Diophantine equation

PB + r0AR/b0 = D (1)

for the required weights P and R (see (7.1-24)) and then design the controller
(7.1-21). (Note that the plant zeros are not moved.)
Redo problem 7.1-4 by this approach using the model

z − 1
2

z3 − 5
4 z2 + 1

2z − 1
16

(1)

(The nonuniqueness of the solution to (1) can be exploited to meet other design
specifications.)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 297

8
OUTPUT FEEDBACK
AND STRUCTURED CONTROL

8.1 LINEAR QUADRATIC REGULATOR
WITH OUTPUT FEEDBACK

Our objective in this section is to show how to use modern control techniques to
design stability augmentation systems (SAS). This is accomplished by regulating
certain states of the system to zero while obtaining desirable closed-loop response
characteristics. It involves the problem of stabilizing the system by placing the
closed-loop poles at desirable locations.

Using classical control theory, we were forced to take a one-loop-at-a-time
approach to designing multivariable SAS. In this section we select a perfor-
mance criterion that reflects our concern with closed-loop stability and good time
responses, and then derive matrix equations that may be solved for all the control
gains simultaneously. These matrix equations are solved using digital computer
programs. This approach thus closes all the loops simultaneously and results in
a simplified design strategy for multi-input–multi-output (MIMO) systems or
single-input–single-output (SISO) systems with multiple feedback loops.

Once the performance criterion has been selected, the control gains are explic-
itly computed by matrix design equations, and closed-loop stability will generally
be guaranteed. This means that the engineering judgment in modern control
enters in the selection of the performance criterion. Different criteria will result
in different closed-loop time responses and robustness properties.

We assume the plant is given by the linear time-invariant state-variable model

ẋ = Ax + Bu (8.1-1)

y = Cx, (8.1-2)

297

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 298

298 OUTPUT FEEDBACK AND STRUCTURED CONTROL

with x(t) ∈ Rn the state, u(t) ∈ Rm the control input, and y(t) ∈ Rp the measured
output. The controls will be output feedbacks of the form

u = −Ky, (8.1-3)

where K is an m × p matrix of constant feedback coefficients to be determined
by the design procedure. Since the regulator problem only involves stabilizing
the aircraft and inducing good closed-loop time responses, u(t) will be taken as
a pure feedback with no auxiliary input.

Output feedback will allow us to design plant controllers of any desired struc-
ture. This is another reason for preferring it over full-state feedback.

In the regulator problem, we are interested in obtaining good time responses
as well as in the stability of the closed-loop system. Therefore, we shall select a
performance criterion in the time domain. Let us now present this criterion.

Quadratic Performance Index

The objective of state regulation for the system is to drive any initial condition
error to zero, thus guaranteeing stability. This may be achieved by selecting the
control input u(t) to minimize a quadratic cost or performance index (PI) of the
type

J = 1

2

∫ ∞

0
(xTQx + uTRu)dt, (8.1-4)

where Q and R are symmetric positive semidefinite weighting matrices.
Positive semidefiniteness of a square matrix M (denoted M ≥ 0) is equivalent
to all its eigenvalues being nonnegative, and also to the requirement that
the quadratic form x T Mx be nonnegative for all vectors x . Therefore, the
definiteness assumptions on Q and R guarantee that J is nonnegative and lead
to a sensible minimization problem. This quadratic PI is a vector version of an
integral-squared PI of the sort used in classical control.

To emphasize the motivation for the choice of (8.1-4), consider the following.
If the square root

√
M of a positive semidefinite matrix M is defined by

M =
√

M
T√

M, (8.1-5)

then we may write (8.1-4) as

J = 1

2

∫ ∞

0

(∥∥∥√
Qx

∥∥∥2 +
∥∥∥√

Ru

∥∥∥2
)

dt, (8.1-6)

with ‖w‖ the Euclidean norm of a vector w(i.e., ‖w‖ = wTw). If we are able to
select the control input u(t) so that J takes on a minimum finite value, then
certainly the integrand must become zero for large time. This means that both
the linear combination

√
Qx(t) of the states and the linear combination

√
Ru(t)

of the controls must go to zero. In different designs we may select Q and R for

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 299

8.1 LINEAR QUADRATIC REGULATOR WITH OUTPUT FEEDBACK 299

different performance requirements corresponding to specified functions of the
state and input. In particular, if Q and R are both chosen nonsingular, then the
entire state vector x(t) and all the controls u(t) will go to zero with time if J
has a finite value.

Since a bounded value for J will guarantee that
√

Qx(t) and
√

Ru(t) go to
zero with time, this formulation for the PI is appropriate for the regulator prob-
lem, as any initial condition errors will be driven to zero. If the state vector
x(t) consists of capacitor voltages v(t) and inductor currents i(t), then ‖x‖2 will
contain terms like v2(t) and i2(t). Likewise, if velocity s(t) is a state component,
then ‖x‖2 will contain terms like s2(t). Therefore, the minimization of the PI
(8.1-4) is a generalized minimum energy problem. We are concerned with mini-
mizing the energy in the states without using too much control energy.

The relative magnitudes of Q and R may be selected to trade off requirements
on the smallness of the state against requirements on the smallness of the input.
For instance, a larger control-weighting matrix R will make it necessary for u(t)

to be smaller to ensure that
√

Ru(t) is near zero. We say that a larger R penalizes
the controls more, so that they will be smaller in norm relative to the state vector.
On the other hand, to make x(t) go to zero more quickly with time, we may
select a larger Q .

As a final remark on the PI, we shall see that the positions of the closed-loop
poles depend on the choices for the weighting matrices Q and R. That is, Q and
R may be chosen to yield good time responses in the closed-loop system. Let us
now derive matrix design equations that may be used to solve for the control gain
K that minimizes the PI. The result will be the design equations in Table 8.1-1.

Solution of the LQR Problem

The LQR problem with output feedback is the following. Given the linear sys-
tem (8.1-1)–(8.1-2), find the feedback coefficient matrix K in the control input
(8.1-3) that minimizes the value of the quadratic PI (8.1-4). In contrast with
most of the classical control techniques given in previous chapters, this is a
time-domain design technique. By substituting the control (8.1-3) into (8.1-1),
the closed-loop system equations are found to be

ẋ = (A − BKC)x ≡ Acx. (8.1-7)

The PI may be expressed in terms of K as

J = 1

2

∫ ∞

0

(
xT(Q + CTKTRKC

)
x) dt. (8.1-8)

The design problem is now to select the gain K so that J is minimized subject
to the dynamical constraint (8.1-7).

This dynamical optimization problem may be converted into an equivalent
static one that is easier to solve as follows. Suppose we can find a constant,

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 300

300 OUTPUT FEEDBACK AND STRUCTURED CONTROL

symmetric, positive semi-definite matrix P so that

d

dt

(
xTPx

) = −xT (
Q + CTKTRKC

)
x. (8.1-9)

Then, J may be written as (Chapter 3)

J = 1
2xT(0)Px(0) − 1

2 lim
t→∞ xT(t)Px(t). (8.1-10)

Assuming that the closed-loop system is asymptotically stable so that x(t) van-
ishes with time, this becomes

J = 1
2xT(0)Px(0). (8.1-11)

If P satisfies (8.1-9), then we may use (8.1-7) to see that

−xT(Q + CTKTRKC)x = d

dt
(xTPx) = ẋTPx + xTP ẋ

= xT(AT
c P + PAc)x. (8.1-12)

Since this must hold for all initial conditions, and hence for all state trajectories
x(t), we may write

g ≡ AT
c P + PAc + CTKTRKC + Q = 0. (8.1-13)

If K and Q are given and P is to be solved for, then this is called a Lyapunov
equation. (A Lyapunov equation is a symmetric linear matrix equation. Note that
the equation does not change if its transpose is taken.) In summary, for any fixed
feedback matrix K if there exists a constant, symmetric, positive semi-definite
matrix P that satisfies (8.1-13), and if the closed-loop system is stable, then the
cost J is given in terms of P by (8.1-11). This is an important result in that the
n × n auxiliary matrix P is independent of the state. Given a feedback matrix K,
P may be computed from the Lyapunov equation (8.1-13). Then, only the initial
condition x(0) is required to compute the closed-loop cost under the influence of
the feedback control (8.1-3). That is, we may compute the cost of applying the
feedback control u = −Ky before we actually apply it.

It is now necessary to use this result to compute the gain K that minimizes
the PI. By using the trace identity

tr(AB) = tr(BA) (8.1-14)

for any compatibly dimensioned matrices A and B (with the trace of a matrix the
sum of its diagonal elements) we may write (8.1-11) as

J = 1
2 tr(PX), (8.1-15)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 301

8.1 LINEAR QUADRATIC REGULATOR WITH OUTPUT FEEDBACK 301

where the n × n symmetric matrix X is defined by

X ≡ x(0)xT(0). (8.1-16)

It is now clear that the problem of selecting K to minimize (8.1-8) subject
to the dynamical constraint (8.1-7) on the states is equivalent to the algebraic
problem of selecting K to minimize (8.1-15) subject to the constraint (8.1-13)
on the auxiliary matrix P . To solve this modified problem, we use the Lagrange
multiplier approach to modify the problem yet again. Thus, adjoin the constraint
to the PI by defining the Hamiltonian

H = tr(PX) + tr(gS), (8.1-17)

with S a symmetric n × n matrix of Lagrange multipliers that still needs to
be determined. Then, our constrained optimization problem is equivalent to the
simpler problem of minimizing (8.1-17) without constraints. To accomplish this,
we need to set the partial derivatives of H with respect to all the independent
variables P, S , and K equal to zero. Using the facts that for any compatibly
dimensioned matrices A, B , and C and any scalar y

∂

∂B
tr(ABC) = ATCT (8.1-18)

and
∂y

∂BT
=

[
∂y

∂B

]T

, (8.1-19)

the necessary conditions for the solution of the LQR problem with output feed-
back are given by

0 = ∂H

∂S
= g = AT

c P + PAc + CTKTRKC + Q (8.1-20)

0 = ∂H

∂P
= AcS + SAT

c + X (8.1-21)

0 = 1

2

∂H

∂K
= RKCSCT − BTPSCT. (8.1-22)

The first two of these are Lyapunov equations and the third is an equation for
the gain K . If R is positive definite (i.e., all eigenvalues greater than zero, which
implies nonsingularity; denoted R > 0) and CSCT is nonsingular, then (8.1-22)
may be solved for K to obtain

K = R−1BTPSCT (
CSCT)−1

. (8.1-23)

To obtain the output feedback gain K minimizing the PI (8.1-4), we need to
solve the three coupled equations (8.1-20), (8.1-21), and (8.1-23). This situation

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 302

302 OUTPUT FEEDBACK AND STRUCTURED CONTROL

is quite strange, for to find K we must determine along the way the values of two
auxiliary and apparently unnecessary n × n matrices, P and S . These auxiliary
quantities may, however, not be as unnecessary as it appears, for note that the
optimal cost may be determined directly from P and the initial state by using
(8.1-11).

The Initial Condition Problem

Unfortunately, the dependence of X in (8.1-16) on the initial state x (0) is unde-
sirable, since it makes the optimal gain dependent on the initial state through
equation (8.1-21). In many applications x (0) may not be known. This depen-
dence is typical of output-feedback design. We saw in Chapter 3 that in the case
of state feedback it does not occur. Meanwhile, it is usual (Levine and Athans
1970) to sidestep this problem by minimizing not the PI (8.1-4) but its expected
value, that is E {J }. Then, (8.1-11) and (8.1-16) are replaced by

E{J } = 1
2E{xT (0)Px(0)} = 1

2 tr(PX), (8.1-24)

where the symmetric n × n matrix

X ≡ E{x(0)xT(0)} (8.1-25)

is the initial autocorrelation of the state. It is usual to assume that nothing is
known of x (0) except that it is uniformly distributed on a surface described by
X . That is, we assume the actual initial state is unknown, but that it is nonzero
with a certain expected Euclidean norm. For instance, if the initial states are
assumed to be uniformly distributed on the unit sphere, then X = I , the identity.
This is a sensible assumption for the regulator problem, where we are trying to
drive arbitrary nonzero initial states to zero.

The design equations for the LQR with output feedback are collected in
Table 8.1-1 for convenient reference. We now discuss their solution for K .

Determining the Optimal Feedback Gain

The importance of this modern LQ approach to controls design is that the matrix
equations in Table 8.1-1 are used to solve for all the m × p elements of K at once.
This corresponds to closing all the feedback loops simultaneously. Moreover, as
long as certain reasonable conditions (to be discussed) on the plant and PI weight-
ing matrices hold, the closed-loop system is generally guaranteed to be stable. In
view of the trial-and-error successive-loop-closure approach used in stabilizing
multivariable systems using classical approaches, this is quite important.

The equations for P, S , and K are coupled nonlinear matrix equations in three
unknowns. It is important to discuss some aspects of their solution for the optimal
feedback gain matrix K .

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 303

8.1 LINEAR QUADRATIC REGULATOR WITH OUTPUT FEEDBACK 303

TABLE 8.1-1 LQR with Output Feedback

System model :
ẋ = Ax + Bu

y = Cx

Control :
u = −Ky

Performance index :

J = E

∫ ∞

0
(xT Qx + uT Ru) dt

With
Q ≥ 0, R > 0

Optimal gain design equations :
0 = AT

c P + PAc + CTKTRKC + Q (8.1-26)

0 = AcS + SAT
c + X (8.1-27)

K = R−1BTPSCT(CSCT)−1, (8.1-28)

Where
Ac = A − BKC, X = E{x(0)xT(0)}.

Optimal cost :
J = tr(PX) (8.1-29)

Numerical Solution Techniques

There are three basic numerical techniques for determining the optimal output-
feedback gain K . First, we may use a numerical optimization routine like the
Simplex algorithm in Nelder and Mead (1964), found in MATLAB (Optimization
Toolbox). This algorithm would use only equations (8.1-26) and (8.1-29). For a
given value of K , it would solve the Lyapunov equation for P , and then use
P in the second equation to determine E {J }. Based on this, it would vary the
elements of K to minimize E {J }. The Lyapunov equation may be solved using,
for instance, subroutine lyap.m in MATLAB (Control System Toolbox) based on
the Bartels-Stewart algorithm.

A second approach for computing K is to use a gradient-based routine found
in MATLAB (Optimization Toolbox). This routine would use all of the design
equations in Table 8.1-1. For a given value of K , it would solve the two Lyapunov
equation in the form (8.1-22). Note that if P satisfies the first Lyapunov equation,
then g = 0 so that (see (8.1-17)) E{J } = E{H } and ∂E{J }/∂K = ∂E{H }/∂K .
Thus, the third design equation gives the gradient of E {J } with respect to K ,
which would be used by the routine to update the value of K .

Finally, an iterative solution algorithm was presented in Moerder and Calise
(1985). It is given in Table 8.1-2. It was shown in Moerder and Calise (1985)
that the algorithm converges to a local minimum for J if the following conditions
hold.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 304

304 OUTPUT FEEDBACK AND STRUCTURED CONTROL

TABLE 8.1-2 Optimal Output Feedback Solution Algorithm

1. Initialize:
Set k = 0
Determine a gain K0 so that A − BK0C is asymptotically stable

2. k th iteration:
Set Ak = A − BKkC

Solve for Pk and Sk in

0 = AT
k Pk + PkAk + CTKT

k RKkC + Q

0 = AkSk + SkA
T
k + X

Set Jk = tr (PkX)

Evaluate the gain update direction

�K = R−1BTPSCT(CSCT)−1 - Kk

Update the gain by

Kk+1 = Kk + α�K

where α is chosen so that
A − BKk+1C is asymptotically stable

Jk+1 ≡ 1
2 tr(Pk+1X) ≤ Jk

If Jk+1 and Jk are close enough to each other, go to 3 Otherwise, set k = k + 1 and
go to 2

3. Terminate:
Set K = Kk+1, J = Jk+1 Stop

Conditions for Convergence of the LQ Solution Algorithm

1. There exists a gain K such that Ac is stable. If this is true, we call system
(8.1-1)–(8.1-2) output stabilizable.

2. The output matrix C has full row rank p.
3. Control weighting matrix R is positive definite. This means that all the

control inputs should be weighted in the PI.
4. Q is positive semidefinite and (

√
Q, A) is detectable. That is, the observ-

ability matrix polynomial

O(s) ≡
[

sI − A

−√
Q

]
(8.1-30)

has full rank n for all values of the complex variable s not contained in the left
half plane (Kailath 1980).

If these conditions hold, then the algorithm finds an output-feedback gain
that stabilizes the plant and minimizes the PI. The detectability condition means
that any unstable system modes must be observable in the PI. Then, if the PI is

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 305

8.1 LINEAR QUADRATIC REGULATOR WITH OUTPUT FEEDBACK 305

bounded, which it is if the optimization algorithm is successful, signals associated
with the unstable modes must go to zero as t becomes large; that is, they are
stabilized in the closed-loop system.

Initial Stabilizing Gain

Since all three algorithms for solving the matrix equations in Table 8.1-1 for
K are iterative in nature, a basic issue for all of them is the selection of an
initial stabilizing output-feedback gain K0. That is, to start the algorithms, it is
necessary to provide a K0 such that (A − BK0C) is stable. See, for instance,
Table 8.1-2.

One technique for finding such a gain is given in Broussard and Halyo (1983).
Another possibility is to use the eigenstructure assignment techniques of the
previous section to determine an initial gain for the LQ solution algorithm. We
could even select a stabilizing gain using the classical techniques, and then use
modern design technique to tune the control gains for optimal performance. A
quite convenient technique for finding an initial stabilizing gain K0 is discussed in
Section 8.2. This involves finding a full m × n state-variable feedback matrix and
then zeroing the entries that are not needed in the n × p output-feedback matrix
for the given measured outputs. Note that there are many techniques for finding
a full state feedback that stabilizes a system given A and B (see Chapter 3).

Iterative Design

Software that solves for the optimal output-feedback gain K can be found in
the MATLAB Optimization Toolbox. Given good software, design using the LQ
approach is straightforward. A design procedure would involve selecting the
design parameters Q and R, determining the optimal gain K , and simulating the
closed-loop response and frequency-domain characteristics. If the results are not
suitable, different matrices Q and R are chosen and the design is repeated.

This approach introduces the notion of tuning the design parameters Q and R
for good performance. In the next two sections we present sensible techniques
for obtaining suitable PI weighting matrices Q and R that do not depend on indi-
vidually selecting all of their entries. Example 8.1-1 will illustrate these notions.

Selection of the PI Weighting Matrices

Once the PI weighting matrices Q and R have been selected, the determination
of the optimal feedback gain K is a formal procedure relying on the solution
of nonlinear coupled matrix equations. Therefore, the engineering judgment in
modern LQ design appears in the selection of Q and R. There are some guidelines
for this, which we now discuss.

Observability in the Choice of Q

For stabilizing solutions to the output-feedback problem, it is necessary for
(
√

Q,A) to be detectable. The detectability condition basically means that Q

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 306

306 OUTPUT FEEDBACK AND STRUCTURED CONTROL

should be chosen so that all unstable states are weighted in the PI. Then, if J is
bounded so that

√
Qx(t) vanishes for large t , the open-loop unstable states will

be forced to zero through the action of the control. This means exactly that the
unstable poles must have been stabilized by the feedback control gain. A stronger
condition than detectability is observability, which amounts to the full rank of
O(s) for all values of s . Observability is easier to check than detectability since
it is equivalent to the full rank n of the observability matrix

O ≡

⎡
⎢⎢⎢⎢⎢⎣

√
Q√

QA

...√
QAn−1

⎤
⎥⎥⎥⎥⎥⎦

, (8.1-31)

which is a constant matrix and so easier to deal with than O(s). In fact, O has
full rank n if and only if the observability gramian OTO is nonsingular. Since
the gramian is an n × n matrix, its determinant is easily examined using available
software (e.g., singular value decomposition/condition number [MATLAB]). The
observability of (

√
Q, A) means basically that all states are weighted in the

PI. From a numerical point of view, if (
√

Q,A) is observable, then a positive-
definite solution P to (8.1-26) results; otherwise, P may be singular. Since P
helps determine K through (8.1-28), it is found that if P is singular it may result
in some zero gain elements in K . That is, if (

√
Q,A) is not observable, the

LQ algorithm can refuse to close some of the feedback loops. This observability
condition amounts to a restriction on the selection of Q , and is a drawback of
modern control (see Example 8.1-1).

The Structure of Q

The choice of Q can be confronted more easily by considering the performance
objectives of the LQR. Suppose that a performance output

z = Hx (8.1-32)

is required to be small in the closed-loop system. For instance, in an aircraft
lateral regulator it is desired for the sideslip angle, yaw rate, roll angle, and roll
rate to be small (see Example 8.1-1). Therefore, we might select z = |αrp|T.
Once z (t) has been chosen, the performance output matrix H may be formally
written down.

The signal z (t) may be made small by LQR design by selecting the PI

J = 1

2

∫ ∞

0
(xTQx + uTRu) dt, (8.1-33)

which amounts to using the PI in Table 8.1-1 with Q = HTH , so that Q may
be computed from H . That is, by weighting performance outputs in the PI, Q is
directly given.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 307

8.1 LINEAR QUADRATIC REGULATOR WITH OUTPUT FEEDBACK 307

Maximum Desired Values of z(t) and u(t)

A convenient guideline for selecting Q and R is given in Bryson and Ho (1975).
Suppose the performance output (8.1-32) has been defined so that H is given.
Consider the PI

J = 1

2

∫ ∞

0
(zTQz + uTRu) dt. (8.1-34)

Then, in Table 8.1-1 we have Q = HTQH. To select Q and R, one might
proceed as follows, using the maximum allowable deviations in z (t) and u(t).
Define the maximum allowable deviation in component zi(t) of z (t) as ziM and
the maximum allowable deviation in component ui(t) of the control input u(t)
as uiM. Then, Q and R may be selected as Q = diag{qi}, R = diag{ri}, with

qi = 1/z2
iM, ri = 1/r2

iM. (8.1-35)

The rationale for this choice is easy to understand. For instance, as the allowed
limits ziM on zi(t) decrease, the weighting in the PI placed on zi(t) increases,
which requires smaller excursions in zi(t) in the closed-loop system.

Asymptotic Properties of the LQR

Consider the PI

J = 1

2

∫ ∞

0
(xTQx + ρuTRu) dt, (8.1-36)

where ρ is a scalar design parameter. There are some quite nice results that
describe the asymptotic performance of the LQR as ρ becomes small and as ρ

becomes large (Kwakernaak and Sivan 1972, Harvey and Stein 1978, Grimble
and Johnson 1988).

These results detail the asymptotic closed-loop eigenstructure of the LQR,
and are of some assistance in selecting Q and R. Unfortunately, they are well
developed only for the case of full state-variable feedback, where C = I and all
the states are allowed for feedback.

Example 8.1-1. LQR Design for F-16 Lateral Regulator

In this example we should like to demonstrate the power of the LQ design equations in
Table 8.1-1 by designing a lateral regulator. In our approach, we shall select the design
parameters Q and R and then use the design equations there to close all the feedback
loops simultaneously by computing K . The objective is to design a closed-loop controller
to provide for the function of a lateral stability augmentation system as well as the closure
of the roll-attitude loop. This objective involves the design of two feedback channels with
multiple loops, but it is straightforward to deal with using modern control techniques. The
simplicity of MIMO design using the LQR will be evident.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 308

308 OUTPUT FEEDBACK AND STRUCTURED CONTROL

a. Aircraft State Equations

We use the F-16 linearized lateral dynamics at the nominal flight condition retaining the
lateral states sideslip β, bank angle φ, roll rate p, and yaw rate r . Additional states δa

and δr are introduced by the aileron and rudder actuators

δa = 20.2

s + 20.2
ua, δr = 20.2

s + 20.2
ur . (1)

A washout filter
rw = s

s + 1
r (2)

is used, with r the yaw rate and rw the washed-out yaw rate. The washout filter state is
denoted xw. Thus, the entire state vector is

x = [β φ p r δa δr xw]T. (3)

The full state-variable model of the aircraft plus actuators, washout filter, and control
dynamics is of the form

ẋ = Ax + Bu, (4)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3220 0.0640 0.0364 −0.9917 0.0003 0.0008 0

0 0 1 0.0037 0 0 0

−30.6492 0 −3.6784 0.6646 −0.7333 0.1315 0

8.5396 0 −0.0254 −0.4764 −0.0319 −0.0620 0

0 0 0 0 −20.2 0 0

0 0 0 0 0 −20.2 0

0 0 0 57.2958 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

20.2 0

0 20.2

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The control inputs are the rudder and aileron servo inputs so that

u =
[
ua

ur

]
(6)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 309

8.1 LINEAR QUADRATIC REGULATOR WITH OUTPUT FEEDBACK 309

and the output is

y =

⎡
⎢⎢⎢⎢⎣

rw

p

β

φ

⎤
⎥⎥⎥⎥⎦ . (7)

Thus, y = Cx, with

C =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 57.2958 0 0 −1

0 0 57.2958 0 0 0 0

57.2958 0 0 0 0 0 0

0 57.2958 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (8)

The factor of 57.2958 converts radians to degrees. The feedback control will be output
feedback of the form u = −Ky, so that K is a 2 × 4 matrix. That is, we shall select eight
feedback gains. For this system the open-loop Dutch-roll mode has poles at –0.4226 ±
j 3.064, and so has insufficient damping. The spiral mode has a pole at –0.0163.

b. LQR Output Feedback Design

For the computation of the feedback gain K , it is necessary to select PI weighting matrices
Q and R in Table 8.1-1. Then, software from the Optimization Toolbox is used to compute
the optimal gain K using the design equations in the table. Our philosophy for selecting
Q and R follows. First, let us discuss the choice of Q . It is desired to obtain good stability
of the Dutch-roll mode, so that β2 and r2 should be weighted in the PI by factors of qdr.
To obtain stability of the roll mode, which in closed-loop will consist primarily of p and
φ, we may weight p2 and φ2 in the PI by factors of qr . We do not care about δa and
δr , so it is not necessary to weight them in the PI; the control weighting matrix R will
prevent unreasonably large control inputs. Thus, so far we have

Q = diag{qdr, qr , qr , qdr, 0, 0, 0}. (9)

We do not care directly about xw; however, it is necessary to weight it in the PI. This
is because omitting it would cause problems with the observability condition. A square
root of Q in (9) is √

Q = [√
qdr

√
qr

√
qr

√
qdr 0 0 0

]
. (10)

Consequently, the observability matrix (8.1-31) has a right-hand column of zero; hence,
the system is unobservable. This may be noted in simpler fashion by examining the A
matrix in (5), where the seventh state xw is seen to have no influence on the states that
are weighted in (9). To correct this potential problem, we chose

Q = diag{qdr, qr , qr , qdr, 0, 0, 1}. (11)

As far as the R matrix goes, it is generally satisfactory to select it as

R = ρI, (12)

with I the identity matrix and ρ a scalar design parameter.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 310

310 OUTPUT FEEDBACK AND STRUCTURED CONTROL

Now, the design equations in Table 8.1-1 were solved for several choices of ρ, qdr, qr.
After some trial and error, we obtained a good result using ρ = 0.1, qdr = 50, qr = 100.
For this selection, the optimal feedback gain was

K =
[
−0.56 −0.44 0.11 −0.35

−1.19 −0.21 −0.44 0.26

]
. (13)

The resulting closed-loop poles were at

s = −3.13 ± j0.83 Dutch - roll mode(r, β)

− 0.82 ± j0.11 roll mode(p, φ)

− 11.47 ± j17.18, −15.02. (14)

To verify the design a simulation was performed. The initial state was selected as
x(0) = [1 0 0 0 0 0 0]T; that is, we chose β(0) = 1. Figure 8.1-1 shows the results.
Part (a) shows the Dutch-roll mode and part (b) the roll mode. Note that the responses
correspond to the poles in (14), where the Dutch roll is the faster mode.

This design has two deficiencies. First, it uses eight feedback gains in (13). This is
undesirable for two reasons. (1) It requires the gain scheduling of all eight gains, and
(2) the control system has no structure. That is, all outputs are fed back to both inputs;
zeroing some of the gains would give the controller more structure in terms of feeding
back certain outputs to only one or the other of the inputs. The second deficiency is that
it was necessary to juggle the entries of Q to obtain a good solution. Actually, due to our
weighting of β2 and r2 by qdr, and φ2 and p2 by qr, the design was fairly straightforward
and took about half an hour in all. It was, however, necessary to weight the washout filter
state xw, which is not obvious without considering the observability question.

c. Effect of Weighting Parameters

It is interesting to examine more closely the effects of the design parameters, namely, the
entries of the PI weighting matrices Q and R. Using the same Q as above, we show the
sideslip response in Fig. 8.1-2a for control weightings of ρ = 0.1, 0.5, and 1. Increased
control weighting in the PI generally suppresses the control signals in the closed-loop
system; that is, less control effort is allowed. As less control effort is allowed, the control
is less effective in controlling the modes. Indeed, according to the figure, as ρ increases,
the undershoot in β increases. Moreover, with increasing ρ the control is also less effective
in suppressing the undesirable oscillations in the Dutch-roll mode that were noted in the
open-loop system.

As far as the effect of the Dutch-roll weighting qdr goes, examine Fig. 8.1-2b, where
ρ = 0.1 and qr = 100 as in part b, but the sideslip response is shown for qr = 0, 50, and
100. As qdr increases, the undershoot decreases, reflecting the fact that increased weighting
on β2 in the PI will result in smaller excursions in β in closed loop. One last point is
worth noting. The open-loop system is stable; therefore, it is clear that it is detectable,
since all the unstable modes are observable for any choice of Q (there are no unstable
modes). Thus, the design would work if we omitted the weighting on x2

w in the Q matrix
(although, it turns out, the closed-loop poles are not as good). In general, however, the
detectability condition is difficult to check in large systems that are open-loop unstable;
thus, the observability condition is used instead. Failing to weight an undetectable state
can lead to some zero elements of K , meaning that some feedback loops are not closed.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 311

8.1 LINEAR QUADRATIC REGULATOR WITH OUTPUT FEEDBACK 311

FIGURE 8.1-1 Closed-loop lateral response. (a) Dutch-roll states β and r . (b) Roll
mode states φ and p.

Thus, to guarantee that this does not occur, Q should be selected so that (
√

Q, A) is
observable.

d. Gain Scheduling

For implementation on an aircraft, the control gains in (13) should be gain scheduled.
To accomplish this, the nonlinear aircraft equations are linearized at several equilibrium
flight conditions over the desired flight envelope to obtain state-variable models like

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 312

312 OUTPUT FEEDBACK AND STRUCTURED CONTROL

FIGURE 8.1-2 Effect of PI weighting. (a) Sideslip as a function of ρ(ρ = 0.1, 0.5, 1).
(b) Sideslip as a function of qdr(qdr = 0, 50, 100).

(4) with different A and B matrices. Then, the LQR design is repeated for those different
systems.

A major advantage of LQR design will quickly be apparent, for once the control
structure has been selected, it takes only a minute or two to run the software to find the
optimal gains for a new A and B using the design equations in Table 8.1-1. Note that the
optimal gains for one point in the gain schedule can be used as initial stabilizing gains in
the LQ solution algorithm for the next point.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 313

8.2 TRACKING A REFERENCE INPUT 313

It is important, however, to be aware of an additional consideration. The optimal
gains at each gain scheduling point should guarantee robust stability and performance;
that is, they should guarantee stability and good performance at points near the design
equilibrium point. Such robust stability can be verified after the LQ design by using mul-
tivariable frequency-domain techniques. These techniques are developed in Section 9.2,
where the remarks on robustness to plant parameter variations are particularly relevant to
gain scheduling. �

8.2 TRACKING A REFERENCE INPUT

In control design we are often interested not in regulating the state near zero,
which we discussed in the previous section, but in following a nonzero refer-
ence command signal . For example, we may be interested in designing a control
system for optimal step-response shaping. This reference-input tracking or ser-
vodesign problem is important in the design of command augmentation systems
(CAS). In this section and the next we cover tracker design.

It should be mentioned that the optimal linear quadratic (LQ) tracker of mod-
ern control is not a causal system (see Chapter 4). It depends on solving an
“adjoint” system of differential equations backward in time, and so is impossible
to implement. A suboptimal “steady-state” tracker using full state-variable feed-
back is available, but it offers no convenient structure for the control system in
terms of desired dynamics like PI control, washout filters, and so on.

Modified versions of the LQ tracker have been presented in Davison and Fer-
guson (1981) and Gangsaas et al. (1986). There, controllers of desired structure
can be designed since the approaches are output-feedback based. The opti-
mal gains are determined numerically to minimize a PI with, possibly, some
constraints.

It is possible to design a tracker by first designing a regulator using, for
instance, Table 8.1-1. Then, some feedforward terms are added to guarantee per-
fect tracking (Kwakernaak and Sivan 1972). The problem with this technique is
that the resulting tracker has no convenient structure and often requires deriva-
tives of the reference command input. Moreover, servosystems designed using
this approach depend on knowing the DC gain exactly. If the DC gain is not
exactly known, the performance deteriorates. That is, the design is not robust to
uncertainties in the model.

Here we discuss an approach to the design of tracking control systems that is
very useful in several control applications. This approach will allow us to design
a servo control system that has any structure desired. This structure will include
a unity-gain outer loop that feeds the performance output back and subtracts it
from the reference command, thus defining a tracking error e(t) that should be
kept small. See Fig. 8.2-1. It can also include compensator dynamics, such as a
washout filter or an integral controller. The control gains are chosen to minimize
a quadratic performance index (PI). We are able to give explicit design equations
for the control gains (see Table 8.2-1), which may be solved using software
available in the MATLAB Optimization Toolbox.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 314

314 OUTPUT FEEDBACK AND STRUCTURED CONTROL

FIGURE 8.2-1 Plant with compensator of desired structure.

A problem with the tracker developed in this section is the need to select the
design parameters Q and R in the PI in Table 8.2-1. Later, we show how modified
PIs may be used to make the selection of Q and R almost transparent, yielding
tracker design techniques that are very convenient for use in aircraft control
systems design. We show, in fact, that the key to achieving required performance
using modern design strategies is in selecting an appropriate PI .

Tracker with Desired Structure

In several control designs there is a wealth of experience and knowledge that
dictates in many situations what sort of compensator dynamics yield good per-
formance from the point of view of both the controls engineer and the pilot.
For example, a washout circuit may be required, or it may be necessary to
augment some feedforward channels with integrators to obtain a steady-state
error of exactly zero. The control system structures used in classical aircraft
design also give good robustness properties. That is, they perform well even
if there are disturbances or uncertainties in the system. Thus, the multivariable
approach developed here usually affords this robustness. Formal techniques for
verifying closed-loop robustness for multivariable control systems are given in
Chapter 9.

Our approach to tracker design allows controller dynamics of any desired
structure and then determines the control gains that minimize a quadratic PI
over that structure. Before discussing the tracker design, let us examine how the
compensator dynamics may be incorporated into the system state equations.

A dynamic compensator of prescribed structure may be incorporated into the
system description as follows. Consider the situation in Fig. 8.2-1 where the plant

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 315

8.2 TRACKING A REFERENCE INPUT 315

is described by
ẋ = Ax + Bu (8.2-1)

y = Cx (8.2-2)

with state x (t), control input u(t), and y(t) the measured output available for
feedback purposes. In addition,

z = Hx (8.2-3)

is a performance output, which must track the given reference input r(t). The
performance output z (t) is not generally equal to y(t). It is important to realize
that for perfect tracking it is necessary to have as many control inputs in vector
u(t) as there are command signals to track in r(t) (Kwakernaak and Sivan 1972).

The dynamic compensator has the form

ẇ = Fw + Ge

v = Dw + Je (8.2-4)

with state w (t), output v (t), and input equal to the tracking error

e(t) = r(t) − z(t). (8.2-5)

F, G, D , and J are known matrices chosen to include the desired structure in the
compensator. The allowed form for the plant control input is

u = −Ky − Lv, (8.2-6)

where the constant gain matrices K and L are to be chosen in the controls design
step to result in satisfactory tracking of r(t). This formulation allows for both
feedback and feedforward compensator dynamics.

These dynamics and output equations may be written in augmented form as

d

dt

[
x

w

]
=

[
A 0

−GH F

][
x

w

]
+

[
0

G

]
r (8.2-7)

[
y

v

]
=

[
C 0

−JH D

][
x

w

]
+

[
0

H

]
r (8.2-8)

z = [0 H]

[
x

w

]
, (8.2-9)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 316

316 OUTPUT FEEDBACK AND STRUCTURED CONTROL

and the control input may be expressed as

u = −[K L]

[
y

v

]
. (8.2-10)

Note that, in terms of the augmented plant/compensator state description, the
admissible controls are represented as a constant output feedback [K L] . In the
augmented description, all matrices are known except the gains K and L, which
need to be selected to yield acceptable closed-loop performance.

A comment on the compensator matrices F, G, D, J is in order. Often, these
matrices are completely specified by the structure of the compensator. Such is
the case, for instance, if the compensator contains integrators. However, if it is
desired to include a washout or a lead-lag, it may not be clear exactly how to
select the time constants. In such cases, engineering judgment will usually give
some insight. However, it may sometimes be necessary to go through the design
to be proposed, and then if required return to readjust F, G, D, J and reperform
the design.

LQ Formulation of the Tracker Problem

By redefining the state, the output, and the matrix variables to streamline the
notation, we see that the augmented equations (8.2-7)–(8.2-9) that contain the
dynamics of both the plant and the compensator are of the form

ẋ = Ax + Bu + Gr (8.2-11)

y = Cx + Fr (8.2-12)

z = Hx. (8.2-13)

In this description, let us take the state x(t) ∈ Rn, control input u(t) ∈ Rm,
reference input r(t) ∈ Rq , performance output z(t) ∈ Rq , and measured output
y(t) ∈ Rp . The admissible controls (8.2-10) are proportional output feedbacks of
the form

u = −Ky = −KCx − KFr, (8.2-14)

with constant gain K to be determined. This situation corresponds to the block
diagram in Fig. 8.2-2. Since K is an m × p matrix, we intend to close all the
feedback loops simultaneously by computing K .

Using these equations the closed-loop system is found to be

ẋ = (A − BKC)x + (G − BKF)r

≡ Acx + Bcr. (8.2-15)

In the remainder of this subsection, we shall use the formulation (8.2-11)–
(8.2-14), assuming that the compensator, if required, has already been included

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 317

8.2 TRACKING A REFERENCE INPUT 317

FIGURE 8.2-2 Plant/feedback structure.

in the system dynamics and demonstrating how to select the constant output
feedback gain matrix K using LQ techniques.

Our formulation differs sharply from the traditional formulations of the optimal
tracker problem studied in Chapter 4. Note that (8.2-14) includes both feedback
and feedforward terms, so that both the closed-loop poles and compensator zeros
may be affected by varying the gain K (see Example 8.2-1). Thus, we should
expect better success in shaping the step response than by placing only the poles.
We shall assume henceforth that the reference input r(t) is a step command with
magnitude r0. Designing for such a command will yield suitable time-response
characteristics. Although our design is based on step-response shaping, it should
be clearly realized that the resulting control system, if properly designed, will
give good time responses for any arbitrary reference command signal r(t).

Let us now formulate an optimal control problem for selecting the control
gain K to guarantee tracking of r(t). Then, we shall derive the design equations
in Table 8.2-1, which are used to determine the optimal K . These equations are
solved using software like that found in the Optimization Toolbox.

The Deviation System

Denote steady-state values by overbars and deviations from the steady-state val-
ues by tildes. Then, the state, output, and control deviations are given by

x̃(t) = x(t) − x (8.2-16)

ỹ(t) = y(t) − y = Kx̃ (8.2-17)

z̃(t) = z(t) − z = Hx̃ (8.2-18)

ũ(t) = u(t) − u = −KCx − KFr0 − (−KCx − KFr0)

= −KCx̃(t) (8.2-19)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 318

318 OUTPUT FEEDBACK AND STRUCTURED CONTROL

or

ũ = −Kỹ. (8.2-20)

The tracking error e(t) = r(t) - z(t) is given by

e(t) = ẽ(t) + e (8.2-21)

with the error deviation given by

ẽ(t) = e(t) − e = (r0 − Hx) − (r0 − Hx) = −Hx̃ (8.2-22)

or

ẽ = −z̃. (8.2-23)

Since in any acceptable design the closed-loop plant will be asymptotically
stable, Ac is nonsingular. According to (8.2-15), at steady state

0 = Acx + Bcr0, (8.2-24)

so that the steady-state state response x is

x = −A−1
c Bcr0 (8.2-25)

and the steady-state error is

e = r0 − Hx = (I + HA−1
c Bc)r0. (8.2-26)

To understand this expression, note that the closed-loop transfer function from
r0 to z (see (8.2-15) and (8.2-13)) is

H(s) = H(sI − Ac)
−1Bc. (8.2-27)

The steady-state behavior may be investigated by considering the DC value of
H(s) (i.e., s = 0); this is just −HA−1

c Bc, the term appearing in (8.2-24).
Using (8.2-16), (8.2-19), and (8.2-23) in (8.2-15) the closed-loop dynamics of

the state deviation are seen to be

˙̃x = Acx̃

ỹ = Cx̃

z̃ = Hx̃ = −ẽ (8.2-28)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 319

8.2 TRACKING A REFERENCE INPUT 319

and the control input to the deviation system (8.2-26) is (8.2-19). Thus, the step-
response shaping problem has been converted to a regulator problem for the
deviation system

˙̃x = Ax̃ + Bũ. (8.2-29)

Again, we emphasize the difference between our approach and the traditional
one described in Chapter 4. Once the gain K in (8.2-19) has been found, the
control for the plant is given by (8.2-14), which inherently has both feedback
and feedforward terms. Thus, no extra feedforward term need be added to make
e zero.

Performance Index

To make the tracking error e(t) in (8.2-20) small, we propose to attack two
equivalent problems: the problem of regulating the error deviation ẽ(t) = −z̃(t)

to zero, and the problem of making small the steady-state error e. Note that
we do not assume a type 1 system, which would force e to be equal to zero.
This can be important in aircraft controls, where it may not be desirable to force
the system to be of type 1 by augmenting all control channels with integrators.
This augmentation complicates the servo structure. Moreover, it is well known
from classical control theory that suitable step responses may often be obtained
without resorting to inserting integrators in all the feedforward channels.

To make small both the error deviation ẽ(t) = −Hx̃(t) and the steady-state
error e, we propose selecting K to minimize the performance index (PI)

J =
∫ ∞

0
(ẽTẽ + ũTRũ) dt + 1

2
eTV e, (8.2-30)

with R > 0, V ≥ 0 design parameters. The integrand is the standard quadratic PI
with, however, a weighting V included on the steady-state error. Note that the
PI weights the control deviations and not the controls themselves. If the system
is of type 1, containing integrators in all the feedforward paths, then V may be
set to zero since the steady-state error is automatically zero.

Making small the error deviation ẽ(t) improves the transient response, while
making small the steady-state error e(t) improves the steady-state response. If the
system is of type 0, these effects involve a trade-off, so that then there is a design
trade-off involved in selecting the size of V . We can generally select R = rI and
V = vI, with r and v scalars. This simplifies the design since now only a few
parameters must be tuned during the interactive design process. According to
(8.2-21), ẽTẽ = x̃THTHx̃. Referring to Table 8.1-1, therefore, it follows that the
matrix Q there is equal to HTH , where H is known. That is, weighting the error
deviation in the PI has already shown us how to select the design parameter Q ,
affording a considerable simplification.

The problem we now have to solve is how to select the control gains K to
minimize the PI J for the deviation system (8.2-29). Then, the tracker control
for the original system is given by (8.2-14).

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 320

320 OUTPUT FEEDBACK AND STRUCTURED CONTROL

We should point out that the proposed approach is suboptimal in the sense
that minimizing the PI does not necessarily minimize a quadratic function of the
total error e(t) = e + ẽ(t). It does, however, guarantee that both ẽ(t) and e are
small in the closed-loop system, which is a design goal.

Solution of the LQ Tracker Problem

It is now necessary to solve for the optimal feedback gain K that minimizes the
PI. The design equations needed are now derived. They appear in Table 8.2-1. By
using (8.2-26) and a technique like the one used in Section 8.3 (see problems),
the optimal cost is found to satisfy

J = 1
2 x̃T(0)P x̃(0) + 1

2eTV e, (8.2-31)

with P ≥ 0 the solution to

0 = g ≡ AT
c P + PAc + Q + CTKTRKC, (8.2-32)

with Q = HTH and e given by (8.2-24).
In our discussion of the linear quadratic regulator we assumed that the initial

conditions were uniformly distributed on a surface with known characteristics.
While this is satisfactory for the regulator problem, it is an unsatisfactory assump-
tion for the tracker problem. In the latter situation the system starts at rest and
must achieve a given final state that is dependent on the reference input, namely
(8.2-23). To find the correct value of x̃(0), we note that, since the plant starts at
rest (i.e., x(0) = 0), according to (8.2-25)

x̃(0) = −x, (8.2-33)

so that the optimal cost (8.2-31) becomes

J = 1
2xTPx + 1

2eTV e = 1
2 tr(PX) + 1

2eTV e, (8.2-34)

with P given by (8.2-32), e given by (8.2-24), and

X ≡ xxT = A−1
c Bcr0r

T
0 BT

c A−T
c , (8.2-35)

with A−T
c = (A−1

c)T . The optimal solution to the unit-step tracking problem, with
(8.2-11) initially at rest, may now be determined by minimizing J in (8.2-34) over
the gains K , subject to the constraint (8.2-32) and equations (8.2-24), (8.2-35).

This algebraic optimization problem can be solved by any well-known numeri-
cal method (cf Press et al. 1986, Söderström 1978). A good approach for a fairly
small number (mp ≤ 10) of gain elements in K is the SIMPLEX minimiza-
tion routine (Nelder and Mead 1964). To evaluate the PI for each fixed value
of K in the iterative solution procedure, one may solve (8.2-32) for P using

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 321

8.2 TRACKING A REFERENCE INPUT 321

the lyap.m subroutine in MATLAB (Control System Toolbox) and then employ
(8.2-34). Software for determining the optimal control gains K can be found in
the Optimization Toolbox.

Design Equations for a Gradient-based Solution

As an alternative solution procedure one may use gradient-based techniques (e.g.,
the Davidson-Fletcher-Powell algorithm [Press et al. 1986]), which are generally
faster than non-gradient-based approaches.

To find the gradient of the PI with respect to the gains, define the Hamiltonian

H = tr(PX) + tr(gS) + 1
2eTV e, (8.2-36)

with S a Lagrange multiplier. Now, using the basic matrix calculus identities

∂Y−1

∂x
= −Y−1 ∂Y

∂x
Y−1 (8.2-37)

∂UV

∂x
= ∂U

∂x
V + U

∂V

∂x
(8.2-38)

∂y

∂x
= tr

[
∂y

∂z
· ∂zT

∂x

]
, (8.2-39)

we may proceed as in the previous section, with, however, a little more patience
due to the extra terms (see the problems at the end of the chapter), to obtain the
necessary conditions for a solution given in Table 8.2-1.

To find K by a gradient minimization algorithm, it is necessary to provide
the algorithm with the values of J and ∂J/∂K for a given K . The value of J
is given by the expression in Table 8.2-1 for the optimal cost. To find ∂J/∂K

given K , solve (8.2-40), (8.2-41) for P and S . Then, since these equations hold,
∂J/∂K = ∂H/∂K , which may be found using (8.2-42).

These equations should be compared to those in Table 8.1-1. Note that the
dependence of X on the gain K (see (8.2-45)) and the presence of e in the PI
have resulted in extra terms being added in (8.2-42).

Determining the Optimal Feedback Gain

The issues in finding the optimal output-feedback gain K in the tracker problem
of Table 8.2-1 are the same as those discussed in connection with the regulator
problem of Table 8.1-1: choice of Q to satisfy detectability, choice of solution
technique, finding an initial stabilizing gain, and iterative design by tuning Q and
R. We emphasize that there are only a few design parameters in our approach,
namely r and v (since we can generally select R = rI, V = vI). Thus, it is not
difficult or time-consuming to come up with good designs. Much of the simplicity
of our approach derives from the fact that Q in the PI is equal to HTH , which
is known. Let us now illustrate the servodesign procedure by an example.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 322

322 OUTPUT FEEDBACK AND STRUCTURED CONTROL

TABLE 8.2-1 LQ Tracker with Output Feedback

System model :
ẋ = Ax + Bu + Gr

y = Cx + Fr

z = Hx

Control :

u = −Ky

Performance index :

J = 1

2

∫ ∞

0

(
x̃TQx̃ + ũTRũ

)
dt + 1

2
eTV e, with Q = HTH

Optimal output feedback gain:

0 = ∂H

∂S
= AT

c P + PAc + Q + CTKTRKC (8.2-40)

0 = ∂H

∂P
= AcS + SAT

c + X (8.2-41)

0 = 1

2

∂H

∂K
= RKCSCT − BTPSCT + BTA−T

c (P + HTVH)xyT (8.2-42)

with r a unit step of magnitude r0 and

x = −A−1
c Bcr0 (8.2-43)

y = Cx + Fr0 (8.2-44)

X = xxT = A−1
c Bcr0r

T
0 BT

c A−T
c , (8.2-45)

where

Ac = A − BKC, Bc = G − BKF

Optimal cost :

J = 1
2 tr(PX) + 1

2 eTV e

Example 8.2-1. Normal Acceleration CAS

In this example, we show that, using the LQ design equations in Table 8.2-1, we can
close all the loops simultaneously. Thus, the design procedure is more straightforward.
We also demonstrate that using LQ design, the algorithm automatically selects the zero
of the compensator for optimal performance.

a. Control System Structure

The normal acceleration control system is shown in Fig. 8.2-3, where r is a reference step
input in g’s and u(t) is the elevator actuator voltage. An integrator has been added in the
feedforward path to achieve zero steady-state error. The performance output that should
track the reference command r is z = nz, so that the tracking error is e = r - nz. The

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 323

8.2 TRACKING A REFERENCE INPUT 323

FIGURE 8.2-3 G-command system.

state and measured output are

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

α

q

δe

αF

ε

⎤
⎥⎥⎥⎥⎥⎥⎦

, y =

⎡
⎢⎢⎢⎢⎣

αF

q

e

ε

⎤
⎥⎥⎥⎥⎦ , (1)

with ε(t) the integrator output and αF the filtered measurements of angle of attack.
The linearized F-16 dynamics about the nominal flight condition are augmented to

include the elevator actuator, angle-of-attack filter, and compensator dynamics. The
result is

ẋ = Ax + Bu + Gr (2)

y = Cx + Fr (3)

z = Hx, (4)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1.01887 0.90506 −0.00215 0 0

0.82225 −1.07741 −0.17555 0 0

0 0 −20.2 0 0

10 0 0 −10 0

−16.26 −0.9788 0.04852 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5a)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

20.2

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5b)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 324

324 OUTPUT FEEDBACK AND STRUCTURED CONTROL

C =

⎡
⎢⎢⎢⎣

0 0 57.2958 0 0

0 57.2958 0 0 0

−16.26 −0.9788 0.04852 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5c)

H = [16.26 0.9788 − 0.04852 0 0]. (5d)

The factor of 57.2958 is added to convert angles from radians to degrees. The control
input is

u = −Ky = −[kα kq ke kI]y = −kααF − kqq − kee − kI ε. (6)

It is desired to select the four control gains to guarantee a good response to a step command
r . Note that kα and kq are feedback gains, while ke and kI are feedforward gains.

The proportional-plus-integral compensator is given by

ke + kI

s
= ke

s + kI /ke

s
, (7)

which has a zero at s = kI /ke. Since the LQ design algorithm will select all four control
gains, it will automatically select the optimal location for the compensator zero.

b. Performance Index and Determination of the Control Gains

Due to the integrator, the system is of type 1. Therefore, the steady-state error e is
automatically equal to zero. A natural PI thus seems to be

J = 1

2

∫ ∞

0
(ẽ2 + ρũ2) dt, (8)

with ρ a scalar weighting parameter. Since ẽ = Hx̃, this corresponds to the PI in
Table 8.2-1 with

Q = HTH =

⎡
⎢⎢⎢⎢⎢⎢⎣

264.3876 15.9153 −0.7889 0 0

15.9153 0.9580 −0.0475 0 0

−0.7889 −0.0475 0.0024 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

This is, unfortunately, not a suitable Q matrix since (H, A) is not observable in open
loop. Indeed, according to Fig. 8.2-3 observing the first two states α and q can never give
information about ε in the open-loop configuration (where the control gains are zero).
Thus, the integrator state is unobservable in the PI. Since the integrator pole is at s = 0,
(H , A) is undetectable (unstable unobservable pole), so that any design based on (9)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 325

8.2 TRACKING A REFERENCE INPUT 325

would, in fact, yield a value for the integral gain of kI = 0. To correct the observability
problem here let us select

Q = HTH =

⎡
⎢⎢⎢⎢⎢⎢⎣

264.3876 15.9153 −0.7889 0 0

15.9153 0.9580 −0.0475 0 0

−0.7889 −0.0475 0.0024 0 0

0 0 0 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (10)

where we include a weighting on ε(t) to make it observable in the PI.
Now, we selected ρ = 1 and solved the design equations in Table 8.2-1 for the optimal

control gain K. For this Q and ρ the feedback matrix was

K = [0.0005 − 0.1455 1.1945 1.0000] (11)

and the closed-loop poles were

s = −1.24 ± j0.79

− 1.28, −10.00 − 20.28. (12)

These yield a system that is not fast enough; the complex pair is also unsuitable in terms
of flying qualities requirements.

After repeating the design using several different Q and ρ, we decided on

Q = HTH =

⎡
⎢⎢⎢⎢⎢⎢⎣

264.3876 15.9153 −0.7889 0 0

15.9153 0.9580 −0.0475 0 0

−0.7889 −0.0475 0.0024 0 0

0 0 0 0 0

0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎦

, (13)

ρ = 0.01. The decreased control weighting ρ has the effect of allowing larger control
effort and so speeding up the response. The increased weighting on the integrator output
ε(t) has the effect of forcing nz to its final value of r more quickly, hence also speeding
up the response. The increased weighting on the second state component q has the effect
of regulating excursions in q̃(t) closer to zero, and hence of providing increased damping.

With this Q and ρ the control matrix was

K = [−0.0075 − 1.0504 25.6504 100.0000] (14)

and the closed-loop poles were at

s = −2.89 ± j3.76

− 16.47 ± j3.76

− 10. (15)

The closed-loop step response is shown in Fig. 8.2-4; it is fairly fast with an overshoot
of 6%. Note the slight delay due to the nonminimum-phase zero. Further tuning of the

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 326

326 OUTPUT FEEDBACK AND STRUCTURED CONTROL

FIGURE 8.2-4 Normal acceleration step response.

elements of Q and R could provide less overshoot, a faster response, and a smaller gain
for the angle-of-attack feedback.

According to (7), the compensator zero has been placed by the LQ algorithm at

s = −kI /ke = −4.06. (16)

c. Discussion

We can now emphasize an important aspect of modern LQ design. As long as Q ≥ 0,
R > 0, and (

√
Q,A) is observable, the closed-loop system designed using Table 8.2-1 is

generally stable. Thus, the LQ theory has allowed us to tie the control system design to
some design parameters that may be tuned to obtain acceptable behavior–namely, the
elements of weighting matrices Q and R. If the optimal control gain K does not result
in suitable performance in terms of time responses and closed-loop poles, the elements
of Q and R can be changed and the design repeated. The importance of this is that for
admissible Q and R, closed-loop stability is guaranteed. A disadvantage of the design
equations in Table 8.2-1 is the need to try different Q and R until suitable performance
is obtained, as well as the need for (H, A) to be observable.

Another point needs to be made. Using the control (6) in (2) and using (3), yields the
closed-loop plant

ẋ = (A − BKC)x + (G − BKF)r, (17)

whence the closed-loop transfer function from r(t) to z(t) is

H(s) = H(sI − (A − BKC))−1(G − BKF). (18)

Note that the transfer function numerator depends on the optimal gain K . That is, this
scheme uses optimal positioning of both the poles and zeros to attain step-response
shaping.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 327

8.3 TRACKING BY REGULATOR REDESIGN 327

d. Selection of Initial Stabilizing Gain

To initialize the algorithm that determines the optimal K by solving the design equations
in Table 8.2-1, it is necessary to find an initial gain that stabilizes the system. In this
example, we simply selected gains with signs corresponding to the static loop sensitivity
of the individual transfer functions, since this corresponds to negative feedback. The static
loop sensitivities from u to α and from u to q are negative, so positive gains were chosen
for these loops (note (A − BKC)). The initial gain used was

K = [1 1 − 1 1]. (19)
�

8.3 TRACKING BY REGULATOR REDESIGN

In this section we discuss an alternative tracker design technique that amounts to
first designing a regulator and then adding some feedforward terms to guarantee
tracking behavior. This technique does not have the advantages of the direct
design approach of the previous section. There, we were able to

1. Select the form of the compensator, including a unity outer loop to allow
feedforward of the error.

2. Simplify the design stage by using only a few design parameters in the PI.

However, the approach to be presented here is simple to understand and may
be quite useful in some applications. It will also give us some more insight on
the tracking problem.

Let us suppose that the plant-plus-compensator in Fig. 8.2-1 is described, using
the technique in Section 8.2, as

ẋ = Ax + Bu + Er (8.3-1)

y = Cx + Fr (8.3-2)

z = Hx, (8.3-3)

where y(t) is the measurable output available for feedback and the performance
output z(t) is required to track the reference input r(t). The tracking error is

e = r − z. (8.3-4)

Thus, this augmented description contains the dynamics of both the plant and
the compensator. It is desired to select the control input u(t) so that the tracking
error goes to zero.

Deviation System

For perfect tracking, there must exist an ideal plant state x∗ and an ideal plant
input u∗ such that

ẋ∗ = Ax∗ + Bu∗ + Er (8.3-5)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 328

328 OUTPUT FEEDBACK AND STRUCTURED CONTROL

y∗ = Cx∗ + Fr (8.3-6)

z∗ = Hx∗ = r. (8.3-7)

If this is not so, then we cannot have tracking with zero error. See O’Brien and
Broussard (1978). What this assumption means is that there is indeed a control
input u∗(t) that results in a performance output z∗(t) equal to the desired r(t).

Defining the state, control, and output deviations as

x̃ = x − x∗, ũ = u − u∗, ỹ = y − y∗, z̃ = z − z∗, (8.3-8)

we may subtract (8.3-5)–(8.3-7) from (8.3-1)–(8.3-3) to obtain the dynamics of
the “deviation system” given by

˙̃x = Ax̃ + Bũ (8.3-9)

ỹ = Cx̃ (8.3-10)

z̃ = Hx̃ = −e. (8.3-11)

Thus, to regulate the tracking error to zero we may simply design a regulator to
control the state of the deviation system to zero. To do this, it is only necessary
to select a reasonable PI that weights x̃ and ũ, and then use the design equations
in Table 8.1-1, not the more complicated development relating to Table 8.2-1.

Let us note, however, that now the usual restrictions on the PI weights Q and
R in Table 8.1-1 apply. That is, (

√
Q,A) should be observable. What this means

is that we will generally be faced with selecting too many design parameters (i.e.,
the elements of Q and R). Thus, an important advantage of using the approach
in Section 8.2 is lost.

Regulator Redesign Adding Feedforward Terms

Suppose we have obtained output feedback gains K that are optimal with respect
to (8.3-9)–(8.3-11). Then

ũ = −Kỹ, (8.3-12)

so that the required control for the plant is

u = u∗ + ũ = u∗ + Kỹ − Ky. (8.3-13)

That is, the resulting control for the servo or tracker problem is the optimal
regulator feedback control –Ky plus some feedforward terms that are required
to guarantee perfect tracking.

We should emphasize that, while the control (8.3-12), designed for the
deviation system, is optimal, the control (8.3-13) is not an optimal solution to
the tracker problem for the original plant. However, the closed-loop response

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 329

8.3 TRACKING BY REGULATOR REDESIGN 329

resulting from (8.3-13) may be satisfactory for many applications; hence, this is
not too severe a drawback.

It is now necessary to determine the ideal plant control u∗ and output y∗ in
order to complete the design of the servo control law (8.3-13). To accomplish
this, take the Laplace transform of the ideal plant to obtain R = Z∗ = H(sI −
A)−1[BU∗ + ER], or

H(sI − A)−1BU∗(s) = [I − H(sI − A)−1E]R(s). (8.3-14)

Define the transfer function from u(t) to z(t) as

H(s) = H(sI − A)−1B. (8.3-15)

There exists a solution U∗(s) to (8.3-14) for all R(s) if and only if H(s) has
full row rank. Thus, the number of control inputs should be at least equal to the
number of performance outputs. This is an important and fundamental restriction
on the tracking problem.

Let us assume that the number of control inputs is equal to the number of
performance outputs so that H(s) is square. If in addition H(s) is nonsingular,
then

U∗(s) = H−1(s)[I − H(sI − A)−1E]R(s) (8.3-16)

Y ∗(s) = C(sI − A)−1[BU ∗ (s) + ER(s)] + FR(s). (8.3-17)

Using these values of u∗(t) and y∗(t) in (8.3-13) yields the tracker control law.

Tracking a Unit Step

If r(t) is a unit step, then the feedforward terms simplify and we can gain more
intuition on the servo control problem. In this case, the ideal responses are nothing
but the steady-state responses since ẋ∗ = 0. See Kwakernaak and Sivan (1972).
Substituting the control (8.3-13) into (8.3-1) yields

ẋ = Acx + Er + B(u∗ + Ky∗) (8.3-18)

z = Hx, (8.3-19)

where
Ac = A − BKC. (8.3-20)

Noting that x∗ is constant, we see that, at steady state

0 = Acx
∗ + Er + B(u∗ + Ky∗). (8.3-21)

Thus, if r = z∗ as desired,

r = Hx∗ = −HA−1
c [B(u∗ + Ky∗) + Er], (8.3-22)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 330

330 OUTPUT FEEDBACK AND STRUCTURED CONTROL

since Ac is stable, and, hence, invertible, in any useful design. Therefore,

−HA−1
c B(u∗ + Ky∗) = [I + HA−1

c E]r. (8.3-23)

Let us define the closed-loop transfer function from u(t) to z(t) as

Hc(s) = H(sI − (A − BKC))−1B. (8.3-24)

Then, (8.3-23) may be solved for the feedforward terms (u∗ + Ky∗) if and only
if the closed-loop DC gain Hc(0) is invertible. (Note that Hc(0) = −HA−1

c B.) In
that event

(u∗ + Ky∗) = H−1
c (0)[I + HA−1

c E]r, (8.3-25)

and the servo control (8.3-13) is given by

u = −Ky + H−1
c (0)[I + HA−1

c E]r. (8.3-26)

The second term is a feedforward term added to achieve the correct steady-
state value of z(t). Thus, the servo control is equal to the optimal regulator
feedback control –Ky plus a term involving the inverse of the closed-loop DC
gain. Equation (8.3-26) is the fundamental design equation of this section. The
feedback does not change the system zeros. Consequently, the zeros of H(s) and
those of Hc(s) are the same. Thus, Hc(0) is invertible if and only if the plant has
no system zeros at s = 0. This is the condition for perfect tracking of a unit step
command, which has a pole at s = 0. It makes sense, since the DC behavior is
related to the steady-state response.

Example 8.3-1. Tracking by Regulator Design

Consider the plant

ẋ =
[−α 1

0 0

]
(1)

z = [1 0]x = Hx. (2)

It is desired to use only x1 for feedback purposes so that

y = [1 0]x = Cx. (3)

The control objective is to select u(t) to make the tracking error

e = r − z (4)

go to zero. We assume that r(t) is an arbitrary command input, not necessarily the unit
step. To achieve this goal, we can select any reasonable PI that weights x̃ and ũ, and
then use the equations in Table 8.1-1 to obtain the optimal LQ regulator gain K in the
deviation system control law

ũ = −Kỹ. (5)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 331

8.4 COMMAND-GENERATOR TRACKER 331

To convert this regulator to a tracker, we can use equations (8.3-16) and (8.3-17) to write
(verify!)

u∗(t) = r̈(t) + αṙ(t) (6)

y∗(t) = r(t). (7)

Therefore, the control that ensures tracking of r(t) by z (t) is

u = r̈ + αṙ + Kr − Ky. (8)

An implementation of this control scheme appears in Fig. 8.3-1. Note that, generally,
the feedforward term that is added to the feedback control is a linear combination of r(t)
and its derivatives. This may not be satisfactory in some applications, since differentiation
generally makes noisy signals noisier; consequently, it is usually advisable to avoid it.

FIGURE 8.3-1 Tracker obtained using regulator redesign.

In our applications, we should like to have control schemes of the form of Fig. 8.2-1,
which have a unity feedback outer loop from z (t) and feedforward of the tracking error
e(t). This is a structure that takes into account the intuition of classical control theory. As
it turns out, in this example y = z, so that the control law (8) may be reformulated as

u = r̈ + αṙ + Ke. (9)

However, in general, y = z, so it is not usually possible to formulate the control schemes
resulting from the approach of this section using a unity feedback outer loop. �

8.4 COMMAND-GENERATOR TRACKER

In Section 8.2 we selected a PI compensator to make the loop gain of type 1
in order to obtain zero steady-state tracking error in response to a step com-
mand input (i.e., a position command). If the reference input is not a unit step,
then a single integrator will no longer guarantee a steady-state error of zero. In
Section 8.3 we saw how to convert a regulator into a tracker by adding addi-
tional feedforward terms. However, if the reference input r(t) is not constant, the
feedforward terms generally contain derivatives of r(t).

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 332

332 OUTPUT FEEDBACK AND STRUCTURED CONTROL

In this section we demonstrate the command-generator tracker (CGT) design,
which is a powerful design technique that automatically gives the precompensator
required to obtain zero steady-state error for a large class of command inputs r(t).
See Franklin et al. (1986). In this approach, we shall incorporate a model of the
dynamics of r(t) into the control system.

As we shall see, CGT design may be used for tracking and also for disturbance
rejection.

Tracking

The plant
ẋ = Ax + Bu (8.4-1)

has measured outputs available for control purposes given by

y = Cx, (8.4-2)

and its performance output
z = Hx (8.4-3)

is required to track the reference input r(t).

Command-generator System

Let us suppose that for some initial conditions the reference command satisfies
the differential equation

r(d) + a1r
(d−1) + · · · + adr = 0 (8.4-4)

for a given degree d and set of coefficients ai . Most command signals of interest
satisfy such an equation. For instance, the unit step of magnitude r0 satisfies

ṙ = 0 (8.4-5)

with r(0) = r0, while the ramp (velocity command) with slope v0 satisfies

r̈ = 0, (8.4-6)

with r(0) = 0, ṙ(0) = v0.
We may express (8.4-4) in state-variable (observability canonical) form

(Kailath 1980). Illustrating for the case of scalar r(t) and d = 3, this is

ρ̇ =

⎡
⎢⎣

0 1 0

0 0 1

−a3 −a2 −a1

⎤
⎥⎦ ρ ≡ Fρ

r = [1 0 0]ρ. (8.4-7)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 333

8.4 COMMAND-GENERATOR TRACKER 333

Note that in this form the plant matrix is zero except for a superdiagonal of 1’s and
the bottom row of coefficients. We call (8.4-4) – (8.4-7) the command-generator
system.

Let us define the command-generator characteristic polynomial as

�(s) = sd + a1s
d−1 + · · · + ad. (8.4-8)

Then, denoting d/dt in the time domain by s , we may write (8.4-4) as

�(s)r = 0. (8.4-9)

To make z (t) follow r(t), define the tracking error

e = r − z = r − Hx. (8.4-10)

We should like to convert the servo or tracking problem into a regulator
problem where the error must be regulated to zero.

Modified System

To accomplish this, write

�(s)e = �(s)r − �(s)Hx = −Hξ, (8.4-11)

where we have used (8.4-9) and defined the modified plant state vector

ξ = �(s)x = x(d) + a1x
(d−1) + · · · + adx. (8.4-12)

Note that (8.4-11) may be written in the observability canonical form

ε̇ = Fε +
[

0

−H

]
ξ, (8.4-13)

where ε(t) = [eė · · · e(d−1)]T is the vector of the error and its first d − 1 deriva-
tives.

To determine the dynamics of ξ (t), operate on (8.4-1) with �(s) to obtain

ξ̇ = Aξ + Bμ, (8.4-14)

where the modified control input is

μ = �(s)u = u(d) + a1u
(d−1) + · · · + adu. (8.4-15)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 334

334 OUTPUT FEEDBACK AND STRUCTURED CONTROL

Now we may put all the dynamics (8.4-13), (8.4-14) into a single augmented
state representation by writing

d

dt

[
ε

ξ

]
=

⎡
⎢⎣

0

F −H

0 A

⎤
⎥⎦

[
ε

ξ

]
+

[
0

B

]
μ. (8.4-16)

Using this system, we may now perform a LQ regulator design, since if its
state goes to zero, then the tracking error e(t) vanishes. For this design, we take
the outputs available for feedback as

v =
[
I 0

0 C

][
ε

ξ

]
. (8.4-17)

We can select any reasonable PI that weights [εT ξT]T and μ and use the design
equations in Table 8.1-1 to obtain optimal feedback gains so that

μ = −[Kε Ky]

[
ε

Cξ

]
(8.4-18)

or
�(s)u = −Kεε − KyC�(s)x. (8.4-19)

Servo Compensator

To determine the control input u(t) for the original system, write this as

�(s)(u + Kyy) = −Kεε − [Kd · · · K2K1]

⎡
⎢⎢⎢⎢⎣

e

ė

...

ed−1

⎤
⎥⎥⎥⎥⎦ . (8.4-20)

Thus, we obtain the transfer function

u + Kvy

e
= K1s

d−1 + · · · + Kd−1s + Kyd

sd + a1sd−1 + · · · + ad

, (8.4-21)

which may be implemented in reachability canonical form to obtain the servo
control structure shown in Fig. 8.4-1. If d = 1 so that r(t) is a ramp, it yields
two integrators in the feedforward compensator, which results in a type 2 system
and gives zero steady-state error.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 335

8.4 COMMAND-GENERATOR TRACKER 335

FIGURE 8.4-1 Command-generator tracker for d = 3.

Note that the CGT is a servo controller that has a sensible structure with no
derivatives of r(t). Note further that its dynamics reflect the dynamics of the
reference input. In fact, the controller is said to contain an internal model of the
reference input generator.

It should be emphasized that this technique is extremely direct to apply. Indeed,
given the command-generator polynomial �(s), the system (8.4-16), (8.4-17) may
be written down immediately, and the equations in Table 8.1-1 used to select the
feedback gains.

It remains to say that we may place all the poles of the modified system
(8.4-16) using full state feedback (i.e., C = I) if and only if the system is reach-
able. That is, the reachability matrix should have full rank. This should logically
be a necessary condition if we want to accomplish the more difficult problem
of pole placement using reduced-state, that is output, feedback with C �= I . It is
not too difficult to show by a straightforward determination of the reachability
matrix of (8.4-16) that the modified system is reachable if

1. The original system (8.4-1) is reachable, and
2. The open-loop transfer function from u(t) to z(t) given by

H(s) = H(sI − A)−1B (8.4-22)

has no zeros at the roots of �(s) = 0.
The second condition represents a restriction on the sorts of command inputs

that a given plant may follow with zero steady-state error. For instance, to track
a unit step the plant can have no system zeros at s = 0.

A word on the command-generator assumption (8.4-4) is in order. For control
systems design it is not necessary to determine the coefficients ai that describe the
actual reference command, which may be a complicated function of time (e.g.,
the pilot’s command in an aircraft design example). Instead, the performance
objectives should be taken into account to select �(s). For instance, if it is
desired for the plant to follow a position command, then for design purposes we
may select the command generator ṙ = 0. On the other hand, if the plant should
follow a rate (velocity) command, we may select r̈ = 0. Then, when the actual
command input is applied (which may be neither a unit step nor a unit ramp) the
system will exhibit the appropriate closed-loop behavior.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 336

336 OUTPUT FEEDBACK AND STRUCTURED CONTROL

Example 8.4-1. Track Following for a Disk Drive Head-positioning System

The head-positioning mechanism for a disk drive can be either rotary or of the linear
voice coil actuator type. The latter is described by

ÿ = k

m
u, (1)

where m is the mass of the coil and carriage assembly, k(nt/V) is the product of the
motor force constant and power amplifier gain, y(t) is the head position, and control input
u(t) is motor voltage (Bell et al. 1984). By absorbing the constant k/m into the definition
of the input, we may write the state-variable description

ẋ =
[

0 1

0 0

]
x +

[
0

1

]
u = Ax + Bu, (2)

with x = [y v]T and v(t) the head velocity, where u(t) is now in units of acceleration.
This is just the Newton’s law system we have already discussed in several examples.

There are two control problems associated with the head-positioning mechanism. One
is the track access or seek problem. Here, the head must be driven from an initial position
to a certain track in minimum time. The second problem is that of track following, where
a servo control system must be designed to hold the head above a specified track while
reading from or writing to the disk. In this example we should like to deal with the
track-following problem (Franklin et al. 1986).

Let the rotational velocity of the disk be ω0, which is usually between 2500–4000 rpm
depending on the application. Because the disk is not quite centered, the tracks defined
as circles on the disk actually trace out ellipses with respect to a stationary head position.
The spindle design keeps the once-around runout component of the disk motion within
300 microinches. However, for reading and writing it is desired that the head follow the
track with an error of less than 75 microinches.

To design a servo control system under these circumstances, we must account for the
fact that the reference input r(t) (i.e., the desired radius from the center of the spindle)
satisfies the equation

r̈ = ω2
0r = 0. (3)

Therefore, the command-generator polynomial is

�(s) = s2 + ω2
0. (4)

It is desired for the head position y(t) to follow r(t), so that the performance output is

z = [10]x = Hx. (5)

The augmented system (8.4-16) may now be written down as

d

dt

⎡
⎢⎢⎣

e

ė

ξ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0

−ω2
0 0 −1 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

e

ė

ξ

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦ μ. (6)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 337

8.4 COMMAND-GENERATOR TRACKER 337

Now, the LQ regulator design equations from Table 8.1-1 may be used to obtain the
optimal feedback gains for this system so that

μ = −[ki kė ky kv]

⎡
⎢⎣

e

ė

ξ

⎤
⎥⎦ . (7)

For this stage of the controls design we can select the PI in Table 8.1-1 with Q = qI,
R = I , where q is a design parameter, which may be chosen large for good regulation
(e.g., q = 100).

Finally, the track-following servo controller is given by (8.4-21), which has the form
of Fig. 8.4-1 with d = 2. The command-generator controller has an oscillator with a
frequency of ω0 as a precompensator. It is called the internal model of the reference
generator (Franklin et al. 1986).

It is worth noting that in this situation (7) is a full state-variable feedback. Thus, if
we prefer we may use the Riccati-equation approach in Section 3.4 to select the control
gains. �

Tracking with Disturbance Rejection

The CGT approach may also be used in the disturbance rejection problem.

Disturbance Generator System

If the system is driven by an unknown disturbance d(t), then (8.4-1) must be
modified to read

ẋ = Ax + Bu + Dd. (8.4-23)

Suppose d(t) satisfies the differential equation

d(q) + p1d
(q−1) + · · · + pqd = 0 (8.4-24)

for some degree q and known coefficients pi . In illustration, d could be a constant
unknown disturbance so that d = 0, or a sinusoidal disturbance that satisfies a
differential equation of order two.

Define
�d(s) = sq + p1s

q−1 + · · · + pq, (8.4-25)

so that
�d(s)d = 0, (8.4-26)

where s represents d/dt in the time domain. With

ξ ≡ �d(s)x, μ ≡ �d(s)u, (8.4-27)

it follows that (8.4-23) may be written as

ξ̇ = Aξ + Bμ, (8.4-28)

which does not involve the disturbance.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 338

338 OUTPUT FEEDBACK AND STRUCTURED CONTROL

Tracking and Disturbance Rejection

Now, suppose that the reference input r(t) satisfies

�r(s)r = 0 (8.4-29)

for some given �r(s). Defining

�(s) = �d(s)�r(s), (8.4-30)

we may use the CGT technique to derive a controller that results in tracking of
r(t) by the performance output

z = Hx (8.4-31)

in the presence of the disturbance d(t). Indeed, if the measured output is y = Cx,
the required controller is given exactly by (8.4-21) with the modified �(s) of
(8.4-30). Referring to the discussion following (8.4-21), we see that perfect dis-
turbance rejection may be achieved only if the system has no zeros at the poles
of the disturbance.

In point of fact, we need not select the polynomial �(s) given by (8.4-30)
if �d(s) and �r(s) have common factors. Instead, we should select the least
common multiple of �d(s) and �r(s).

8.5 EXPLICIT MODEL-FOLLOWING DESIGN

Here, we consider the problem of controlling a plant so that it has a response
like that of a prescribed model with desirable behavior. The model has desirable
qualities in terms of speed of response, percent overshoot, robustness, and so
on. In aircraft control, for instance, a series of performance models for different
situations is tabulated in Mil. Spec. (1797). Thus, aircraft controls design often
has the objective of making the aircraft behave like the specified model.

There are two fundamentally different sorts of model-following control,
“explicit” and “implicit,” which result in controllers of different structure
(Armstrong 1980, Kreindler and Rothschild 1976). The latter, however, yields
an inconvenient form of controller for the servo design or tracking problem;
specifically, it usually requires derivatives of the performance output (Stevens
and Lewis 1992). Therefore, in this section we consider only explicit model
following. Implicit model following is important for a different application,
namely, selecting the performance index weighting matrices.

Regulator with Model Following

First, we consider the regulator problem, where the objective is to drive the plant
state to zero. Then, we treat the more difficult tracker or servo problem, where
the plant is to follow a reference command with behavior like the prescribed
model.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 339

8.5 EXPLICIT MODEL-FOLLOWING DESIGN 339

Let the plant be described in state-variable form by

ẋ = Ax + Bu (8.5-1)

y = Cx (8.5-2)

z = Hx (8.5-3)

with state x(t) ∈ Rn and control input u(t) ∈ Rm. The measured output y(t) is
available for feedback purposes. A model is prescribed with dynamics

˙̃x = Ãx̃ (8.5-4)

Z̃ = H̃ x̃, (8.5-5)

where the model matrix Ã reflects a system with desirable handling qualities,
such as speed of response, overshoot, and so on. The model states available for
feedback purposes are given by

ỹ = C̃x̃. (8.5-6)

Model quantities shall be denoted by underbars or the subscript “m .”
It is desired for the plant performance output z(t) to match the model output

z(t), for then the plant will exhibit the desirable time response of the model. That
is, we should like to make small the model mismatch error

e = z̃ − z = H̃ x̃ − Hx. (8.5-7)

To achieve this control objective, let us select the performance index

J = 1

2

∫ ∞

0
(eTQe + uTRu) dt, (8.5-8)

with Q ≥ 0 and R > 0.
We can cast this model-matching problem into the form of the regulator prob-

lem whose solution appears in Table 8.1-1 as follows. Define the augmented state
x′ = [xTx̃T]T and the augmented system

ẋ′ =
[
A 0

0 Ã

]
x′ +

[
B

0

]
u ≡ A′x′ + B ′u (8.5-9)

y′ =
[
C 0

0 C̃

]
x′ ≡ C′x′ (8.5-10)

so that
e = [−H H̃]x′ ≡ H ′x′. (8.5-11)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 340

340 OUTPUT FEEDBACK AND STRUCTURED CONTROL

Then, the PI (8.5-8) may be written

J = 1

2

∫ ∞

0
((x′)TQ′x′ + uTRu) dt, (8.5-12)

with

Q′ =
[

HTQH −HTQH̃

−H̃TQH H̃TQH̃

]
. (8.5-13)

At this point, it is clear that the design equations of Table 8.1-1 apply if the
primed quantities A′, B ′, C′, Q′, are used. The conditions for convergence of
the algorithm in Table 8.1-2 require that (A′, B ′, C′) be output stabilizable and
(
√

Q′, A′) be detectable. Since the model matrix A is certainly stable, the block
diagonal form of A′ and C′ shows that output stabilizability of the plant (A, B,
C) is required. The second condition requires detectability of (

√
QH, A).

It should be noted that the detectability condition on (
√

QH, A) may be
avoided by including time weighting of the form tk(x′)TQ′x′ in the PI. Then, the
control gains may be computed by using a simplified version of the equations
in Table 8.2-1. Specifically, since the equations there deal with the tracker prob-
lem, we can take X = I and y = 0 to solve the regulator design problem. This
corresponds to minimizing not J but its expected value. See the discussion in
Sections 8.1 and 8.2.

The form of the resulting control law is quite interesting. Indeed, the optimal
feedback is of the form

u = −K ′y′ ≡ −[Kp Km]y′ = −Kpy − Kmỹ. (8.5-14)

Thus, not only the plant output but also the model output is required. That is, the
model acts as a compensator to drive the plant states to zero in such a fashion
that the performance output z(t) follows the model output z(t).

Tracker with Model Following

Unfortunately, while the model-following regulator problem has a direct solution
that is easy to obtain, the model-following tracker problem is not easy. In this
situation, we should like the plant (8.5-1)–(8.5-3) to behave like the model

˙̃x = Ãx̃ + B̃r, (8.5-15)

z̃ = H̃ x̃, (8.5-16)

which is driven by the reference input r(t). The approach above yields

ẋ′ =
[
A 0

0 Ã

]
x′ +

[
B

0

]
u +

[
0

B̃

]
r ≡ A′x′ + B ′u + G′r, (8.5-17)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 341

8.5 EXPLICIT MODEL-FOLLOWING DESIGN 341

which contains a term in r(t). For such systems, the determination of the optimal
feedback gains is not straightforward (see Chapter 4).

Therefore, let us approach the problem by using the command-generator tech-
nique of Section 8.4. Thus, suppose for some initial conditions the reference
command satisfies the differential equation

r(d) + a1r
(d−1) + · · · + adr = 0 (8.5-18)

for a given degree d and set of coefficients ai . Define the command-generator
characteristic polynomial as

�(s) = sd + a1s
d−1 + · · · + ad. (8.5-19)

Then, denoting d/dt in the time domain by s , we may write

�(s)r = 0. (8.5-20)

Multiplying the augmented dynamics (8.5-17) by �(s) results in

ξ̇ = A′ξ + B ′μ, (8.5-21)

where the modified state and control input are

ξ = �(s)x′ = (x′)(d) + a1(x
′)(d−1) + · · · + adx

′, (8.5-22)

μ = �(s)u = u(d) + a1u
(d−1) + · · · + adu. (8.5-23)

We note the important point that r(t) has vanished by virtue of (8.5-20). Let us
denote

ξ =
[

ξp

ξm

]
, (8.5-24)

with ξp the modified plant state and ξm the modified model state. Applying �(s)
to the model mismatch error (8.5-7) results in

�(s)e = [−H H̃] = H ′ξ. (8.5-25)

This may be expressed in terms of state-variables using the observability canon-
ical form (Kailath 1980), which for scalar e(t) and d = 3 is

ε̇ =

⎡
⎢⎣

0 1 0

0 0 1

−a3 −a2 −a1

⎤
⎥⎦ ε

[
0

H ′

]
ξ ≡ Fε +

[
0

H ′

]
ξ (8.5-26)

e = [1 0 0]ε, (8.5-27)

where ε(t) = [e ė · · · e(d−1)]T is the vector of the error and its first d − 1 deriva-
tives.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 342

342 OUTPUT FEEDBACK AND STRUCTURED CONTROL

Collecting all the dynamics (8.5-21), (8.5-26) into one system yields

d

dt

[
ε

ξ

]
=

⎡
⎢⎣

0

F H ′

0 A′

⎤
⎥⎦

[
ε

ξ

]
+

[
0

B ′

]
μ. (8.5-28)

Using this system, we may now perform a LQ regulator design, since if its state
goes to zero, then the tracking error e(t) vanishes. For this design, we shall take
the outputs available for feedback as

v =

⎡
⎢⎣

I 0 0

0 C 0

0 0 C

⎤
⎥⎦. (8.5-29)

To achieve small error without using too much control energy, we may select the
PI (8.5-8) (with u(t) replaced by μ(t)). According to (8.5-27), the error is given
in terms of the state of (8.5-28) by

e = h

[
ε

ξ

]
(8.5-30)

with h = [1 0 · · · 0] the first row of the identity matrix. Therefore, in the PI we
should weight the state of (8.5-28) using

Q′ = hTQh. (8.5-31)

Since the observability canonical form is always observable, the augmented sys-
tem (8.5-28) is detectable if the plant (H, A) and the model (H, A) are both
detectable.

Now, applying the equations of Table 8.1-1 to the system (8.5-28) with outputs
(8.5-29) and PI weights Q′ and R yields the optimal control law

μ = −[Kε Kp Km]

⎡
⎢⎣

ε

Cξp

C̃ξm

⎤
⎥⎦ (8.5-32)

or
�(s)u = −Kεε − KpC�(s)x − KmC̃�(s)x. (8.5-33)

To determine the optimal control input u(t), write this as

�(s)(u + Kpy + Kmỹ) = −Kεε ≡ −[Kd · · · K2 K1]

⎡
⎢⎢⎢⎢⎣

e

ė

...

e(d−1)

⎤
⎥⎥⎥⎥⎦. (8.5-34)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 343

8.6 OUTPUT FEEDBACK IN GAME THEORY AND DECENTRALIZED CONTROL 343

FIGURE 8.5-1 Command-generator tracker for d = 3.

Thus, we obtain the transfer function

u + Kpy + Kmỹ

e
= K1s

d−1 + · · · + Kd−1s + Kd

sd + a1s
d−1 + · · · + ad

, (8.5-35)

which may be implemented in reachability canonical form to obtain the control
structure shown in Fig. 8.5-1.

The structure of this model-following command-generator tracker is very inter-
esting. It consists of an output feedback Kp, a feedforward compensator that is
nothing but the reference model, and an additional feedforward filter in the error
channel that guarantees perfect tracking. Note that if d = 1 so that r(t) is a unit
step, the error filter is a PI controller like that shown in Fig. 8.2-4. If d = 2 so
that r(t) is a ramp, the error filter consists of two integrators, resulting in a type 2
system that gives zero steady-state error.

It is interesting to note that the augmented state description (8.5-28) is noth-
ing but the state description of Fig. 8.5-1 (see the problems at the end of the
chapter). It should be emphasized that this technique is extremely direct to apply.
Indeed, given the prescribed model and the command generator polynomial �(s),
the system (8.5-28), (8.5-29) may be written down immediately, and the design
equations in Table 8.1-1 used to select the feedback gains. See Section 8.4 for
some discussion on the reachability of the augmented system.

8.6 OUTPUT FEEDBACK IN GAME THEORY
AND DECENTRALIZED CONTROL

This section presents a unified formulation of the decentralized control, Nash
game, and Stackelberg game problems in the linear-quadratic cost case. An
interesting development is the occurrence in the Stackelberg game problem with
output feedback of a “fictitious follower” set of equations that must be solved in

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 344

344 OUTPUT FEEDBACK AND STRUCTURED CONTROL

the leader’s problems. The necessary conditions for solution of each of these prob-
lems are put in a form that can be solved by a proven numerical technique. This
provides an approach for the solution of the Stackelberg game problem, which
also applies in the case of state feedback, where no good solution technique is
yet known. Decentralized control and game theory are topics that are apparently
unrelated. Decentralized control is an important idea in large-scale systems the-
ory, and game theory is used in various decision-making problems. Essentially,
though, both topics deal with the efficient management of information.

This section is concerned with the problem of designing optimal output-
feedback controllers for the cases of decentralized control (Sandell 1976), Nash
games (Papavassilopoulos and Cruz, Jr. 1979), and Stackelberg games (Medanic
1978). In each case, a linear feedback is assumed, and the goal is the minimiza-
tion of a quadratic cost index. To provide a unified treatment, we capitalize on the
fact that all three cases arise from the same formulation but with different goals.

For decentralized control, the system under consideration is assumed to consist
of subsystems that are to be controlled individually, and a single cost for the entire
system is to be minimized. In the games problems, two players provide inputs to
a system and the goal of each player is to minimize his own cost function. The
Nash game deals with the case in which each player chooses his own strategy
independently of the other player, and the Stackelberg game involves two players,
one of whom knows the other player’s strategy and one of whom does not know
the other player’s strategy.

In all three cases incomplete information is available, and so the necessary
conditions are sets of coupled nonlinear matrix equations. Each section concludes
with a form of the necessary conditions for optimal solution, which can be solved
using the simple iterative technique presented in Table 8.1-2.

Problem Formulation

The decentralized control problem and the games problems may each be for-
mulated in the following fashion, with different goals and interpretations of the
matrices for each problem. Given the system

ẋ = Ax + B1u1 + B2u2 (8.6-1)

with x(0) = x0 given, and the outputs

yi = Cixi, i = 1, 2, (8.6-2)

find linear output feedbacks of form

ui = Liyi = −LiCix, i = 1, 2 (8.6-3)

to minimize the following performance indices

Ji = 1

2

∫ ∞

0

(
xTQix + uT

i Riiui + uT
j Rijuj

)
dt, (8.6-4)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 345

8.6 OUTPUT FEEDBACK IN GAME THEORY AND DECENTRALIZED CONTROL 345

where i = 1, 2, j �= i, and Rij ≥ 0, Rii > 0, Qi ≥ 0. We assume C1 and C2 have
full row rank.

Using (8.6-3), the closed-loop system has the form

ẋ = (A − B1L1C1 − B2L2C2)x ≡ Acx, (8.6-5)

and the performance criteria become

Ji = 1

2

∫ ∞

0
xT(Qi + CT

i LT
i RiiLiCi + CT

j LT
j RijLjCj)xdt. (8.6-6)

The performance indices are given by

Ji = tr(MiX), (8.6-7)

with X ≡ x0x
T
0 , tr(·) representing the trace of a matrix, and Mi ≥ 0 the solu-

tion of

Fi ≡ AT
c Mi + MiAc + Qi + CT

i LT
i RiiLiCi + CT

j LT
j RijLjCj . (8.6-8)

If it is desired to eliminate the dependence on the specific initial state, we may
instead minimize the expected value E(Ji) as we did before, in which case X
becomes E(x0x

T
0),, the initial mean-square state, in (8.6-7) and in the remainder

of the section.

Decentralized Linear Quadratic Regulator

The setting for the decentralized linear quadratic regulator is a system that is
composed of two subsystems (Sandell 1976). The dynamics of the subsystems
are coupled; however, it is desired to find a control u , for each subsystem that
is based only on the output y of that subsystem and that minimizes a common
quadratic cost function.

This problem may be easily extended to the case of output feedback. Since the
feedback gains are being chosen to minimize a single performance index, we may
take Q1 = Q2, R11 = R21, R12 = R22, so that J1 = J2 = J . Then F1 = F2 = F

and M1 = M2 = M . The goal is to pick the feedback gains L1 and L2 to minimize
J , subject to the constraint (8.6-8).

Define the Hamiltonian function

H = tr(MX) + tr(FP), (8.6-9)

where M, X, and F are defined by (8.6-7) and (8.6-8), and P is an undetermined
matrix of multipliers. Then necessary conditions for the minimization of H (and

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 346

346 OUTPUT FEEDBACK AND STRUCTURED CONTROL

hence (8.6-7) subject to (8.6-8)), are obtained by partial differentiation of H with
respect to P , M , L1, and L2, respectively

0 = F T = AT
c M + MAc + Q

+ CT
1 LT

1 R11L1C1 + CT
2 LT

2 R22L2C2 (8.6-10)

0 = AcP + PAT
c + X (8.6-11)

0 = −BT
1 MPCT

1 + R11L1C1PCT
1 (8.6-12)

0 = −BT
2 MPCT

2 + R22L2C2PCT
2 . (8.6-13)

If we partition the state according to the choice of subsystems and then let C1 =
[I 0], C2 = [0 I], and specialize the input matrices to the forms [BT

1 0]T

and [0 BT
2]T, then equations (8.6-1), (8.6-2) reduce to

ẋ = Ax +
[
B1

0

]
u1 +

[
0

B2

]
u2 (8.6-14)

y1 = [I 0]x, y2 = [0 I]x. (8.6-15)

That is the special case where each subsystem knows its own state component
completely and has direct control only over its own state component (Sandell
1976).

A convergent algorithm is given in Table 8.1-2 for the solution of the coupled
nonlinear equations arising in the linear quadratic regulator with output feedback
(Levine and Athans 1970, Moerder and Calise 1985). The algorithm is fairly
efficient numerically, is straightforward to program, and has been proven reli-
able. Equations (8.6-10)–(8.6-13) may be solved by this algorithm by combining
(8.6-12) and (8.6-13) in the block form

0 =
[
R11 0

0 R22

][
L1 0

0 L2

][
C1PCT

1 0

0 C2PCT
2

]
−

[
BT

1 M 0

0 BT
2 M

][
PCT

1 0

0 PCT
2

]
.

(8.6-16)

Now, the algorithm in Table 8.1-2 may be applied to equations (8.6-10), (8.6-11),
and (8.6-14).

Although conditions for the existence and uniqueness of solutions, positive
definite or otherwise, to (8.6-10)–(8.6-13) are not known, a few comments may
be made. In the case of state feedback (Ci = I) there exists a unique positive
definite solution M to (8.6-10) if (A,

√
Q) is observable and (A, [B1 B2]) is

controllable. If X = x0x0 with (Ac, x0) controllable, then there exists a unique
positive definite solution P to (8.6-11) if and only if Ac is stable. If X = E(x0x

T
0)

then what is required instead is (Ac, x0) controllable.

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 347

8.6 OUTPUT FEEDBACK IN GAME THEORY AND DECENTRALIZED CONTROL 347

The coupled equations (8.6-10)–(8.6-13) may have multiple positive definite
solutions (Sandell 1976), each one associated with a local minimum of the per-
formance index. Since the iterative algorithm in Table 8.1-2 finds only local
minima, the solution may depend on the initial selection of a stabilizing output
feedback gain to start the algorithm.

Nash Games

In a Nash game, two players independently try to minimize their own (possibly
different) performance objectives. Neither has knowledge of the other’s strategy.
The problem may be formulated as follows.

Player i wishes to select his feedback gain (strategy) Li , in order to minimize
his cost function Ji . Defining the Hamiltonian equations

Hi = tr(MiX) + tr(FiPi), i = 1, 2, (8.6-17)

where Fi and Mi are defined by (8.6-8) and Pi is a matrix of undetermined multi-
pliers, necessary conditions for minimizing Hi are found by partial differentiation
of Hi , with respect to Pi, Mi and Li , respectively, to be

0 = F T
i = AT

c Mi + MiAc

+ Qi + CT
i LT

i RiiLiCi + CT
j LjRijLjCj (8.6-18)

0 = AcPi + PiA
T
c + X (8.6-19)

0 = −BT
1 MiPiC

T
i + RiiLiCiPiC

T
i , (8.6-20)

where i = 1, 2, i �= j . Note that (8.6-19) implies P1 = P2 ≡ P . These results
reduce to the conditions for state-variable feedback in (Papavassilopoulos and
Cruz, Jr. 1979) if C1 = C2 = I .

To apply the solution method in Table 8.1-2, the necessary conditions stated
above may be combined into two coupled Lyapunov equations and a constraint
equation as follows:

0 =
[
Ac 0

0 Ac

]T [
M1 0

0 M2

]
+

[
M1 0

0 M2

][
Ac 0

0 Ac

]
+

[
Q1 0

0 Q2

]

+
[
L1C1 0

0 L2C2

]T [
R11 0

0 R22

][
L1C1 0

0 L2C2

]

+
[
L2C2 0

0 L1C1

]T [
R12 0

0 R21

][
L2C2 0

0 L1C1

]
(8.6-21)

0 = AcP + PAT
c + X (8.6-22)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 348

348 OUTPUT FEEDBACK AND STRUCTURED CONTROL

0 =
[
R11 0

0 R22

][
L1 0

0 L2

][
C1PCT

1 0

0 C2PCT
2

]

−
[
BT

1 M1 0

0 BT
2 M2

][
PCT

1 0

0 PCT
2

]
. (8.6-23)

Again, one must be aware that the algorithm in Table 8.1-2 may find a local
minimum that may not be globally optimum.

Stackelberg Games

Stackelberg game strategies differ from Nash game strategies in that the players’
objectives are no longer independent. In Stackelberg games, the players take on
the roles of “leader” (u2) and “follower” (u1). The objective of the follower is to
minimize his performance criterion, J1, given only information about the strategy
(linear output feedback) of the leader. The leader, on the other hand, attempts
to minimize his performance criterion, J2, given information about the strategy
of the follower, as well as the overall objective of the follower (optimizing a
quadratic performance index with output feedback). More exactly, in computing
his optimal strategy, the leader must take into account the reaction of the follower
to his actions. For our purposes, the game is represented by the system model
(8.6-1), with the associated performance criteria, Ji , (8.6-4).

The follower’s problem is presented first. The follower has no knowledge
of the leader’s strategy, so he assumes that L2 is a fixed matrix. Under this
assumption, L1 is then chosen to minimize J1 as follows.

Define the Hamiltonian

H1 = tr(M1X) + tr(F1P1), (8.6-24)

where M1 and F1 are defined by (8.6-8) and P1 is an undetermined matrix of
multipliers. The necessary conditions for minimizing H1 are then found by taking
partial derivatives of H1 with respect to P1, M1, and L1, respectively, to give

0 = F T
1 = AT

c M1 + M1Ac + Q1

+ CT
1 LT

1 R11L1C1 + CT
2 LT

2 R12L2C2 (8.6-25)

0 = F3 = AcP1 + P1A
T
c + X (8.6-26)

0 = F4 = −BT
1 M1P1C

T
1 + R11L11C1P1C

T
1 . (8.6-27)

Note that these equations have the same form as (8.6-18)–(8.6-20) with i = 1,
which is also the form of the necessary conditions for the linear quadratic regu-
lator with output feedback.

The leader is now faced with the problem of minimizing his performance
criterion, J2, while simultaneously taking into account the reaction of the

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 349

8.6 OUTPUT FEEDBACK IN GAME THEORY AND DECENTRALIZED CONTROL 349

follower. Mathematically, this amounts to treating the equations that represent
the follower’s optimal solution (8.6-25)–(8.6-27) as constraints to be met while
performing the minimization of J2. The resulting Hamiltonian thus has the two
terms that normally appear (e.g., (8.6-24)), as well as terms that represent these
additional constraints. That is,

H2 = tr(M2X) + tr(F2P2) + tr(F1P3)

+ tr (F3M3) + tr(F4L
T
3) + tr(L3F

T
4), (8.6-28)

where M2 and F2 are defined in (8.6-8), F1, F3, and F4 are defined in
(8.6-25)–(8.6-27), and P2, P3, M3, and L3, are undetermined matrices of
multipliers. (Note that F4, and, hence, L3, are not symmetric.) The choice of
variable names with their subscripts results in greater clarity in understanding
the necessary conditions, as we shall see.

The partial derivatives of H2 may be broken into three classes. First, note that
the partial derivatives of H2, with respect to P3, M3, and L3, simply reiterate
conditions (8.6-25)–(8.6-27). Second, the conditions generated by taking partial
derivatives with respect to the follower’s variables P1, M1, and L1, respectively,
give

0 = AT
c M3 + M3Ac + CT

1 LT
1 R11L1C1 + CT

1 LT
3 R11L1C1

− M1B1L3C1 − CT
1 LT

3 BT
1 M1 (8.6-29)

0 = AcP3 + P3A
T
c − B1L3C1P1 − P1C

T
1 LT

3 BT
1 (8.6-30)

0 = −BT
1 M1P3C

T
1 − BT

1 M2P2C
T
1 − BT

1 M3P1C
T
1

+ R11L1C1P3C
T
1 + R21L1C1P2C

T
1 + R11L3C1P1C

T
1 . (8.6-31)

These equations may be interpreted as a “fictitious follower,” with feedback gain
of L3, which is embedded in the leader’s problem. Third are the conditions arising
from the partial derivatives of H2 with respect to the leader’s variables P2, M2,
and L2, which are

0 = F T
2 = AT

c M2 + M2Ac + Q2

+ CT
2 LT

2 R22L2C2 + CT
1 LT

1 R21L1C1 (8.6-32)

0 = AcP2 + P2A
T
c + X (8.6-33)

0 = −BT
2 M2P2C

T
2 − BT

2 M1P3C
T
2 − BT

2 M3P1C
T
2

R22L2C2P2C
T
2 + R12L2C2P3C

T
2 . (8.6-34)

Note that (8.6-26) and (8.6-33) imply P1 = P2 ≡ P . These conditions reduce
to the conditions for state-variable feedback in Medanic (1978) by taking C1 =
C2 = I .

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 350

350 OUTPUT FEEDBACK AND STRUCTURED CONTROL

There is no good approach to solving these equations even in the state-
feedback case. We now outline a method that relies on the iterative approach in
Table 8.1-2. To apply the solution method in Table 8.1-2, we must be able to
solve at each iteration of the algorithm for the Mi , the Pi , and the gains Li .

First, we discuss the solution for the Mi . Although (8.6-25) and (8.6-32) have
positive definite solutions M1 and M2 when Ac is stable and all other terms are
fixed, the same may not be said of (8.6-29) and M3. This could lead to problems
with the algorithm in Table 8.1-2. To correct this potential problem and allow
the use of conventional Lyapunov equation solvers, we propose proceeding as
follows. Introduce additional variables Q3 and M3 and the auxiliary equation

0 = AT
c M4 + M4Ac + Q3 + 2CT

1 LT
3 R11L3C1, (8.6-35)

which has a positive definite solution M4 when all other variables are fixed, as
long as R11 > 0, Q3 > 0, and Ac is stable. An equation for

M = M1 + M3 + M4 (8.6-36)

may be found by adding (8.6-25), (8.6-29), and (8.6-35) to be

0 = AT
c M + MAc + Q1 + CT

1 (L1 + L3)
TR11(L1 + L3)C1

+ CT
2 LT

2 R12L2C2

+
[

I

L3C1

]T [
Q3 −M1B1

−BT
1 M1 R11

] [
I

L3C1

]
, (8.6-37)

which has a positive definite solution M when all other variables are fixed if Ac

is stable and Q3 in (8.6-35) is selected to make the block coefficient matrix in
the middle of the last term positive definite. Let Q3 be selected to ensure this.
Then, when applying the algorithm in Table 8.1-2, to determine the M1 at each
iteration, solve in the order: (8.6-25) for M1, (8.6-32) for M2, (8.6-35) for M4,
(8.6-37) for M , and finally (8.6-36) for M3.

Now, we consider the solution for the Pi . Equation (8.6-26) (or equivalently
(8.6-33)) shows that P ≡ P1 = P2 is positive definite as long as Ac is stable
and (A,

√
X) is controllable. Since a similar statement may not be made about

(8.6-31) and P3, we propose to proceed as follows. Introduce additional variables
Q4 > 0, X1 > 0, and P4 and the auxiliary equation

O = AcP4 + P4A
T
c + X1 + B1L3Q4L

T
3 BT

1 . (8.6-38)

Then an equation for

P5 ≡ P + P3 + P4 (8.6-39)

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 351

PROBLEMS 351

may be found by adding (8.6-26), (8.6-31), and (8.6-38) to be

0 = AcP5 + P5A
T
c + X1 +

[
I

LT
3 BT

1

]T [
X −PCT

1

−C1P Q4

][
I

LT
3 BT

1

]
, (8.6-40)

which has a positive definite solution P5 when Ac is stable and Q4 is selected to
make the matrix in the middle of the last term positive definite. Let Q4 be selected
to ensure this. Then, when applying the algorithm in Table 8.1-2, to determine
the Pi at each iteration solve in order: (8.6-26) for P = P1 = P2, (8.6-38) for
P4, (8.6-40) for P5, and finally (8.6-39) for P3.

To apply the algorithm in Table 8.1-2, at each iteration we must also solve
for the gains Li . Although (8.6-27) and (8.6-31) may be solved for L1 and L3,
respectively, assuming all other variables are fixed, note that the form of (8.6-34)
for L2 is

R22L2C2P2C
T
2 + R12L2C2P3C

T
2 = R.H.S. (8.6-41)

so that a solution in terms of simple matrix inversions is not possible. This
equation is a generalized Lyapunov equation of the sort studied in Golub, Nash,
and Van Loan (1979), where conditions for its solution are given along with a
solution technique based on the Bartles-Steward algorithm (Golub, Nash, and Van
Loan 1979). Therefore, when applying the algorithm in Table 8.1-2, to determine
the gain updates at each iteration we may solve in the order: (8.6-27) for L1,
(8.6-31) for L3, and (8.6-41) for L2 using the technique in Golub, Nash, and Van
Loan (1979).

We may make no claim that the proposed algorithm will always converge;
however, it seems to be superior from this standpoint to other proposed tech-
niques. Even in the case of state variable feedback, C1 = I and C2 = I , the
proposed approach yields a methodical approach for solving the Stackelberg
game problem, for which a good algorithm does not yet exist.

PROBLEMS

Section 8.1

8.1-1. Fill in the details in the derivation of the design equations in Table 8.1-1.

8.1-2. Output feedback design for scalar systems
a. Consider the case where x (t), u(t), y(t) are all scalars. Show that the solution

S to the second Lyapunov equation in Table 8.1-1 is not needed to determine
the output-feedback gain K . Find an explicit solution for P and, hence, for
the optimal gain K .

b. Repeat for the case where x (t) and y(t) are scalars, but u(t) is an m-vector.

8.1-3. Use (583.28) to eliminate K in the Lyapunov equations of Table 8.1-1,
hence deriving two coupled nonlinear equations that may be solved for the
optimal auxiliary matrices S and P . Does this simplify the solution of the output-
feedback design problem?

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 352

352 OUTPUT FEEDBACK AND STRUCTURED CONTROL

8.1-4. Software for output-feedback design. Write a program that finds the
gain K minimizing the PI in Table 8.1-1 using the SIMPLEX algorithm in Press
et al. (1986). Use it to verify the results of Example 8.1-1. Can you tune the
elements of Q and R to obtain better closed-loop responses than the ones given?

8.1-5. For the system

ẋ =
[

0 1

0 0

]
x +

[
0

1

]
u, y = [1 1]x (1)

Find the output-feedback gain that minimizes the PI in Table 8.1-1 with Q = I .
Try various values of R to obtain a good response. You will need the software
from Problem 8.1-4. The closed-loop step response may be plotted using the
step.m function from the Control System Toolbox. (Note that system (1) is noth-
ing but Newton’s law, since if x = [p v]T, then p̈ = u, where u(t) may be
interpreted as an acceleration input F/m.)

8.1-6. Gradient-based Software for Output-Feedback Design. Write a MAT-
LAB program that finds the gain K minimizing the PI in Table 8.1-1 using the
Davidon-Fletcher-Powell algorithm in Press et al. (1986). Use it to verify the
results of Example 8.1-1.

Section 8.2

8.2-1. Derive (8.2-31).

8.2-2. Derive the necessary conditions in Table 8.2-1.

8.2-3. In Example 8.2-1, use the observability matrix to verify that the origi-
nal proposed value of Q = HTH has (

√
Q, A0 unobservable while the Q that

contains a (5, 5) element has (
√

Q, A) observable.

8.2-4. Software for LQ output-feedback design. Write a MATLAB program
to solve for the optimal gain K in Table 8.2-1 using the SIMPLEX algorithm in
Press et al. (1986). Use it to verify Example 8.2-1.

8.2-5. In Example 8.2-1 we used an output with four components. There is an
extra degree of freedom in the choice of control gains that may not be needed.
Redo the example, using the software from Problem 8.2-4, with the output defined
as y = [αF q ε]T.

8.2-6. To see whether the angle-of-attack filter in Example 8.2-1 complicates
the design, redo the example using y = [β q e δ]T.

8.2-7. Redo Example 8.2-1 using root-locus techniques like those in Chapter 3.
Based on this, are the gains selected by the LQ algorithm sensible from the point
of view of classical control theory?

8.2-8. Gradient-based software for LQ output-feedback design. Write a
MATLAB program to solve for the optimal gain K in Table 8.2-1 using the

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 353

PROBLEMS 353

Davidon-Fletcher-Powell algorithm in Press et al. (1986). Use it to verify
Example 8.2-1.

Section 8.3

8.3-1. Complete the design of Example 8.3-1. That is,
a. Select a value for α, and use Table 8.1-1 to find the regulator gain K . Tune the

values of Q and R until the response to nonzero initial conditions is suitable.
b. Find the tracker control law. To verify the design, simulate the step response

of the closed-loop system using lsim.m from MATLAB.

8.3-2. Regulator redesign servo for DC motor. Use the approach of this
section to design a servo for the scalar DC motor model in Example 8.2-2.
Simulate the step response of the closed-loop system.

8.3-3. Regulator redesign servo for DC motor. Use the approach of this
section to design a servo for the armature-controlled DC motor model in Example
8.2-3. Simulate the step response of the closed-loop system.

8.3-4. Regulator redesign servo for inverted pendulum. Use the approach
of this section to design a servo for the inverted pendulum. Simulate the step
response of the closed-loop system.

Section 8.4

8.4-1. Find the reachability matrix of (8.4-16) to verify the tracking conditions
for full state feedback relating to (8.4-22).

8.4-2. Derive the CGT for a system with an unknown disturbance d (t) and
verify that it is given by (8.4-21) with �(s) modified as in (8.4-30).

8.4-3. Complete the design in Example 8.4-1. That is, select ω0 = 3000 rpm
and perform a regulator design on the augmented system using the equations in
Table 8.1-1. Tune q to obtain suitable time responses of the augmented system
to nonzero initial conditions. To verify the performance, simulate the CGT on
the system using lsim.m in MATLAB.

8.4-4. Tracking with disturbance rejection. Redo Example 8.4-1 if there is a
constant bias disturbance on the head position.

Section 8.5

8.5-1. Write the state variable description of Fig. 8.5-1, verifying that it is noth-
ing but (8.5-28).

8.5-2. It is desired to make the scalar plant

ẋ = x + u, y = x, z = x

Lewis c08.tex V1 - 10/19/2011 1:55pm Page 354

354 OUTPUT FEEDBACK AND STRUCTURED CONTROL

behave like the scalar model

ẋ = −2x + r, y = x, z = x

with reference input equal to the unit step. Use explicit model following to design
a servosystem:
a. Draw the controller structure.
b. Select the control gains using LQR design on the augmented system. You will

need to use the software written for the problems of Section 8.1.

8.5-3. A plant is described by Newton’s law

ẋ = x2, ẋ2 = u.

The velocity should follow the model output and measurements of position are
taken so that

y = x1, z = x2.

The prescribed model with desirable characteristics is given by

ẋ = −3x + r, y = x, z = x

with r(t) the unit step. Use explicit model following to design a servosystem:
a. Draw the compensator structure.
b. Select the control gains using LQR design of the augmented system. You will

need to use the software written for the problems of Section 8.1.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 355

9
ROBUSTNESS AND MULTIVARIABLE
FREQUENCY-DOMAIN TECHNIQUES

9.1 INTRODUCTION

Modeling Errors and Stability Robustness

In the design of control systems it is important to realize that the set of linear
differential equations that are the basis of design are, most of the time, an approx-
imation to the nonlinear system dynamics. Several systems have dynamics that
are important at high frequencies that many times are neglected in the model
design. These unmodeled high-frequency dynamics can act to destabilize a con-
trol system that may have quite suitable behavior in terms only of the system
model.

Moreover, as the nonlinear system changes its equilibrium operation point, the
linearized plant model describing its perturbed behavior changes. This parameter
variation is a low-frequency effect that can also act to destabilize the system.
To compensate for this variation, one may determine suitable controller gains for
linearized models at several design equilibrium points over an operation envelope.
Then these design gains may be scheduled in computer lookup tables for suitable
controller performance over the whole envelope. For gain scheduling to work, it
is essential for the controller gains at each design equilibrium point to guarantee
stability for actual operation conditions near that equilibrium point. Thus, it is
important to design controllers that have stability robustness, which is the ability
to provide stability in spite of modeling errors due to high-frequency unmodeled
dynamics and plant parameter variations.

355

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 356

356 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

Disturbances and Performance Robustness

It is often important to account for disturbances and also for sensor measurement
noise. Disturbances can often cause unsatisfactory performancey in a system
that has been designed without taking them into account. Thus, it is important
to design controllers that have performance robustness, which is the ability to
guarantee acceptable performance (in terms, for instance, of percent overshoot,
settling time, and so on) even though the system may be subject to disturbances.

Classical Robust Design

In classical control, robustness may be designed into the system from the begin-
ning by providing sufficient gain and phase margin to counteract the effects of
inaccurate modeling or disturbances. In terms of the Bode magnitude plot, the
loop gain should be high at low frequencies for performance robustness, but low
at high frequencies, where unmodeled dynamics may be present, for stability
robustness. The concept of bandwidth is important in this connection, as is the
concept of the sensitivity function.

Classical controls design techniques are generally in the frequency domain,
and so they afford a convenient approach to robust design for single-input/single-
output (SISO) systems. However, the individual gain margins, phase margins, and
sensitivities of all the SISO transfer functions in a multivariable or multiloop sys-
tem have little to do with its overall robustness. Thus, there have been problems
in extending classical robust design notions to multi-input/multi-output (MIMO)
systems.

Modern Robust Design

Modern control techniques provide a direct way to design multiloop controllers
for MIMO systems by closing all the loops simultaneously. Performance is guar-
anteed in terms of minimizing a quadratic performance index (PI) which, with
a sensible problem formulation, generally implies closed-loop stability as well.
All our work in previous chapters assumed that the model is exactly known and
that there are no disturbances. In fact, this is rarely the case.

In this chapter we show that the classical frequency-domain robustness mea-
sures are easily extended to MIMO systems in a rigorous fashion by using the
notion of the singular value. In Section 9.2 we develop the multivariable loop
gain and sensitivity, and describe the multivariable Bode magnitude plot. In terms
of this plot, we present bounds that guarantee both robust stability and robust per-
formance for multivariable systems, deriving notions that are entirely analogous
to those in classical control.

In Section 9.3 we give a design technique for robust multivariable controllers
using modern output-feedback theory, showing how robustness may be guaran-
teed. The approach is a straightforward extension of classical techniques. We
illustrate by designing a pitch rate control system that has good performance
despite the presence of flexible modes and wind gusts.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 357

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 357

A popular modern approach to the design of robust controllers is linear
quadratic Gaussian/loop-transfer recovery (LQG/LTR). This approach has been
used extensively by Honeywell in the design of advanced multivariable control
systems. LQG/LTR relies on the separation principle, which involves designing
a full state-variable feedback and then an observer to provide the state estimates
for feedback purposes. The result is a dynamic compensator that is similar to
those resulting from classical control approaches. The importance of the separa-
tion principle is that compensators can be designed for multivariable systems in
a straightforward manner by solving matrix equations.

In Section 9.4 we discuss observers and the Kalman filter. In Section 9.5 we
cover LQG/LTR design. In Section 9.6 we cover the H∞ design approach in
the state-space framework, introduced by Francis et al. (1984) and Doyle et al.
(1989).

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS

We shall deal with system uncertainties, as in classical control, using robust
design techniques that are conveniently examined in the frequency domain. To
this point, our work in modern control has been in the time domain, since the
LQ performance index is a time-domain criterion.

One problem that arises immediately for MIMO systems is that of extending
the SISO Bode magnitude plot. We are not interested in making several individual
SISO frequency plots for various combinations of the inputs and outputs in the
MIMO system and examining gain and phase margins. Such approaches have
been tried and may not always yield much insight on the true behavior of the
MIMO system. This is due to the coupling that generally exists between all inputs
and all outputs of a MIMO system.

Thus, in this section we introduce the multivariable loop gain and sensitivity
and the multivariable Bode magnitude plot, which will be nothing but the plot
versus frequency of the singular values of the transfer-function matrix. This basic
tool allows much of the rich experience of classical control theory to be applied
to MIMO systems. Thus, we shall discover that for robust performance the min-
imum singular value of the loop gain should be large at low frequencies, where
disturbances are present. On the other hand, for robust stability the maximum
singular value of the loop gain should be small at high frequencies, where there
are significant modeling inaccuracies. We shall also see that to guarantee stability
in spite of parameter variations in the linearized model due to operating point
changes, the maximum singular value should be below an upper limit.

Sensitivity and Cosensitivity

Figure 9.2-1 shows a standard feedback system of the sort that we have seen
several times in our work to date. The plant is G(s), and K (s) is the feed-
back/feedforward compensator, which can be designed by any of the techniques

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 358

358 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

we have covered. The plant output is z(t) ∈ Rq , the plant control input is
u(t) ∈ Rm, and the reference input is r(t) ∈ Rq .

Perfect tracking may not be achieved unless the number m of control inputs
u(t) is greater than or equal to the number q of performance outputs z (t)
(Kwakernaak and Sivan 1972). Therefore, we shall assume that m = q so that
the plant G(s) and compensator K (s) are square. This is only a consequence
of sensible design, and not a restriction on the sorts of plants that may be
considered.

We have added a few items to the figure to characterize uncertainties. The
signal d (t) represents a disturbance acting on the system of the sort appearing
in classical control. This could represent, for instance, wind gusts. The sen-
sor measurement noise or errors are represented by n(t). Both of these signals
are generally vectors of dimension q . Typically, the disturbances occur at low
frequencies, say, below some ωd , while the measurement noise n(t) has its pre-
dominant effect at high frequencies, say, above some value ωn. Typical Bode
plots for the magnitudes of these terms appear in Fig. 9.2-2 for the case that d (t)
and n(t) are scalars. The reference input is generally also a low-frequency signal
(e.g., the unit step).

The tracking error is

e(t) ≡ r(t) − z(t). (9.2-1)

Due to the presence of n(t), e(t) may not be symbolized in Fig. 9.2-1. The signal
s(t) is in fact given by

s(t) = r(t) − z(t) − n(t) = e(t) − n(t). (9.2-2)

Let us perform a frequency-domain analysis on the system to see the effects
of the uncertainties on system performance. In terms of Laplace transforms we
may write

Z(s) = G(s)K(s)S(s) + D(s), (9.2-3)

S(s) = R(s) − Z(s) − N(s), (9.2-4)

E(s) = R(s) − Z(s). (9.2-5)

FIGURE 9.2-1 Standard feedback configuration.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 359

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 359

FIGURE 9.2-2 Typical Bode plots for the uncertain signals in the system. (a) Distur-
bance magnitude. (b) Measurement noise magnitude.

Now we may solve for Z (s) and E (s), obtaining the closed-loop transfer function
relations

Z(s) = (I + GK)−1GK(R − N) + (I + GK)−1D, (9.2-6)

E(s) = [I − (I + GK)−1GK]R + (I + GK)−1GKN

− (I + GK)−1D. (9.2-7)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 360

360 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

It is important to note that, unlike the case for SISO systems, care must be taken
to perform the matrix operations in the correct order. For instance, GK KG . The
multiplications by matrix inverses must also be performed in the correct order.

We can put these equations into a more convenient form. According to the
matrix inversion lemma, (9.2-7) may be written as

E(s) = (I + GK)−1(R − D) + (I + GK)−1GKN. (9.2-8)

Moreover, since GK is square and invertible, we can write

(I + GK)−1GK = [(GK)−1(I + GK)]−1 = [(GK)−1 + I]−1

= [(I + GK)(GK)−1]−1 = GK(I + GK)−1. (9.2-9)

Therefore, we may finally write Z (s) and E (s) as

Z(s) = GK(I + GK)−1(R − N) + (I + GK)−1D, (9.2-10)

E(s) = (I + GK)−1(R − D) + GK(I + GK)−1N. (9.2-11)

To simplify things a bit, define the system sensitivity

S(s) = (I + GK)−1 (9.2-12)

and
T (s) = GK(I + GK)−1 = (I + GK)−1GK. (9.2-13)

Since
S(s) + T (s) = (I + GK)(I + GK)−1 = I, (9.2-14)

we call T (s) the complementary sensitivity, or, in short, the consensitivity. Note
that the return difference

L(s) = I + GK (9.2-15)

is the inverse of the sensitivity. The loop gain is given by G(s)K (s).
These expressions extend the classical notions of loop gain, return difference,

and sensitivity to multivariable systems. They are generally square transfer-
function matrices of dimension m × m. In terms of these new quantities, we have

Z(s) = T (s)(R(s) − N(s)) + S(s)D(s) (9.2-16)

E(s) = S(s)(R(s) − D(s)) + T (s)N(s). (9.2-17)

To ensure small tracking errors, we must have S (jω) small at those frequencies
ω where the reference input r(t) and disturbance d (t) are large. This will yield
good disturbance rejection. On the other hand, for satisfactory sensor noise

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 361

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 361

rejection, we should have T (jω) small at those frequencies ω where n(t) is
large. Unfortunately, a glance at (9.2-14) reveals that S (jω) and T (jω) cannot
simultaneously be small at any one frequency ω. According to Fig. 9.2-2,
we should like to have S (jω) small at low frequencies, where r(t) and d (t)
dominate, and T (jω) small at high frequencies, where n(t) dominates. These
are nothing but the multivariable generalizations of the well-known SISO
classical notion that a large loop gain GK (jω) is required at low frequencies for
satisfactory performance and small errors, but a small loop gain is required at
high frequencies where sensor noises are present.

Multivariable Bode Plot

These notions are not difficult to understand on a heuristic level. Unfortunately,
it is not so straightforward to determine a clear measure for the “smallness” of
S (jω) and T (jω). These are both square matrices of dimensions m × m, with
m the number of plant control inputs u(t), which we assume is equal to the
number of performance outputs z (t) and reference inputs r(t). They are complex
functions of the frequency. Clearly, the classical notion of the Bode magnitude
plot, which is defined only for scalar complex functions of ω, must be extended
to the MIMO case.

Some work was done early on using the frequency-dependent eigenvalues of a
square complex matrix as a measure of smallness (Rosenbrock 1974, MacFarlane
1970, and MacFarlane and Kouvaritakis 1977). However, note that the matrix

M =
[

0.1 100
0 0.1

]
(9.2-18)

has large and small components, but its eigenvalues are both at 0.1.
A better measure of the magnitude of square matrices is the singular value

(SV) (Strang 1980). Given any matrix M we may write its singular value decom-
position (SVD) as

M = U�V ∗, (9.2-19)

where U and V are square unitary matrices (i.e., V −1 = V ∗, the complex con-
jugate transpose of V) and

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2
. . .

σr

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
�r 0
0 0

]
, (9.2-20)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 362

362 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

with r = rank(M). The singular values are the σi , which are ordered so that
σ1 ≥ σ2 ≥ · · · ≥ σr−1 ≥ σr . The SVD may loosely be thought of as the extension
to general matrices (which may be nonsquare or complex) of the Jordan form. If
M is a function of jω, then so are U and V .

Since MM∗ = U�V ∗V �U∗ = U�2U∗, it follows that the singular values of
M are simply the (positive) square roots of the nonzero eigenvalues of MM∗. A
similar proof shows that the nonzero eigenvalues of MM∗ and those of M ∗M
are the same.

We note that the M given above has two singular values, namely σ1 =
100.0001 and σ2 = 0.0001. Thus, this measure indicates that M has a large
and a small component. Indeed, note that

[
0.1 100
0 0.1

] [−1
0.001

]
=

[
0

0.001

]
, (9.2-21)

while
[

0.1 100
0 0.1

] [
0.001

1

]
=

[
100.0001

0.1

]
. (9.2-22)

Thus, the singular value σ2 has the input direction

[−1
0.001

]

associated with it for which the output contains the value σ2. On the other hand,
the singular value σ1 has an associated input direction of

[
0.001

1

]
,

for which the output contains the value σ1.
There are many nice properties of the singular value that make it a suitable

choice for defining the magnitude of matrix functions. Among these is the fact
that the maximum singular value is an induced matrix norm, and norms have
several useful attributes. The use of the SVs in the context of modern control
was explored in Doyle and Stein (1981) and Safonov et al. (1981).

A major factor is that there are many good software packages that have good
routines for computing the singular value (e.g., subroutine LSVDF in IMSL
[1980] or MATLAB [1992]). Thus, plots like those we present may easily be
obtained by writing only a computer program to drive the available subroutines.
Indeed, since the SVD uses unitary matrices, its computation is numerically
stable. An efficient technique for obtaining the SVs of a complex matrix as a
function of frequency jω is given in Laub (1981).

We note that a complete picture of the behavior of a complex matrix versus
jω must take into account the directions of the SVs as well as the multivariable

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 363

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 363

phase, which may also be obtained from the SVD (Postlethwaite et al. 1981).
Thus, complete MIMO generalizations of the Bode magnitude and phase plots
are available. However, the theory relating to the phase portion of the plot is more
difficult to use in a practical design technique, although a MIMO generalization
of the Bode gain–phase relation is available (Doyle and Stein 1981). Therefore,
we shall employ only plots of the SVs versus frequency, which correspond to
the Bode magnitude plot for MIMO systems.

The magnitude of a square transfer-function matrix H (jω) at any frequency jω
depends on the direction of the input excitation. Inputs in a certain direction in the
input space will excite only the SV(s) associated with that direction. However, for
any input, the magnitude of the transfer function H (jω) at any given frequency
jω may be bounded above by its maximum singular value, denoted σ(H(jω)),
and below by its minimum singular value, denoted σ (H (jω)). Therefore, all our
results, as well as the plots we shall give, need take into account only these two
constraining values of “magnitude.”

Example 9.2-1. MIMO Bode Magnitude Plots

Consider the multivariable system

ẋ =

⎡
⎢⎢⎣

−1 −2 0 0
2 −1 0 0
0 0 −3 −8
0 0 8 −3

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎦ u = Ax + bu (1)

y =
[

1 0 0 0
0 0 1 0

]
x = Cx, (2)

FIGURE 9.2-3 MIMO Bode magnitude plot of singular values versus frequency.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 364

364 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

which has a 2 × 2 MIMO transfer function of

H(s) = C(sI − A)−1B = N(s)D−1(s) (3)

with

D(s) = s4 + 8s3 + 90s2 + 176s + 365, (4)

N(s) =
[

1 0
0 1

]
s3 +

[
7 0
0 5

]
s2 +

[
79 0
0 11

]
s +

[
73 0
0 15

]
.

The SV plots versus frequency shown in Fig. 9.2-3 can be obtained by using the function
sigma.m from the MATLAB Control System Toolbox. We call this the multivariable Bode
magnitude plot for the MIMO transfer function H (s).

Since H (s) is 2 × 2, it has two singular values. Note that although each singular value
is continuous, the maximum and minimum singular values are not. This is due to the fact
that the singular values can cross over each other, as the figure illustrates. �

Example 9.2-2. Singular Value Plots vs. Bode Plots

To illustrate the difference between the singular value plots and the individual SISO Bode
plots of a multivariable system, let us consider the F-16 lateral dynamics given in Stevens
and Lewis (1992). The transfer function of the system is a square 2 × 2 matrix. The
individual SISO transfer functions in this 2-input/2-output open-loop system are

H11(s) = 14.8

s(s + 0.0163)(s + 3.615)(s + 20.2)
(1)

H12(s) = −36.9s(s + 2.237)[(s + 0.55)2 + 2.492]

(s + 0.0163)(s + 1)(s + 3.615)(s + 20.2)[(s + 0.4225)2 + 3.0632]
(2)

H21(s) = −2.65(s + 2.573)(s − 2.283)

s(s + 0.0163)(s + 3.615)(s + 20.2)[(s + 0.4225)2 + 3.0632]
(3)

H22(s) = −0.719.[(s + 0.139)2 + 0.4462]

(s + 0.0163)(s + 1)(s + 20.2)[(s + 0.4225)2 + 3.0632]
. (4)

The standard Bode magnitude plots for these SISO transfer functions are shown in
Fig. 9.2-4.

On the other hand, shown in Fig. 9.2-5 are the singular values of this multivari-
able system. Note that it is not immediately evident how they relate to the SISO plots in
Fig. 9.2-4. In the next section we shall see that bounds for guaranteed robustness are given
for MIMO systems in terms of the minimum singular value being large at low frequencies
(for performance robustness) and the maximum singular value being small at high frequen-
cies (for stability robustness). The lack of any clear correspondence between Figs. 9.2-4
and 9.2-5 shows that these bounds cannot be expressed in terms of the individual SISO
Bode plots.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 365

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 365

FIGURE 9.2-4 SISO Bode magnitude plots for F-16 lateral dynamics.

FIGURE 9.2-5 Singular values for F-16 lateral dynamics. �

Frequency-domain Performance Specifications

We have seen how to make a multivariable Bode magnitude plot of a square
transfer-function matrix. It is now necessary to discuss performance specifications
in the frequency domain in order to determine what a “desirable” Bode plot means
in the MIMO case. The important point is that the low-frequency requirements
are generally in terms of the minimum singular value being large, while the
high-frequency requirements are in terms of the maximum singular value being
small.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 366

366 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

First, let us point out that the classical notion of bandwidth holds in the
MIMO case. This is the frequency jω for which the loop gain GK (jω) passes
through a value of 1, or 0 dB. If the bandwidth should be limited due to high-
frequency noise considerations, the largest SV should satisfy σ(GK(jω)) = 1, at
the specified cutoff frequency jωc.

L2 Operator Gain To relate frequency-domain behavior to time-domain behav-
ior, we may take into account the following considerations (Morari and Zafiriou
1989). Define the L2 norm of a vector time function s(t) by

‖s‖2 =
[∫ ∞

0
sT(t)s(t) dt

]1/2

. (9.2-23)

This is related to the total energy in s(t) and should be compared to the LQ
performance index.

A linear time-invariant system has input u(t) and output z (t) related by the
convolution integral

z(t) =
∫ ∞

−∞
h(t − τ)u(τ) dτ, (9.2-24)

with h(t) the impulse response. The L2 operator gain , denoted ||H ||2, of such a
system is defined as the smallest value of γ such that

‖z‖2 ≤ γ ‖u‖2 . (9.2-25)

This is just the operator norm induced by the L2 vector norm. An important result
is that the L2 operator gain is given by

‖H‖2 = max
ω

[σ(H(jω))], (9.2-26)

with H (s) the system transfer function. That is, ||H ||2 is nothing but the max-
imum value over ω of the maximum singular value of H (jω). Thus, ||H ||2 is
an H∞ norm in the frequency domain. This result gives increased importance
to σ(H(jω)), for if we are interested in keeping z(t) small over a range of
frequencies, then we should take care that σ(H(jω)) is small over that range.

It is now necessary to see how this result may be used in deriving frequency-
domain performance specifications. Some facts we use in this discussion are

σ(GK) − 1 ≤ σ(I + GK) ≤ σ(GK) + 1, (9.2-27)

σ(M) = 1/σ(M−1), (9.2-28)

σ(AB) ≤ σ(A)σ (B) (9.2-29)

for any matrices A, B, GK, M , with M nonsingular.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 367

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 367

Before we begin a discussion of performance specifications, let us note the
following. If S (jω) is small, as desired at low frequencies, then

σ(S = σ [(I + GK)−1] = 1

σ(I + GK)
≈ 1

σ(GK)
. (9.2-30)

That is, a large value of σ (GK) guarantees a small value of σ(S). On the other
hand, if T (jω) is small, as is desired at high frequencies, then

σ(T) = σ [GK(I + GK)−1] ≈ σ(GK). (9.2-31)

That is, a small value of σ(GK) guarantees a small value of σ(T).
This means that specifications that S (jω) be small at low frequencies and

T (jω) be small at high frequencies may equally well be formulated in terms of σ

(GK) being large at low frequencies and σ(GK) being small at high frequencies.
Thus, all of our performance specifications will be in terms of the minimum
and maximum SVs of the loop gain GK (jω). The practical significance of this
is that we need compute only the SVs of GK (jω), and not those of S (jω) and
T (jω). These notions are symbolized in Fig. 9.2-6, where it should be recalled
that S + T = I .

We first consider low-frequency specifications on the singular value plot,
and then high-frequency specifications. According to our discussion relating to
(9.2-17), the former will involve the reference input r(t) and disturbances d(t),
while the latter will involve the sensor noise n(t).

Low-frequency Specifications For low frequencies, let us suppose that the sen-
sor noise n(t) is zero so that (9.2.17) becomes

E(s) = S(s)(R(s) − D(s)). (9.2-32)

FIGURE 9.2-6 Magnitude specifications on S (jω) and T (jω), and GK (jω).

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 368

368 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

Thus, to keep ||e(t)||2 small, it is only necessary to ensure that the L2 operator
norm ||S||2 is small at all frequencies where R(jω) and D(jω) are appreciable.
This may be achieved by ensuring that, at such frequencies, σ(S(jω)) is small,
As we have just seen, this may be guaranteed if we select

σ(GK(jω))
 1, for ω ≤ ωd, (9.2-33)

where D(s) and R(s) are appreciable for ω ≤ ωd .
Thus, exactly as in the classical case (Franklin et al. 1986), we are able to

specify a low-frequency performance bound that guarantees performance robust-
ness; that is, good performance in the face of low-frequency disturbances. For
instance, to ensure that disturbances are attenuated by a factor of 0.01, (9.2-30)
shows that we should ensure σ (GK (jω)) is greater than 40 dB at low frequen-
cies ω ≤ ωd . At this point it is worth examining Fig. 9.2-6, which illustrates the
frequency-domain performance specifications we are beginning to derive.

Another low-frequency performance bound may be derived from steady-state
error considerations. Thus, suppose that d(t) = 0 and the reference input is a
unit step of magnitude r so that R(s) = r/s. Then, according to (9.2-32) and the
final value theorem (Franklin et al., 1986), the steady-state error e∞ is given by

e∞ = lim
s→0

sE(s) = rS(0). (9.2-34)

To ensure that the largest component of e∞ is less than a prescribed small
acceptable value δ∞, we should therefore select

σ(GK(0)) >
r

δ∞
. (9.2-35)

The ultimate objective of all our concerns is to manufacture a compensator K(s)
in Fig. 9.2-1 that gives desirable performance. Let us now mention two low-
frequency considerations that are important in the initial stages of the design of
the compensator K(s).

To make the steady-state error in response to a unit step at r(t) exactly equal
to zero, we may ensure that there is an integrator in each path of the system G(s)
so that it is of type 1 (Franklin et al. 1986). Thus, suppose that the system to be
controlled is given by

ẋ = Ax + Bv (9.2-36)

z = Hx.

To add an integrator to each control path, we may augment the dynamics so that
[
ẋ

∈̇
]

=
[
A B

0 0

] [
x

∈
]

+
[

0
I

]
u (9.2-37)

with the integrator outputs. See Fig. 9.2-7. The system G(s) in Fig. 9.2-1 should
now be taken as (9.2-37), which contains the integrators as a precompensator.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 369

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 369

FIGURE 9.2-7 Plant augmented with integrators.

Although augmenting each control path with an integrator results in zero
steady-state error, in some applications this may result in an unnecessarily com-
plicated compensator. Note that the steady-state error may be made as small as
desired without integrators by selecting K(s) so that (9.2-35) holds.

A final concern on the low-frequency behavior of G(s) needs to be addressed.
It is desirable in many situations to have σ(GK) and σ(GK) close to the same
value. Then, the speed of the responses will be nearly the same in all channels
of the system. This is called the issue of balancing the singular values at low
frequency. The SVs of G(s) in Fig. 9.2-1 may be balanced at low frequencies as
follows.

Suppose the plant has the state-variable description (9.2-36), and let us add a
square constant precompensator gain matrix P , so that

v = Pu (9.2-38)

is the relation between the control input u(t) in Fig. 9.2-1 and the actual plant
input v (t). The transfer function of the plant plus precompensator is now

G(s) = H(sI − A)−1BP. (9.2-39)

As s goes to zero, this approaches

G(0) = H(−A)−1BP,

as long as A has no poles at the origin. Therefore, we may ensure that G(0) has
all SVs equal to a prescribed value of γ by selecting

P = γ [H(−A)−1B]−1, (9.2-40)

for then G(0) = γ I . The transfer function of (9.2-36) is

H(s) = H(sI − A)−1B, (9.2-41)

whence we see that the required value of the precompensator gain is

P = γH−1(0). (9.2-42)

This is nothing but the (scaled) reciprocal DC gain.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 370

370 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

Example 9.2-3. Precompensator for Balancing and Zero Steady-state Error

Let us design a precompensator for the system in Example 9.2-1 using the notions just
discussed. Substituting the values of A, B , and H in (9.2-40) with γ = 1 yields

B = [H(−A)−1B]−1 =
[

5 0
0 24.3333

]
. (1)

To ensure zero steady-state error as well as equal singular values at low frequencies, we
may incorporate integrators in each input channel along with the gain matrix P by writing
the augmented system

[
ẋ

ε̇

]
=

[
A B

0 0

] [
x

ε

]
+

[
0
P

]
u. (2)

FIGURE 9.2-8 MIMO Bode magnitude plots for the augmented plant.

The singular-value plots for this plant plus precompensator appear in Fig. 9.2-8. At
low frequencies there is now a slope of −20 dB/decade as well as equality of σ and σ .
Thus, the augmented system is both balanced and of type 1. Compare Fig. 9.2-8 with
the singular value plot of the uncompensated system in Fig. 9.2-3. The remaining step is
the selection of the feedback gain matrix for the augmented plant (2) so that the desired
performance is achieved. �

High-frequency Specifications We now turn to a discussion of high-frequency
performance specifications. The sensor noise is generally appreciable at frequen-
cies above some known value ωn (see Fig. 9.2-2). Thus, according to (9.2-17),
to keep the tracking norm ||e(t)||2 small in the face of measurement noise we

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 371

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 371

FIGURE 9.2-9 Frequency-domain performance specifications.

should ensure that the operator norm ||T ||2 is small at high frequencies above
this value. By (9.2-31) this may be guaranteed if

σ(GK(jω)) � 1, for ω ≥ ωn. (9.2-43)

See Fig. 9.2-9. For instance, to ensure that sensor noise is attenuated by a factor
of 0.1, we should guarantee that σ(GK(jω)) < −20 dB for ω ≥ ωn.

One final high-frequency robustness consideration needs to be mentioned. It
is unusual for the plant model to be exactly known. There are two basic sorts
of modeling inaccuracies that concern us in controls. The first is plant parameter
variation due to changes in the linearization equilibrium point of the nonlinear
model. This is a low-frequency phenomenon and will be discussed in the next
subsection. The second sort of inaccuracy is due to unmodeled high-frequency
dynamics; this, we discuss here.

We are assuming a dynamical model for the purpose of controls design, and
in so doing we, several times, neglect modes at high frequencies. Thus, although
our design may guarantee closed-loop stability for the assumed mathematical
model G(s), stability is not assured for the actual plant G’(s) with modes at
high frequencies. To guarantee stability robustness in the face of plant parameter
uncertainty, we may proceed as follows.

The model uncertainties may be of two types. The actual plant model G′ and
the assumed plant model G may differ by additive uncertainties so that

G′(jω) = G(jω) + 	G(jω), (9.2-44)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 372

372 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

where the unknown discrepancy satisfies a known bound

σ(G(jω)) < a(ω), (9.2-45)

with a(ω) known for all ω. On the other hand, the actual plant model G′(s) and
the assumed plant model G(s) may differ by multiplicative uncertainties so that

G′(jω) = [I + M(jω)]G(jω), (9.2-46)

where the unknown discrepancy satisfies a known bound

σ(M(jω)) < m(ω), (9.2-47)

with m(ω) known for all ω. We shall show several ways of finding the bound
m(ω). In Example 9.2-4 we show how to construct a reduced-order model for the
system, which may then be used for controls design. There, m(ω) is determined
from the neglected dynamics. In Example 9.3-1 we show how m(ω) may be
determined in terms of the aircraft’s neglected flexible modes. In the next sub-
section, we show how to determine m(ω) in terms of plant parameter variations
in the linearized model due to operating point changes.

Since we may write (6.2.44) as

G′(jω) = [I + 	G(jω)G−1(jω)]G(jω) = [I + M(jω)]G(jω), (9.2-48)

we confine ourselves to a discussion of multiplicative uncertainties, following
Doyle and Stein (1981). Suppose we have designed a compensator K (s) so that
the closed-loop system in Fig. 9.2-1 is stable. We should now like to derive a
frequency-domain condition that guarantees the stability of the actual closed-loop
system, which contains not G(s), but G’(s) satisfying (9.2-46), (9.2-47). For this,
the multivariable Nyquist condition (Rosenbrock 1974) may be used.

Thus, it is required that the encirclement count of the map |I + G′K| be equal
to the negative number of unstable open-loop poles of G′K . By assumption,
this number is the same as that of GK . Thus, the number of encirclements of
|I + G′K| must remain unchanged for all G’ allowed by (9.2-47). This is assured
if and only if |I + G′K| remains nonzero as G is warped continuously toward
G’, or equivalently

0 < σ [I + [I + εM(s)]G(s)K(s)]

for all 0 ≤ ε ≤ , all M (s) satisfying (9.2-47), and all s on the standard Nyquist
contour.

Since G′ vanishes on the infinite radius segment of the Nyquist contour, and
assuming for simplicity that no indentations are required along the jω-axis por-
tion, this reduces to the following equivalent conditions:

0 < σ [I + G(jω)K(jω) + εM(jω)G(jω)K(jω)]

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 373

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 373

for all 0 ≤ ε < 1, 0 ≤ ω ≤ ∞, all M

iff 0 ≤ σ [I + εMGK(I + GK)−1(I + GK)]

iff 0 ≤ σ [I + MGK(I + GK)−1]

all 0 ≤ ω < ∞, and all M , if and only if

σ [GK(I + GK)−1] <
1

m(ω)
(9.2-49)

for all 0 ≤ ω < ∞. Thus, stability robustness translates into a requirement that
the cosensitivity T (jω) be bounded above by the reciprocal of the multiplicative
modelling discrepancy bound m(ω).

In the case of high-frequency unmodeled dynamics, 1/m(ω) is small at high
ω, so that according to (9.2-31), we may simplify (9.2-49) by writing it in terms
of the loop gain as

σ(GK(jω)) <
1

m(ω)
, (9.2-50)

for all ω such that m(ω)
 1. This bound for stability robustness is illustrated
in Fig. 9.2-9. An example will be useful at this point.

Example 9.2-4. Model Reduction and Stability Robustness

In some situations we have a high-order aircraft model that is inconvenient to use for
controller design. Examples occur in engine control and spacecraft control. In such sit-
uations, it is possible to compute a reduced-order model of the system, which may then
be used for controller design. Here we show a convenient technique for model reduction
as well as an illustration of the stability robustness bound m(ω). The technique described
here is from Athans et al. (1986).

a. Model Reduction by Partial-fraction Expansion

Suppose the actual plant is described by

ẋ = Ax + Bu (1a)

z = Hx. (1b)

with x ∈ Rn. If A is simple with eigenvalues λi , right eigenvectors ui , and left eigenvectors
vi so that

Aui = λiui, vT
i A = λiv

T
i , (2)

then the transfer function

G′(s) = H(sI − A)−1B (3)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 374

374 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

may be written as the partial-fraction expansion

G′(s) =
n∑

i=1

Ri

s − λi

, (4)

with residue matrices given by

Ri = Huiv
T
i B. (5)

If the value of n is large, it may be desirable to find a reduced-order approximation
to (1) for which a simplified compensator K (s) in Fig. 9.2-1 may be designed. Then, if
the approximation is a good one, the compensator K (s) should work well when used on
the actual plant G’(s).

To find a reduced-order approximation G(s) to the plant, we may proceed as follows.
Decide which of the eigenvalues λi in (4) are to be retained in G(s). This may be done
using engineering judgment, by omitting high-frequency modes, by omitting terms in (4)
that have small residues, and so on. Let the r eigenvalues to be retained in G(s) be
λ1, λ2, . . . , λ1.

Define the matrix
Q = diag{Qi}, (6)

where Q is an r × r matrix and the blocks Qi are defined as

Qi =

⎧⎪⎪⎨
⎪⎪⎩

1, for each real eigenvalue retained[
1
2 − j

2

1
2

j

2

]
, for each complex pair retained.

(7)

Compute the matrices

V ≡ Q−1

⎡
⎢⎣

vT
i
...

vT
r

⎤
⎥⎦ (8)

U ≡ [
uT

i · · ·uT
r

]
Q. (9)

In terms of these constructions, the reduced-order system is nothing but a projection of
(1) onto a space of dimension r with state defined by

w = Vx. (10)

The system matrices in the reduced-order approximate system

ẇ = Fw + Gu (11a)

z = Jw + Du (11b)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 375

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 375

are given by
F = VAU

G = VB

J = HU, (12)

with the direct-feed matrix given in terms of the residues of the neglected eigenvalues as

D =
n∑

i=r+1

−Ri

λi

(13)

The motivation for selecting such a D matrix is as follows.
The transfer function

G(s) = J (sI − F)−1G + D (14)

of the reduced system (11) is given as (verify!)

G(s) =
r∑

i−1

Ri

s − λi

+
n∑

i=r+1

−Ri

λi

. (15)

Evaluating G(jω) and G’(jω) at ω = 0, it is seen that they are equal at DC. Thus,
the modeling errors induced by taking G(s) instead of the actual G’(s) occur at higher
frequencies. Indeed, they depend on the frequencies of the neglected eigenvalues of (1).

To determine the M (s) in (9.2-46) that is induced by the order reduction, note that

G′ = (I + M)G (16)

so that
M = (G′ − G)G−1 (17)

or

M(s) =
[

n∑
i=r+1

−Ri

λi

s

s − λi

]
G−1(s). (18)

Then, the high-frequency robustness bound is given in terms of

m(jω) = σ(M(jω)). (19)

Note that M (jω) tends to zero as ω becomes small, reflecting our perfect certainty of the
actual plant at DC.

b. An Example

Let us take an example to illustrate the model-reduction procedure and show also how
to compute the upper bound m(ω) in (9.2-46), (9.2-47) on the high-frequency modeling
errors thereby induced. To make it easy to see what is going on, we take a Jordan-form
system.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 376

376 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

Let there be prescribed the MIMO system

ẋ =
⎡
⎣−1 0 0

0 −2 0
0 0 −10

⎤
⎦ x +

⎡
⎣1 0

0 1
2 0

⎤
⎦u = Ax + bu (19a)

z =
[

1 0 0
0 1 1

]
x = Cx. (19b)

The eigenvectors are given by ui = ei , vi = ei , i = 1, 2, 3, with ei the i th column of the
3 × 3 identity matrix. Thus, the transfer function is given by the partial-fraction expansion

G′(s) = R1

s + 1
+ R2

s + 2
+ R3

s + 10
, (20)

with

R1 =
[

1 0
0 0

]
, R2 =

[
0 0
0 1

]
, R3 =

[
0 0
2 0

]
. (21)

To find the reduced-order system that retains the poles at λ = −1 and λ = −2, define

Q =
[

1 0
0 1

]
, V =

[
1 0 0
0 1 0

]
, U =

⎡
⎣1 0

0 1
0 0

⎤
⎦ (22)

and compute the approximate system

ẇ =
[−1 0

0 −2

]
w +

[
1 0
0 1

]
u = Fw + Gu (23a)

z =
[

1 0
0 1

]
w +

[
0 0

0.2 0

]
u = Jw + Du. (23b)

This has a transfer function of

G(s) = R1

s + 1
+ R2

s + 2
+ D. (24)

Singular value plots of the actual plant (19) and the reduced-order approximation (23) are
shown in Fig. 9.2-10.

The multiplicative error is given by

M = (G′ − G)G−1 =
⎡
⎣ 0 0

0.2s(s + 1)

s + 10
0

⎤
⎦ , (25)

whence

m(ω) = σ(M(jω)) = 0.2ω
√

ω2 + 1√
ω2 + 100

, (26)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 377

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 377

FIGURE 9.2-10 MIMO Bode magnitude plots of singular values. (a) Actual plant.
(b) Reduced-order approximation.

and the high-frequency bound on the loop gain GK (jω) is given by

1

m(jω)
= 5

√
ω2 + 100

ω
√

ω2 + 1
. (27)

This bound is plotted in Fig. 9.2-11. Note that the modeling errors become appreciable
(i.e., of magnitude one) at a frequency of 9.0 rads/sec. Above this frequency, we should

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 378

378 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.2-11 High-frequency stability robustness bound. (a) m(ω). (b) 1/m(ω).

ensure that constraint (9.2-50) on the loop-gain magnitude holds to guarantee stability
robustness. This will be a restriction on any compensator K(s) designed using the reduced-
order plant (23). �

Robustness Bounds for Plant Parameter Variations

Several dynamical systems are nonlinear; but for controller design we use lin-
earized models obtained at some operating point. In practice, it is necessary

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 379

9.2 MULTIVARIABLE FREQUENCY-DOMAIN ANALYSIS 379

to determine linear models at several design operating points over a specified
operation envelope and determine optimal control gains for each one. Then, these
design control gains are tabulated and scheduled using microprocessors, so that
the gains most appropriate for the actual operating point of the plant are used in
the controller. It is usual to determine which of the design operating points are
closest to the actual operating point and use some sort of linear combination of
the control gains corresponding to these design points.

It is important for the control gains to stabilize the system at all points near
the design operating point for gain scheduling to be effective. In passing from
operating point to operating point, the parameters of the state variable model
vary. Using (9.2-49), we may design controllers that guarantee robust stability
despite plant parameter variations.

Suppose the nominal perturbed model used for design is

ẋ = Ax + Bu (9.2-51)

y = Cx, (9.2-52)

which has the transfer function

G(s) = C(sI − A)−1B. (9.2-53)

However, due to operating point changes the actual system is described by

ẋ = (A + 	A)x + (B + 	B)u (9.2-54)

y = (C + 	C)x, (9.2-55)

where the plant parameter variation matrices are 	A, 	B , 	C . It is not difficult
to show (see the problems at the end of the chapter) that this results in the transfer
function

G′(s) = G(s) + 	G(s)

with

	G(s) = C(sI − A)−1	B + 	C(sI − A−1)B

+ C(sI − A)−1 = 	A(sI − A)−1B, (9.2-56)

where second-order effects have been neglected. Hence, (9.2-48) may be used to
determine the multiplicative uncertainty bound m(ω). The consensitivity T (jω)
should then satisfy the upper bound (9.2-49) for guaranteed stability in the face
of the parameter variations 	A, 	B , 	C .

Since (sI − A)−1 has a relative degree of at least one, the high-frequency
roll-off of 	G(jω) is at least −20 dB/decade. Thus, plant parameter variations
yield an upper bound for the cosensitivity at low frequencies. Using (9.2-56) it
is possible to design robust controllers over a range of operating points that do
not require gain scheduling (Stevens and Lewis 1992).

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 380

380 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

9.3 ROBUST OUTPUT-FEEDBACK DESIGN

We should now like to incorporate the robustness concepts introduced in Sec-
tion 9.2 into the LQ output-feedback design procedure for aircraft control systems.
This may be accomplished using the following steps:

1. If necessary, augment the plant with added dynamics to achieve the required
steady-state error behavior, or to achieve balanced singular values at DC.
Use the techniques of Example 9.2-3.

2. Select a performance index, the PI weighting matrices Q and R.
3. Determine the optimal output-feedback gain K using, for instance,

Table 8.1-1 or 8.1-2.
4. Simulate the time responses of the closed-loop system to verify that they

are satisfactory. If not, select different Q , R and return to step 3.
5. Determine the low-frequency and high-frequency bounds required for per-

formance robustness and stability robustness. Plot the loop gain singular
values to verify that the bounds are satisfied. If they are not, select new Q ,
R and k and return to step 3.

An example will illustrate the robust output-feedback design procedure.

Example 9.3-1. Pitch Rate Control System Robust to Wind Gusts and Unmodeled
Flexible Mode

Here we illustrate the design of a pitch rate control system that is robust in the presence
of vertical wind gusts and the unmodeled dynamics associated with a flexible mode.

a. Control System Structure

The pitch rate CAS system is described as follows: the state and measured output are

x =

⎡
⎢⎢⎢⎢⎣

α

q

δe

αF

ε

⎤
⎥⎥⎥⎥⎦ , y =

⎡
⎣αF

q

ε

⎤
⎦ , (1)

with αF the filtered angle of attack and ε the output of the integrator added to ensure zero
steady-state error. The performance output z (t) that should track the reference input r(t)
is q(t).

Linearizing the F-16 dynamics about the nominal flight condition yields in

x = Ax + Bu + Gr (2)

y = Cx + Fr (3)

z = Hx, (4)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 381

9.3 ROBUST OUTPUT-FEEDBACK DESIGN 381

with the system matrices

A =

⎡
⎢⎢⎢⎢⎣

−1.01887 0.90506 −0.00215 0 0
0.82225 −1.07741 −0.17555 0 0

0 0 −20.2 0 0
10 0 0 −10 0
0 −57.2958 0 0 0

⎤
⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎣

0
0

20.2
0
0

⎤
⎥⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦

C =
⎡
⎣0 0 57.2958 0 0

0 57.2958 0 0 0
0 0 0 0 1

⎤
⎦ , F =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

H = [0 57.2958 0 0 0].

The control input is

u = −Ky = −[kα kq kl]y = −kααF − kqq − klε. (5)

It is desired to select the control gains to guarantee a good response to a step command
r in the presence of vertical wind gusts and the unmodeled dynamics of the first flexible
mode.

b. Frequency-domain Robustness Bounds

The vertical wind gust noise is not white, but according to Stevens and Lewis (1992) has
a spectral density given as

�w(s) = 2Lσ 2 1 + 3L2ω2

(1 + L2ω2)2
, (6)

with ω the frequency in rad/s, σ the turbulence intensity, and L the turbulence scale
length divided by true airspeed. Using stochastic techniques like those in Exam-
ple 9.4-2, the magnitude of the gust disturbance versus frequency can be found. It is
shown in Fig. 9.3-1. We took σ = 10 ft/s and L = 2.49 s.

Let the transfer function of the rigid dynamics from u(t) to z (t) be denoted by G(s).
Then, the transfer function including the first flexible mode is given by Stevens and Lewis
(1992)

G′(s) = G(s)F (s), (7)

where

F(s) = ω2
n

s2 + 2ζωns + ω2
n

(8)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 382

382 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.3-1 Frequency-domain magnitude plots and robustness bounds.

with ωn = 40 rad/sec and ζ = 0.3. According to Section 9.2, therefore, the multiplicative
uncertainty is given by

M(s) = F(s) − I = −s(s + 2ζωn)

s2 + 2ζωns + ω2
n

. (9)

The magnitude of 1/M (jω) is shown in Fig. 9.3-1.
We should like to perform our controls design using only the rigid dynamics G(s).

Then, for performance robustness in the face of the gust disturbance and stability robust-
ness in the face of the first flexible mode, the loop gain singular values should lie within
the bounds implied by the gust disturbance magnitude and 1/|M (jω)|.

c. Controls Design and Robustness Verification

In using the same design technique as in Example 8.2-1 we obtained the control gains

K = [−0.0807 −0.4750 1.3610] (10)

The resulting step response is reproduced in Fig. 9.3-2, and the closed-loop poles were

s = −3.26 ± j2.83

= −1.02 (11)

= −10.67,−14.09.

To verify that the robustness bounds hold for this design, it is necessary to find the
loop gain GK (s) of the closed-loop system. The magnitude of GK (jω) is plotted in

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 383

9.4 OBSERVERS AND THE KALMAN FILTER 383

FIGURE 9.3-2 Optimal pitch-rate response.

Fig. 9.3-1. Note that the robustness bounds are satisfied. Therefore, this design is robust
in the presence of vertical turbulence velocities up to 10 ft/s as well as the first flexible
mode. �

9.4 OBSERVERS AND THE KALMAN FILTER

The design equations for full state-variable feedback (see Chapter 3) are consid-
erably simpler than those for output feedback. In fact, in state-variable design it
is only necessary to solve the control matrix Riccati equation, for which there are
many good techniques (ORACLS [Armstrong 1980], MATLAB [Control System
Toolbox 1992]). By contrast, in output-feedback design it is necessary to solve
three coupled nonlinear equations (see Table 8.1-2), which must generally be
done using iterative techniques (Moerder and Calise 1985, Press et al. 1986).

Moreover, in the case of full state feedback, if the system (A, B) is reachable
and (

√
Q,A) is observable (with Q the state weighting in the PI), then the

Kalman gain is guaranteed to stabilize the plant and yield a global minimum
value for the PI. This is a fundamental result of modern control theory, and no
such result yet exists for output feedback. The best that may be said is that if
the plant is output stabilizable, then the algorithm of Table 8.3-2 yields a local
minimum for the PI and a stable plant.

Another issue is that the LQ regulator with full state feedback enjoys some
important robustness properties that are not guaranteed using output feedback.
Specifically, as we shall see in Section 9.5, it has an infinite gain margin and 60◦

of phase margin.
Thus, state-feedback design offers some advantages over output feedback if

the structure of the compensator is of no concern. Since all the states are seldom

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 384

384 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

available, the first order of business is to estimate the full state x (t), given only
partial information in the form of the measured outputs y(t). This is the observer
design problem. Having estimated the state, we may then use the estimate of
the state for feedback purposes, designing a feedback gain as if all the states
were measurable. The combination of the observer and the state-feedback gain
is then a dynamic regulator similar to those used in classical control, as we
shall show in the last portion of this section. In the modern approach, however,
it is straightforward to design multivariable regulators with desirable properties
by solving matrix equations due to the fundamental separation principle, which
states that the feedback gain and observer may be designed separately and then
concatenated.

One of our prime objectives in this section is to discuss the linear quadratic
Gaussian/loop-transfer recovery (LQG/LTR) technique for controls design. This
is an important modern technique for the design of robust control systems. It
relies on full state-feedback design, followed by the design of an observer that
allows full recovery of the guaranteed robustness properties of the LQ regulator
with state feedback.

Of course, observers and filters have important applications in system design
in their own right. For instance, in aircraft control, the angle of attack is difficult
to measure accurately; however, using an observer or Kalman filter it is not
difficult to estimate the angle of attack very precisely by measuring pitch rate
and normal acceleration (see Example 9.4-2).

Observer Design

In control design, all of the states are rarely available for feedback purposes.
Instead, only the measured outputs are available. Using modern control theory,
if the measured outputs capture enough information about the dynamics of the
system, it is possible to use them to estimate or observe all the states. Then, these
state estimates may be used for feedback purposes.

To see how a state observer can be constructed, consider the plant equations
in state space form

ẋ = Ax + bu (9.4-1)

y = Cx, (9.4-2)

with x(t) ∈ Rn the state, u(t) ∈ Rm the control input, and y(t) ∈ Rp the available
measured outputs. Let the estimate of x (t) be x̂(t). We claim that the state
observer is a dynamical system described by

x̂ = Ax̂ + Bu + L(y − Cx̂) (9.4-3)

or
x̂ = (A − LC)x̂ + Bu + Ly = Aox̂ + Bu + Ly. (9.4-4)

That is, the observer is a system with two inputs, namely u(t) and y(t), both of
which are known.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 385

9.4 OBSERVERS AND THE KALMAN FILTER 385

Since x̂(t) is the state estimate, we could call

ŷ = Cx̂ (9.4-5)

the estimated output. It is desired that x̂(t) be close to x (t). Thus, if the observer
is working properly, the quantity y − ŷ, which appears in (9.4-3), should be
small. In fact,

ỹ = y − ŷ (9.4-6)

is the output estimation error.
It is worth examining Fig. 9.4-1, which depicts the state observer. Note that

the observer consists of two parts: a model of the system involving (A, B, C),
and an error-correcting portion that involves the output error multiplied by L. We
call matrix L the observer gain.

To demonstrate that the proposed dynamical system is indeed an observer, it
is necessary to show that it manufactures an estimate x̂(t) that is close to the
actual state x (t). For this purpose, define the (state) estimation error as

x̃ = x − x̂. (9.4-7)

By differentiating (9.4-7) and using (9.4-1) and (9.4-4), it is seen that the esti-
mation error has dynamics given by

x̃ = (A − LC)x̃ = Aox̃. (9.4-8)

FIGURE 9.4-1 Standard feedback configuration.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 386

386 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

The initial estimation error is x̃(0) = x(0) − x̂(0) the initial estimate, which is
generally taken as zero.

It is required that the estimation error vanish with time for any x̃(0), for
then x̂(t) will approach x (t). This will occur if Ao = (A − LC) is asymptotically
stable. Therefore, as long as we select the observer gain L so that (A − LC)
is stable, (9.4-3) is indeed an observer for the state in (9.4-1). The observer
design problem is to select L so that the error vanishes suitably quickly. It is a
well-known result of modern control theory that the poles of (A − LC) may be
arbitrarily assigned to desired locations if and only if (C, A) is observable.

Since, according to Fig. 9.4-1, we are injecting the output into the state
derivative, L is called an output injection. Observers of the sort we are mention-
ing here are called output-injection observers, and their design could be called
output-injection design. It is important to discuss the output-injection problem of
selecting L so that (A − LC) is stable, for it is a problem we have already solved
under a different guise.

The state-feedback control law for system (9.4-1) is

u = −Kx, (9.4-9)

which results in the closed-loop system

x = (A − BK)x. (9.4-10)

The state-feedback design problem is to select K for desired closed-loop proper-
ties. We have shown how this may be accomplished in Section 3.4. Thus, if we
select the feedback gain as the Kalman gain

K = R−1BTP (9.4-11)

with P the positive definite solution to the algebraic Riccati equation (ARE)

0 = ATP + PA + Q − PBR−1BTP, (9.4-12)

then, if (A, B) is reachable and (
√

Q, A) is observable, the closed-loop system
is guaranteed to be stable. The matrices Q and R are design parameters that
will determine the closed-loop dynamics, as we have seen in the examples of
Chapter 3.

Now, compare (9.4-8) and (9.4-10). They are very similar. In fact,

(A − LC)T = AT − CTLT, (9.4-13)

which has the free matrix LT to the right, exactly as in the state-feedback problem
involving (A − BK). This important fact is called duality; that is, state feedback
and output injection are duals. (Note that A − LC and (A − LC)T have the same
poles.)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 387

9.4 OBSERVERS AND THE KALMAN FILTER 387

The important result of duality for us is that the same theory we have developed
for selecting the state-feedback gain may be used to select the output-injection
gain L. In fact, compare (9.4-13) with (A − BK). Now, in the design equations
(9.4-11) and (9.4-12) let us replace A, B , and K everywhere the occur by AT,
CT, and LT, respectively. The result is

LT = R−1CP

0 = AP + PAT + Q − PCTR−1CP. (9.4-14)

The first of these may be rewritten as

L = PCTR−1. (9.4-15)

We call (9.4-14) the observer or filter ARE.
Let us note the following connection between reachability and observability.

Taking the transpose of the reachability matrix yields

UT = [
B AB A2B · · · An−1B

]T

=

⎡
⎢⎢⎢⎣

BT

BTAT

...

BT(AT)n−1

⎤
⎥⎥⎥⎦ . (9.4-16)

However, the observability matrix is

V =

⎡
⎢⎢⎢⎣

C

CA
...

CAn−1

⎤
⎥⎥⎥⎦ . (9.4-17)

Comparing UT and V , it is apparent that they have the same form. In fact, since U
and UT have the same rank it is evident that (A, B) is reachable if and only if
(BT, AT) is observable. This is another aspect of duality.

Taking into account these notions, an essential result on output injection is
the following. It is the dual of the guaranteed stability using the Kalman gain
discussed in Section 3.4. Due to its importance, we formulate it as a theorem.

Theorem 9.4-1. Let (C, A) be observable and (A,
√

Q) be reachable. Then the
error system (9.4-9) using the gain L is given by (9.4-15), with P the unique
positive definite solution to (9.4-14), is asymptotically stable. �

Stability of the error system guarantees that the state estimate x̂(t) will
approach the actual state x (t). By selecting L to place the poles of (A − LC)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 388

388 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

far enough to the left in the s-plane, the estimation error x̃(t) can be made to
vanish as quickly as desired.

The significance of this theorem is that we may treat Q and R as design
parameters that may be tuned until suitable observer behavior results for the
gain computed from the observer ARE. As long as we select Q and R to satisfy
the theorem, observer stability is assured. An additional factor, of course, is
that software for solving the observer ARE is readily available (e.g., ORACLS
[Armstrong 1980], MATLAB [Control System Toolbox 1992].

We have assumed that the system matrices (A, B, C) are exactly known.
Unfortunately, in reality this is rarely the case. In several control problems for
instance, (9.4-1), (9.4-2) represent a model of a nonlinear system at an equilibrium
point. Variations in the operating point will result in variations in the elements
of A, B , and C . However, if the poles of (A − LC) are selected far enough to
the left in the s-plane (i.e., fast enough), then the estimation error will be small
in spite of uncertainties in the system matrices. That is, the observer has some
robustness to modelling inaccuracies.

It is worth mentioning that there are many other techniques for the selec-
tion of the observer gain L. In the single-output case the observability matrix V
is square. Then, Ackermann’s formula (Franklin et al. 1986) may be used to
compute L. If

	o(s) = |sI − (A − LC)| (9.4-18)

is the desired observer characteristic polynomial, then the required observer gain
is given by

L = 	o(A)V −1en, (9.4-19)

with en the last column of the n × n identity matrix.
A general rule of thumb is that, for suitable accuracy in the state estimate x̂(t),

the slowest observer pole should have a real part 5–10 times larger than the real
part of the fastest system pole. That is, the observer time constants should be
5–10 times larger than the system time constants.

Example 9.4-1. Observer Design for Double-integrator System

In Example 3.3-3 we discussed state-feedback design for systems obeying Newton’s laws

ẋ =
[

0 1
0 0

]
x +

[
0
1

]
u = Ax + Bu, (1)

where the state is x = [d v]T, with d (t) the position and v (t) the velocity, and the control
u(t) is an acceleration input. Let us take position measurements so that the measured
output is

y =
[

1
0

]
x = Cx. (2)

We should like to design an observer that will reconstruct the full state x (t) given only
position measurements. Let us note that simple differentiation of y(t) = d(t) to obtain

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 389

9.4 OBSERVERS AND THE KALMAN FILTER 389

v (t) is unsatisfactory, since differentiation increases sensor noise. In fact, the observer is
a low-pass filter that provides estimates while rejecting high-frequency noise. We shall
discuss two techniques for observer design.

a. Riccati Equation Design

There is good software available in standard design packages for solving the filter ARE,
e.g., MATLAB (Control System Toolbox 1992). However, in this example we want to
analytically solve the ARE to show the relation between the design parameters Q and R
and the observer poles.

Selecting R = 1 and Q = diag{qd, q
2
v }, with qd , qv nonnegative, we may assume that

P =
[
p1 p2

p2 p3

]
(3)

for some scalars p1, p2, p3 to be determined. The observer ARE (9.4-14) becomes

0 =
[

0 1
0 0

] [
p1 p2

p2 p3

]
+

[
p1 p2

p2 p3

] [
0 0
1 0

]
+

[
qd 0

0 q2
v

]

−
[
p1 p2

p2 p3

] [
0 1
0 0

] [
p1 p2

p2 p3

]
, (4)

which may be multiplied out to obtain the three scalar equations

0 = 2p2 − p2
1 + qd (5a)

0 = p3 − p1p2 (5b)

0 = −p2
2 + q2

v . (5c)

Solving these equations gives

p2 = qv (6a)

p1 =
√

2

√
qv + qd

2
(6b)

p3 = qv

√
2

√
qv + qd

2
, (6c)

where we have selected the signs that make P positive definite.
According to (9.4-15), the observer gain is equal to

L =
[
p1 p2

p2 p3

] [
1
0

]
. (7)

Therefore,

L =
⎡
⎣√

2

√
qv + qd

2
qv

⎤
⎦ . (8)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 390

390 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

Using (8), the error system matrix is found to be

Ao = A − LC =
⎡
⎣−√

2

√
qv + qd

2
1

−qv 0

⎤
⎦ . (9)

Therefore, the observer characteristic polynomial is

	o(s) = |sI − Ao| = s2 + 2ζωs + ω2, (10)

with the observer natural frequency ω and damping ratio ζ given by

ω = √
qv, ζ = 1√

2

√
1 + qd

2qv
. (11)

It is now clear how selection of Q affects the observer behavior. Note that if qd = 0, the
damping ratio becomes the familiar 1/ = √

2. The reader should verify that the system
is observable, and that (A,

√
Q) is reachable as long as qv �= 0. A comparison with

Example 3.3-3, where a state feedback was designed for Newton’s system, reveals some
interesting aspects of duality.

b. Ackermann’s Formula Design

Riccati-equation observer design is useful whether the plant has only one or multiple
outputs. If there is only one output, we may use Ackermann’s formula (9.4-19).

Let the desired observer polynomial be

	o(s) = s2 + 2ζωs + ω2 (12)

for some specified damping ratio ζ and natural frequency ω. Then,

	o(A) = A2 + 2ζωA + ω2I =
[
ω2 2ζω

0 ω2

]
(13)

V =
[

C

CA

]
, (14)

so that the observer gain is

L =
[

2ζω

ω2

]
. (15)

One may verify that the characteristic polynomial Ao = A − LC is indeed (12).

c. Simulation

To design an observer with a complex pole pair having damping ratio of ζ = 1/
√

2 and
natural frequency of ω = 1 rad/sec, the observer gain was selected as

L =
[√

2

1

]
. (16)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 391

9.4 OBSERVERS AND THE KALMAN FILTER 391

FIGURE 9.4-2 Actual and estimated states.

The resulting time histories of the actual states and their estimates are shown in Fig. 9.4-2.
The initial conditions were d(0) = −1, v(0) = 1 and the input was u(t) = 0. The observer
was started with initial states of d̂(0) = 0, v̂(0) = 0. The simulation was performed on
SIMULINK. �

The Kalman Filter

Throughout this book we assume that the system is exactly known and that
no modeling inaccuracies, disturbances, or noises are present. In fact, nature is
seldom so cooperative. In Sections 9.2 and 9.3 we showed how to take account of
uncertainties in the model and the environment using a robust frequency-domain
approach. An alternative is to treat uncertainties using probability theory.

In this subsection we develop the Kalman filter, which is based on a probabilis-
tic treatment of process and measurement noises. The Kalman filter is an observer
that is used for navigation and other applications that require the reconstruction
of the state from noisy measurements. Since it is fundamentally a low-pass fil-
ter, it has good noise-rejection capabilities. In Example 9.4-2 we show how to
use the Kalman filter to estimate the angle of attack in the face of gust distur-
bances. In the next subsection we show how to use a Kalman filter along with a
state-variable feedback to design a dynamic compensator for the plant. Then, in
Section 9.5 we show how to use a state-variable feedback and a Kalman filter to
design robust controllers by using the LQG/LTR technique.

We begin with a brief review of probability theory. It is not necessary to
follow the derivation to use the Kalman filter: it is only necessary to solve the
design equations in Table 9.4-1. Thus, one could skip the review that follows.
However, an understanding of the theory will result in more sensible application
of the filter. Supplemental references are Gelb (1974) and Lewis (1986).

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 392

392 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

TABLE 9.4-1 The Kalman Filter

ẋ = Ax + Bu

y = Cx

x(0) ∼ (x0, P0), w(t) ∼ (0,Q), v(t) ∼ (0, R)

Assumptions :
w (t) and v (t) are white noise processes orthogonal to each other and to x (0).
Initialization:

x̂(0) = x0

Error covariance ARE :
AP + PAT + GQGT − PCTR−1CP = 0

Kalman gain:
L = PCTR−1

Estimate dynamics (filter dynamics):
˙̂x = Ax̂ + Bu + L(y − Cx̂)

A Brief Review of Probability Theory Suppose the plant is described by the
stochastic dynamical equation

ẋ = Ax + Bu + Gw (9.4-20)

y = Cx + v (9.4-21)

with state x(t) ∈ Rn, control input u(t) ∈ Rm, and measured output y(t) ∈ Rp.
Signal w (t) is an unknown process noise that acts to disturb the plant. It could
represent the effects of wind gusts, for instance, or unmodeled high-frequency
plant dynamics. Signal v (t) is an unknown measurement noise that acts to impair
the measurements; it could represent sensor noise.

Since (9.4-20) is driven by process noise, the state x (t) is now also a random
process, as is y(t). To investigate average properties of random processes we will
require several concepts from probability theory (Papoulis 1984). The point is
that although w (t) and v (t) represent unknown random processes, we do in fact
know something about them that can help us in controls design. For instance, we
may know their average values or total energy content. The concepts we now
define allow us to incorporate this general sort of knowledge into our theory.

Given a random vector z ∈ Rn, we denote by fz(ζ) the probability density
function (PDF) of z . The PDF represents the probability that z takes on a value
within the differential region dζ centered at ζ . Although the value of z may be
unknown, it is quite common in many situations to have a good feel for its PDF.

The expected value of a function g(z) of a random vector z is defined as

E{g(z))} =
∫ ∞

−∞
g(ζ)fz(ζ) dζ. (9.4-22)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 393

9.4 OBSERVERS AND THE KALMAN FILTER 393

The mean or expected value of z is defined by

E{z} =
∫ ∞

−∞
ζfz(ζ) dζ, (9.4-23)

which we symbolize by z to economize on notation. Note that z ∈ Rn. The
covariance of z is given by

Pz = E{(z − z)(z − z)T }. (9.4-24)

Note that Pz is an n × n constant matrix.
An important class of random vectors is characterized by the Gaussian or

normal PDF
fz(ζ) = 1√

(2π)n|Pz|
e−(ζ−z)T P −1

z (ζ−z)/2. (9.4-25)

In the scalar case n = 1 this reduces to the more familiar

fz(ζ) = 1√
2πPz

e−(ζ−z)2/2Pz, (9.4-26)

which is illustrated in Fig. 9.4-3. Such random vectors take on values near the
mean z with greatest probability, and have a decreasing probability of taking
on values farther away from z. Many naturally occurring random variables are
Gaussian.

If the random vector is a time function, it is called a random process, sym-
bolized as z (t). Then, the PDF may also be time varying and we write fz(ζ, t).
One can imagine the PDF in Fig. 9.4-3 changing with time. In this situation, the

FIGURE 9.4-3 Gaussian PDF.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 394

394 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

expected value and covariance matrix are also functions of time, so we write z(t)
and Pz(t).

Many random processes z (t) of interest to us have a time-invariant PDF. These
are stationary processes and, even though they are random time functions, they
have a constant mean and covariance.

To characterize the relation between two random processes z (t) and x (t)
we employ the joint PDF fzx(ζ, ξ, t1, t2), which represents the probability that
(z(t1), x(t2)) is within the differential area dζ × dξ centered at (ζ , ξ). For our
purposes, we assume that the processes z(t), x (t) are jointly stationary, that is,
the joint PDF is not a function of both times t1 and t2, but depends only on the
difference (t1 − t2).

In the stationary case, the expected value of the function of two variables
g(z, x) is defined as

E{g(z(t1), x(t2))} =
∫ ∞

−∞
g(ζ, ξ)fz,x(ζ, ξ, t1 − t2) dζdξ. (9.4-27)

In particular, the cross-correlation matrix is defined by

Rzx(τ) = E{z(t + τ)xT(t)}. (9.4-28)

In the sequel, we shall briefly require the cross-correlation matrix of two nonsta-
tionary processes, which is defined as

Rzx(t, τ) = E{z(t)xT(τ)}. (9.4-29)

Considering z(t1) and z(t2) as two jointly distributed random stationary processes,
we may define the autocorrelation function of z (t) as

Rz(τ) = E{z(t + τ)zT(t)} (9.4-30)

The autocorrelation function gives us some important information about the
random process z (t). For instance,

trace[Rz(0)] = trace[E{z(t)zT(t)}] = E{‖z(t)‖}

is equal to the total energy in the process z (t). (In writing this equation recall
that for any compatible matrices M and N , trace (MN) = trace(NM).)

If
Rzx(τ) = 0, (9.4-31)

we call z (t) and x (t) orthogonal. If

Rz(τ) = Pδ(τ), (9.4-32)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 395

9.4 OBSERVERS AND THE KALMAN FILTER 395

where P is a constant matrix and δ(t) is the Dirac delta, then z (t) is orthogonal
to z(t + τ) for any τ �= 0. What this means is that the value of the process z (t)
at one time t is unrelated to its value at another time τ �= t . Such a process is
called white noise. An example is the thermal noise in an electric circuit, which
is due to the thermal agitation of the electrons in the resistors.

Note that Pδ(0) is the covariance of z (t), which is unbounded. We call P
a spectral density matrix. It is sometimes loosely referred to as a covariance
matrix.

Derivation of the Kalman Filter We may now return to system (9.4-20),
(9.4-21). Neither the initial state x (0), the process noise w (t), nor the measure-
ment noise v (t) is exactly known. However, in practice we may have some feel
for their general characteristics. Using the concepts we have just discussed,
we may formalize this general knowledge so that it may be used in controls
design.

The process noise is due to some sort of system disturbance such as wind
gusts, the measurement noise is due to sensor inaccuracies, and the initial state is
uncertain because of our ignorance. Since these are all unrelated, it is reasonable
to assume that x (0), w (t), and v (t) are mutually orthogonal. Some feeling for
x (0) may be present in that we may know its mean xo and covariance P0. We
symbolize this as

x̃(0) ≈ (x̃0, P0). (9.4-33)

It is not unreasonable to assume that w (t) and v (t) have means of zero, since,
for instance, there should be no bias on the measuring instruments. We shall also
assume that the process noise and measurement noise are white noise processes
so that

Rw(τ) = E{w(t + τ)wT(t)} = Qδ(τ) (9.4-34)

Rv(τ) = E{v(t + τ)vT(t)} = Rδ(τ). (9.4-35)

Spectral density matrices Q and R will be assumed known. (Often, we
have a good feel for the standard deviations of w (t) and v (t).) According to
(9.4-30), Q and R are positive semi-definite. We shall assume in addition that R
is nonsingular. In summary, we shall assume that

w(t) (0, Q), Q ≥ 0 (9.4-36)

v(t) (0, R), R > 0. (9.4-37)

The assumption that w (t) and v (t) are white may in some applications be a
bad one. For instance, wind gust noise is generally of low frequency. However,
suppose that w (t) is not white. Then, we can determine a system description

ẋw = Awxw + Bwn (9.4-38)

w = Cwxw + Dwn, (9.4-39)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 396

396 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

which has a white noise input n(t) and output w (t). This is called a noise-shaping
filter. These dynamics may be combined with the plant (9.4-20), (9.4-21) to obtain
the augmented dynamics

[
ẋ

ẋw

]
=

[
A GCw

0 Aw

] [
x

xw

]
+

[
B

0

]
u +

[
CDw

Bw

]
n (9.4-40)

y = [C0]

[
x

xw

]
+ v. (9.4-41)

This augmented system does have a white process noise n(t). A similar procedure
may be followed if v (t) is nonwhite. Thus, we can generally describe a plant
with nonwhite noises in terms of an augmented system with white process and
measurement noises.

The determination of a system (9.4-38), (9.4-39) that describes nonwhite noise
w (t) (or v (t)) is based on factoring the spectral density of the noise w (t). For
details see Lewis (1986). We illustrate the procedure in Example 9.4-2.

We should now like to design an estimator for the stochastic system (9.4-20),
(9.4-21) under the assumptions just listed. We shall propose the output-injection
observer, which has the form

˙̂x = Ax̂ + Bu + L(y − ŷ) (9.4-42)

or
˙̂x = (A − LC)x̂ + Bu + Ly. (9.4-43)

The time function x̂(t) is the state estimate and

ŷ = E{Cx + v} = Cx̂ (9.4-44)

is the estimate of the output y(t). (This expected value is actually the conditional
mean given the previous measurements. See Lewis [1986].)

The estimator gain L must be selected to provide an optimal estimate in the
presence of the noises w (t) and v (t). To select L, we need to define the estimation
error

x̃(t) = x(t) − x̂(t). (9.4-45)

Using (9.4-20) and (9.4-42) we may derive the error dynamics to be

x̃ = (A − LC)x̃ + Gw − Lv

≡ Aox̃ + Gw − Lv. (9.4-46)

Note that the error system is driven by both the process and measurement noise.
The output of the error system may be taken as ỹ = y − ŷ so that

ỹ = Cx̃. (9.4-47)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 397

9.4 OBSERVERS AND THE KALMAN FILTER 397

The error covariance is given by

P(t) = E{x̃x̃T }, (9.4-48)

which is time varying. Thus, x̃(t) is a nonstationary random process. The error
covariance is a measure of the uncertainty in the estimate, and smaller values for
P (t) mean that the estimate is better, since the error is more closely distributed
about its mean value of zero if P (t) is smaller.

If the observer is asymptotically stable and w (t) and v (t) are stationary pro-
cesses, then the error x̃(t) will eventually reach a steady state in which it is
also stationary with constant mean and covariance. The gain L will be chosen to
minimize the steady-state error covariance P . Thus, the optimal gain L will be a
constant matrix of observer gains.

Before determining the optimal gain L, let us compute the mean and covariance
of the estimation error x̃(t). Using (9.4-46) and the linearity of the expectation
operator,

E{x̃} = AoE{x̃} + GE{w} − LE{v}, (9.4-49)

so that
d

dt
E{x̃} = AoE{x̃}. (9.4-50)

Thus, E{x̃} is a deterministic time-varying quantity that obeys a differential
equation with system matrix Ao. If Ao = A − LC is stable, then E{x̃} eventually
stabilizes at a steady-state value of zero, since the process and measurement noise
are of zero mean. Since

E{x̃} = E{x} − E{x̂} = E{x} − x̂, (9.4-51)

it follows that in this case the estimate x̂(t) approaches E {x (t)}. Then, the esti-
mate is said to be unbiased. According also to (9.4-51), the mean of the initial
error x̃(0) is equal to zero if the observer (9.4-43) is initialized to x̂(0) = x0,
with x0 the mean of x (0).

If the process noise w (t) and/or measurement noise v (t) have means that are
not zero, then according to (9.4-49) the steady-state value of E{x̃} is not equal
to zero. In this case, x̂(t) does not tend asymptotically to the true state x (t), but
is offset from it by the constant value −E{x̃}. Then, the estimates are said to be
biased. To determine the error covariance, note that the solution of (9.4-46) is
given by

x(t) = eAotx(0) −
∫ t

0
eAo(t−τ)Lv(τ) dτ +

∫ t

0
eAo(t−τ)Gw(τ) dτ. (9.4-52)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 398

398 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

We shall soon require the cross-correlation matrices Rvx̃ (t, t) and Rwx̃ (t, t). To
find them, use (9.4-52) and the assumption that x (0) (and hence x̃(0)), w (t), and
v (t) are orthogonal. Thus,

Rvx̃ (t, t) = E{v(t)x̃T(t)}

= −
∫ t

0
E{v(t)vT(τ)}LTeAT

o (t−τ)dτ. (9.4-53)

Note that
Rv(t, τ) = Rδ(t − τ), (9.4-54)

but the integral in (9.4-53) has an upper limit of t . Recall that the unit impulse
can be expressed as

δ(t) = lim
T →0

1

T

∏(
t

T

)
, (9.4-55)

where the rectangle function

1

T

∏ (
t

T

)
=

{
1, |t | < T

2

0, otherwise
(9.4-56)

is centered at t = 0. Therefore, only half the area of δ(t − τ) should be considered
as being to the left of τ = t . Hence, (9.4-53) is

Rvx̃ (t, t) = − 1
2 RLT. (9.4-57)

Similarly,
Rwx̃ (t, t) = E{w(t)x̃T(t)}

=
∫ t

0
E{w(t)wT(τ)}GTeAT

o (t−τ)dτ, (9.4-58)

or
Rwx̃ (t, t) = 1

2 QGT. (9.4-59)

To find a differential equation for P(t) = E{x̃x̃T}, write

P(t) = E

{
dx̃

dt
x̃T

}
= E

{
x̃

dx̃T

dt

}
. (9.4-60)

According to the error dynamics (9.4-46) the first term is equal to

E

{
dx

dt
xT

}
= (A − LC)P + 1

2 LRLT + 1
2 GQGT, (9.4-61)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 399

9.4 OBSERVERS AND THE KALMAN FILTER 399

where we have used (9.4-57) and (9.4-59). To this equation add its transpose to
obtain

Ṗ = AoP + PAT
o + LRLT + GQGT. (9.4-62)

What we have derived in (9.4-62) is an expression for the error covariance when
the observer (9.4-43) is used with a specific gain L. Given any L such that
(A − LC) is stable, we may solve (9.4-62) for P (t), using as initial condi-
tion P(0) = P0, with P0 the covariance of the initial state, which represents the
uncertainty in the initial estimate x̂(0) = x0.

Clearly, gains that result in smaller error covariances P (t) are better, for then
the error x̃(t) is generally closer to its mean of zero. That is, the error covariance
is a measure of the performance of the observer, and smaller covariance matrices
are indicative of better observers. We say that P is a measure of the uncertainty
in the estimate. (Given symmetric positive semidefinite matrices P1 and P2, P1

is less than P2 if (P2 − P1) ≥ 0.)
The error covariance P (t) reaches a bounded steady-state value P as t → ∞

as long as Ao is asymptotically stable. At steady state, Ṗ = 0 so that (9.4-62)
becomes the algebraic equation

0 = AoP + PAT
o + LRLT + GQGT. (9.4-63)

The steady-state error covariance is the positive semi-definite solution to (9.4-63).
To obtain a constant observer gain, we may select L to minimize the steady-state
error covariance P . Necessary conditions for L are now easily obtained after the
same fashion that the output feedback gain K was obtained in Section 3.3.

Thus, define a performance index (PI)

J = 1
2 trace(P). (9.4-64)

(Note that trace(P) is the sum of the eigenvalues of P . Thus, a small J corre-
sponds to a small P .) To select L so that J is minimized subject to the constraint
(9.4-63), define the Hamiltonian

H = 1
2 trace(P) + 1

2 trace(gS), (9.4-65)

where
g = AoP + PAT

o + LRLT + GQGT (9.4-66)

and S is an n × n undetermined (Lagrange) multiplier.
To minimize J subject to the constraint g = 0, we may equivalently mini-

mize H with no constraints. Necessary conditions for a minimum are therefore
given by

δH

δS
= AoP + PAT

o + LRLT + GQGT = 0 (9.4-67)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 400

400 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

δH

δP
= AT

oS + SAo + I = 0 (9.4-68)

1

2

δH

δL
= SLR − SPCT = 0. (9.4-69)

If Ao is stable, then the solution S to (9.4-68) is positive definite. Then, according
to (9.4-69),

L = PCTR−1. (9.4-70)

Substituting this value for L into (9.4-67) yields

(A − PCTR−1C)P + P(A − PCTR−1C)T + PCTR−1CP + GQGT = 0,

(9.4-71)

or
AP + PAT + GQGT − PCTR−1CP = 0. (9.4-72)

To determine the optimal observer gain L, we may therefore proceed by solv-
ing (9.4-72) for the error covariance P and then using (9.4-70) to compute L.
The matrix quadratic equation (9.4-72) is called the algebraic (filter) Riccati
equation (ARE). There are several efficient techniques for solving the ARE for
P (e.g., Armstrong [1980], IMSL [1980], MATLAB, Control System Toolbos
[1992]).

The optimal gain L determined using (9.4-70) is called the (steady-state)
Kalman gain, and the observer so constructed is called the (steady-state) Kalman
filter. The term “steady state” refers to the fact that, although the optimal gain that
minimizes P (t) is generally time-varying, we have selected the optimal gain that
minimizes the steady-state error covariance in order to obtain a constant observer
gain. Since the gain must eventually be gain scheduled in actual flight controls
applications, we require a constant gain to keep the number of parameters to be
scheduled within reason.

The design equations for the Kalman filter are collected in Table 9.4-1. A block
diagram appears in Fig. 9.4-1.

The steady-state Kalman filter is the best estimator with constant gains that
has the dynamics of the form in the table. Such a filter is said to be linear. It can
be shown (Lewis 1986) that if the process noise w (t) and measurement noise v (t)
are Gaussian, then this is also the optimal steady-state estimator of any form.

The quantity

ỹ(t) = y(t) − ŷ(t) = y(t) − Cx̂(t) (9.4-73)

that drives the filter dynamics in the table is called the residual. For some inter-
esting notions concerning the residual see Kailath (1980). For more information
on the Kalman filter see Bryson and Ho (1975), Kwakernaak and Sivan (1972),
and Lewis (1986).

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 401

9.4 OBSERVERS AND THE KALMAN FILTER 401

The filter ARE should be compared to the ARE we discussed at the beginning
of the section in connection with output injection design. There, no particular
meaning was given to the auxiliary matrix P . In this stochastic setting, we have
discovered that it is nothing but the error covariance. Small values of P generally
indicate a filter with good estimation performance.

The theorem offered in connection with output-injection observer design also
holds here. Thus, suppose (C, A) is observable and (A, G

√
Q) is reachable. Then

the ARE has a unique positive definite solution P . Moreover, the error system
(9.4-46) using the gain Kalman gain L given by (6.4-70), with P the unique
positive definite solution to the ARE, is asymptotically stable.

One might be inclined to believe that the less noise in the system, the better.
However, the actual situation is quite surprising. For existence of the Kalman
filter it was necessary to assume that R > 0; that is, that the measurement noise
corrupts all the measurements. If there are some noise-free measurements, a
more complicated filter known as the Deyst filter must be used. Moreover, the
assumption that (A, G

√
Q) is reachable means that the process noise should

excite all the states.

Example 9.4-2. Kalman Filter Estimation of Angle of Attack in Gust Noise

The short period approximation to the F-16 longitudinal dynamics is

ẋ = Ax + Bδe + Gwg (1)

with x = [α q]T, α the angle of attack, q pitch rate, control input δe the elevator deflec-
tion, and wg the vertical wind gust disturbance velocity. The plant matrices are found to
be (see Stevens and Lewis [1992])

A =
[−1.01887 0.90506

0.82225 −1.07741

]
, B =

[−0.00215
−0.17555

]
, G =

[
0.00203

−0.00164

]
. (2)

The vertical wind gust noise is not white, but according to Stevens and Lewis (1992)
has a spectral density given as

�w(s) = 2Lσ 2 1 + 3L2ω2

(1 + L2ω2)2
, (3)

with ω the frequency in rad/s, σ the turbulence intensity, and L the turbulence scale length
divided by true airspeed. Taking σ = 10 ft/sec and L = (1750 ft)/(502 ft/sec) = 3.49 sec
the gust spectral density is shown in Fig. 9.4-4.

a. Determination of Gust shaping Filter

Since wg is not white, a noise-shaping filter of the form of (9.4-38), (9.4-39) must be
determined by factoring �w(s) (Lewis 1986). Note that

�w(s) = 2Lσ 2 (1 + √
3Ljω)(1 − √

3Ljω)

(1 + Ljω)2(1 − Ljω)2
(4)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 402

402 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.4-4 Vertical wind gust spectral density.

so that
�w(s) = Hw(s)Hw(−s) (5)

with

Hw(s) = σ

√
6

L

s + 1/L
√

3

L(s + 1/L)2
(6)

= σ

√
6

L

s + 1/L
√

3

s2 + 2s/L + 1/L2
. (7)

Now, a reachable canonical form realization of Hw(s) (Kailath 1980) is given by

ż =
⎡
⎣ 0 1

− 1

L2
− 2

L

⎤
⎦ z +

[
0

1

]
w, (8)

wg = γ

[
1

L
√

3
1
]

z, (9)

where the gain is γ = σ
√

6/L. Using σ = 10, L = 3.49 yields

ż =
[

0 1

−0.0823 −0.5737

]
z +

[
0

1

]
w ≡ Awz + Bww (10)

wg = [2.1728 13.1192]z ≡ Cwz. (11)

The shaping filter (10), (11) is a system driven by the white noise input w(t) ≈ (0, 1)

that generates the gust noise wg(t) with spectral density given by (3).

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 403

9.4 OBSERVERS AND THE KALMAN FILTER 403

b. Augmented Plant Dynamics

The overall system, driven by the white noise input w(t) ≈ (0, 1) and including an elevator
actuator with transfer function 20.2/(s + 20.2) is given by (see (9.4-40))

d

dt

⎡
⎢⎢⎢⎣

α
q

z1
z2

δe

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−1.01887 0.90506
0.82225 −1.07741

0 0
0 0
0

∣∣∣∣∣∣∣∣∣∣

0.00441 0.02663
−0.00356 −0.02152

0 1
−0.08230 −0.57370

0 0.57370

∣∣∣∣∣∣∣∣∣∣

−0.00215
−0.17555

0
0

−20.2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α
q

z1
z2

δe

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
0
0
0

20.2

⎤
⎥⎥⎥⎥⎦ u +

⎡
⎢⎢⎢⎢⎣

0
0

0
1

0

⎤
⎥⎥⎥⎥⎦ w, (12)

with u(t) the elevator actuator input. To economize on notation, let us symbolize this
augmented system as

ẋ = Ax + Bu + Gw. (13)

c. Estimating Angle of Attack

Direct measurements of angle-of-attack α are noisy and biased. However, pitch rate q
and normal acceleration nz are convenient to measure. Using the results in Stevens and
Lewis (1992),

nz = 15.87875α + 1.48113q. (14)

Therefore, let us select the measured output as

y =
[

15.87875 1.48113 0 0 0

0 1 0 0 0

]
= Cx + v, (15)

where v (t) is measurement noise. A reasonable measurement noise covariance is

R =

⎡
⎢⎣

1

20
0

0
1

60

⎤
⎥⎦ . (16)

The filter algebraic Riccati equation in Table 9.4-1 is solved using standard available
software (Control System Toolbox, MATLAB, and the corresponding function lqe.m . The

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 404

404 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

function lqe2.m is also recommended for more reliable results. For more details see the
Control Systems Toolbox manual) to obtain the Kalman gain

L =

⎡
⎢⎢⎢⎢⎣

0.0374 −0.0041
−0.0202 0.0029

3.5985 −0.2425
1.9058 −0.2873
0.0000 0.0000

⎤
⎥⎥⎥⎥⎦ , (17)

whence the Kalman filter is given by

˙̂x = (A − LC)x̂ + Bu + Ly. (18)

Note that the Kalman gain corresponding to the fifth state δe is zero. This is due to the
fact that, according to (12), the gust noise w (t) does not excite the actuator motor.

To implement the estimator we could use the state formulation (18) in a subroutine,
or we could compute the transfer function to the angle-of-attack estimate given by

Hα(s) = [1 0 · · · 0][sI − (A − LC)]−1[B L]. (19)

(Note that α is the first component of x .) Then, the angle-of-attack estimate is given by

α̂(s) = H(s)

[
U(s)

Y (s)

]
, (20)

so that α(t) may be estimated using u(t) and y(t), both of which are known. Similarly,
the estimate of the wind gust velocity wg(t) may be recovered. Try to implement the
Kalman filter and the systems using SIMULINK. �

Dynamic Regulator Design Using the Separation Principle

The fundamental approach to regulator and compensator design in this book
involves selecting the compensator dynamics using the intuition of classical con-
trol and traditional design. Then, the adjustable compensator gains are computed
using the output feedback design equations in Table 8.1-1, 8.1-2, or 8.2-1. The
advantages of this approach include the following:

1. Good software for solving the design equations is available (e.g., the
Davidon-Fletcher-Powell algorithm (Press et al. 1986).

2. General multi-input/multi-output controls design is straightforward.
3. If the design is sensible, the closed-loop system is generally stable for any

choice of the weighting matrices Q and R.
4. All the intuition in classical controls design in the industry can be used to

select the compensator structure.
5. Complicated compensator structures are avoided, which is important from

the point of view of the pilot and also simplifies the gain-scheduling
problem.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 405

9.4 OBSERVERS AND THE KALMAN FILTER 405

However, in complicated modern systems there may be no a priori guidelines
for selecting the compensator structure. In this case, a combination of LQ state-
feedback and observer/filter design proves very useful for controller design. This
combination is known as linear quadratic Gaussian design and is explored next.
In Section 9.5 we discuss the LQG/LTR technique for robust design, which has
become popular in some aspects of control design.

Linear Quadratic Gaussian Design The linear quadratic regulator (LQR) and
the Kalman filter can be used together to design a dynamic regulator. This proce-
dure is called linear quadratic Gaussian (LQG) design and will now be described.
An important advantage of LQG design is that the compensator structure is given
by the procedure, so that it need not be known beforehand. This makes LQG
design useful in the control of complicated modern-day systems (e.g., space struc-
tures, aircraft engines), where an appropriate compensator structure may not be
known.

Suppose the plant and measured output are given by

ẋ = Ax + Bu + Gw (9.4-74)

y = Cx + v (9.4-75)

with x(t) ∈ Rn, u(t) the control input, w (t) the process noise, and v (t) the
measurement noise. Suppose that the full state-feedback control

u = −Kx + r (9.4-76)

has been designed, with r(t) the reference input command. That is, the state-
feedback gain K has been selected by some technique, such as the LQR technique
in Section 3.4. If the control (9.4-76) is substituted into (9.4-74), the closed-loop
system is found to be

ẋ = (A − BK)x + Br + Gw. (9.4-77)

Full state feedback design is attractive because if the conditions in Section 3.4
hold, the closed-loop system is guaranteed stable. Such a strong result has not
yet been shown for output feedback. Moreover, using full state feedback all the
poles of (A − BK) may be placed arbitrarily as desired. Finally, the state-feedback
design equations are simpler than those for output feedback and may be solved
using standard available routines. However, the control law (9.4-76) cannot be
implemented since all the states are usually not available as measurements.

Now, suppose that an observer or Kalman filter

x̂ = (A − LC)x̂ + Bu + Ly (9.4-78)

has been designed. That is, the filter gain L has been selected by any of the
techniques discussed in this section to provide state estimates. Then, since all

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 406

406 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.4-5 Regulator design using observer and state feedback.

the states are not measurable and the control (9.4-76) cannot be implemented in
practice, we propose to feed back the estimate x̂(t) instead of the actual state
x (t). That is, let us examine the feedback law

u = −Kx̂ + r. (9.4-79)

The closed-loop structure using this controller is shown in Fig. 9.4-5. Due to the
fact that the observer is a dynamical system, the proposed controller is nothing
but a dynamical regulator of the sort seen in classical control theory. However,
in contrast to classical design the theory makes it easy to design multivariable
regulators with guaranteed stability even for complicated MIMO systems.

If K is selected using the LQR Riccati equation in Section 3.4 and L is selected
using the Kalman filter Riccati equation in Table 9.4-1, this procedure is called
LQG design. We propose to show that using this control:

1. The closed-loop poles are the same as if the full state feedback (9.4-76)
had been used

2. The transfer function from r(t) to y(t) is the same as if (9.4-76) had been
used.

The importance of these results is that the state feedback K and the observer
gain L may be designed separately to yield desired closed-loop plant behavior
and observer behavior. This is the separation principle, which is at the heart of
modern controls design. Two important ramifications of the separation principle
are that closed-loop stability is guaranteed, and good software is available to
solve the matrix design equations that yield K and L.

The Separation Principle To show the two important results just mentioned,
define the estimation error (9.4-45) and examine the error dynamics (9.4-46). In
terms of x̃(t), we may write (9.4-79) as

u = −Kx + Kx̃ + r, (9.4-80)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 407

9.4 OBSERVERS AND THE KALMAN FILTER 407

which when used in (9.4-74) yields

x = (A − BK)x + BKx̃ + Br + Gw. (9.4-81)

Now, write (9.4-81) and (9.4-46) as the augmented system

[
ẋ

˙̃x
]

=
[
A − BK BK

0 A − LC

] [
x

x̃

]
+

[
B

0

]
r +

[
G

G

]
w −

[
0
L

]
v (9.4-82)

y = [C 0]

[
x

x̃

]
+ v. (9.4-83)

Since the augmented system is block triangular, the closed-loop characteristic
equation is

	(s) = |sI − (A − BK)| · |sI − (A − LC)| = 0. (9.4-84)

That is, the closed-loop poles are nothing but the plant poles that result by
choosing K , and the desired observer poles that result by choosing L. Thus,
the state-feedback gain K and observer gain L may be selected separately for
desirable closed-loop behavior.

The closed-loop transfer function from r(t) to y(t) is given by

Hc(s) = [C 0]

[
sI − (A − BK) −BK

0 sI − (A − LC)

]−1 [
B

0

]
, (9.4-85)

and the triangular form of the system matrix makes it easy to see that

Hc(s) = C[sI − (A − BK)]−1B. (9.4-86)

This, however, is exactly what results if the full state feedback (9.4-76) is used.
Of course, the initial conditions also affect the output y(t). However, since the

observer is stable, the effects of the initial error x̃(0) will vanish with time. The
observer poles (i.e., those of (A − LC)) should be chosen faster than the desired
closed-loop plant poles (i.e., those of (A − BK)) for good closed-loop behavior.

Discussion From our point of view, when possible it is usually better to design
compensators using output feedback as we have demonstrated in the past chapters
than to use separation principle design. To see why, let us examine the structure
of the dynamic compensator in Fig. 9.4-5 in more detail.

The control input u(t) may be expressed as

U(s) = Hy(s)Y (s) + Hu(s)U(s) (9.4-87)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 408

408 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

where, according to (9.4-79) and (9.4-78), the transfer function from y(t) to
u(t) is

Hy(s) = −K[sI − (A − LC)]−1L (9.4-88)

and the transfer function from u(t) to u(t) is

Hu(s) = −K[sI − (A − LC)]−1B. (9.4-89)

Now, note that the compensator designed by this technique has order equal to
the order n of the plant. This means that it has too many parameters to be
conveniently gain scheduled. Moreover, it has no special structure. This means
that none of the classical controls intuition available in the industry has been
used in its design.

It is possible to design reduced-order compensators using the separation prin-
ciple. Three possible approaches are

1. First find a reduced-order model of the plant, then design a compensator
for this reduced-order model.

2. First design a compensator for the full plant, then reduce the order of the
compensator.

3. Design the reduced-order compensator directly from the full-order plant.

One technique for order-reduction is the partial-fraction-expansion technique
in Example 9.2-3. Other techniques include principal component analysis (Moore
1982) and the frequency-weighted technique in Anderson and Liu (1989). It
is important to realize that although the plant is minimal (i.e., reachable and
observable), the LQ regulator may not be. That is, it may have unreachable or
unobservable states.

In Section 9.5 we illustrate the design of a LQ regulator in robust design using
the LQG/LTR approach.

9.5 LQG/LOOP-TRANSFER RECOVERY

We saw in Sections 9.2 and 9.3 how to use the multivariable Bode plot to design
controllers guaranteeing performance robustness and stability robustness using
outut feedback. In Section 9.4 we discussed the Kalman filter. In this section we
propose to cover the linear quadratic Gaussian/loop-transfer recovery (LQG/LTR)
design technique for robust controllers. This approach is quite popular in the
current literature and has been used extensively to design multivariable control
systems (Doyle and Stein 1981, Athans 1986). It is based on the fact that the linear
quadratic regulator (LQR) using state variable feedback has certain guaranteed
robustness properties.

Thus, suppose a state-feedback gain K has been computed using the ARE
as in Section 3.4. This state feedback cannot be implemented since all of the

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 409

9.5 LQG/LOOP-TRANSFER RECOVERY 409

states are not available as measurements; however, it can be used as the basis for
the design of a dynamic LQ regulator by using a Kalman filter to provide state
estimates for feedback purposes. We would like to discuss two issues. First, we
show that state feedback, in contrast to output feedback, has certain guaranteed
robustness properties in terms of gain and phase margins. Then, we see that
the Kalman filter may be designed so that the dynamic regulator recovers the
desirable robustness properties of full state feedback.

Guaranteed Robustness of the Linear Quadratic Regulator

We have discussed conditions for performance robustness and stability robustness
for the general feedback configuration of the form shown in Fig. 9.2-1, where
G(s) is the plant and K (s) is the compensator. The linear quadratic regulator
using state feedback has many important properties, as we have seen Section 3.4.
In this subsection we return to the LQR to show that it has certain guaranteed
robustness properties that make it even more useful (Safonov and Athans 1977).

Thus, suppose that in Fig. 9.2-1 K(s) = K , the constant optimal LQ state-
feedback gain determined using the algebraic Riccati equation (ARE) as in
Section 3.4. Suppose moreover that

G(s) = (sI − A)−1B (9.5-1)

is a plant in state-variable formulation.
For this subsection, it will be necessary to consider the loop gain referred to

the control input u(t) in Fig. 9.2-1. This is in contrast to the work in Section 9.2,
where we referred the loop gain to the output z (t), or equivalent to the signal
s(t) in the figure. Breaking the loop at u(t) yields the loop gain

KG(s) = K(sI − A)−1B. (9.5-2)

Our discussion will be based on the optimal return difference relation that holds
for the LQR with state feedback (Lewis 1986, Grimble and Johnson 1988,
Kwakernaak and Sivan 1972), namely,

[I + K(−sI − A)−1B]T[I + K(sI − A)−1B]

= I + 1

ρ
BT(−sI − A)−TQ(sI − A)−1B. (9.5-3)

We have selected R = I .
Denoting the i th singular value of a matrix M as σi(M), we note that by

definition
σi(M) =

√
λi(M

∗M), (9.5-4)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 410

410 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

with λi(M
∗M) the i th eigenvalue of matrix M ∗M , and M∗ the complex con-

jugate transpose of M . Therefore, according to (9.5-3) there results (Doyle and
Stein 1981)

σi[I + KG(jω)] =
[
λi

[
I + 1

ρ
BT(−jωI − A)−TQ(jωI − A)−1B

]]1/2

=
[

1 + 1

ρ
λi[B

T(−jωI − A)−TQ(jωI − A)−1B]

]1/2

or

σi[I + KG(jω)] =
[

1 + 1

ρ
σ 2

i [H(jω)]

]1/2

, (9.5-5)

with
H(s) = H(sI − A)−1B (9.5-6)

and Q = HTH . We could call (9.5-5) the optimal singular value relation of the
LQR. It is important due to the fact that the right-hand side is known in terms of
open-loop quantities before the optimal feedback gain is found by solution of the
ARE, while the left-hand side is the closed-loop return difference. Thus, exactly
as in classical control, we are able to derive properties of the closed-loop system
in terms of properties of the open-loop system. According to this relation, for all
ω the minimum singular value satisfies the LQ optimal singular value constraint

σ [I + KG(jω)] ≥ 1. (9.5-7)

Thus, the LQ regulator always results in a decreased sensitivity. Some impor-
tant conclusions on the guaranteed robustness of the LQR may now be discovered
using the multivariable Nyquist criterion (Postlethwaite et al. 1981), which we
shall refer to the polar plot of the return difference I + KG(s), where the ori-
gin is the critical point (Grimble and Johnson 1988). (Usual usage is to refer
the criterion to the polar plot of the loop gain KG(s), where −1 is the critical
point.) A typical polar plot of σ [I + KG(jω)] is shown in Figure 9.5-1, where
the optimal singular value constraint appears as the condition that all the singular
values remain outside the unit disc. To see how the end points of the plots were
discovered, note that since K(sI − A)−1 B has relative degree of at least one,
its limiting value for s = jω as ω → ∞ is zero. Thus, in this limit I + KG(jω)

tends to I . On the other hand, was ω → 0, the limiting value of I + KG(jω) is
determined by the DC loop gain, which should be large.

The multivariable Nyquist criterion says that the closed-loop system is stable
if none of the singular value plots of I + KG(jω) encircle the origin in the
figure. Clearly, due to the optimal singular value constraint, no encirclements are
possible. This constitutes a proof of the guaranteed stability of the LQR.

Multiplying the optimal feedback K by any positive scalar gain k results in
a loop gain of kKG(s), which has a minimum singular value plot identical to

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 411

9.5 LQG/LOOP-TRANSFER RECOVERY 411

FIGURE 9.5-1 Typical polar plot for optimal LQ return difference (referred to the plant
input).

the one in Fig. 9.5-1 except that it is scaled outward. That is, the ω → 0 limit
(i.e., the DC gain) will be larger, but the ω → ∞ limit will still be 1. Thus, the
closed-loop system will still be stable. In classical terms, the LQ regulator has
an infinite gain margin .

The phase margin may be defined for multivariable systems as the angle
marked “PM” in Fig. 9.5-2. As in the classical case, it is the angle through which
the polar plot of σ [I + KG(jω)] must be rotated (about the point 1) clockwise
to make the plot go through the critical point.

Figure 9.5-3 combines Fig. 9.5-1 and Fig. 9.5-2. By using some simple geom-
etry, we may find the value of the angle indicated as 60◦. Therefore, due to the
LQ singular value constraint, the plot of σ [I + KG(jω)] must be rotated through
at least 60◦ to make it pass through the origin. The LQR thus has a guaranteed
phase margin of at least 60◦. This means that a phase shift of up to 60◦ may be
introduced in any of the m paths in Fig. 9.2-1, or in all paths simultaneously as
long as the paths are not coupled to each other in the process.

FIGURE 9.5-2 Definition of multivariable phase margin.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 412

412 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.5-3 Guaranteed phase margin of the LQR.

This phase margin is excessive; it is higher than that normally required in
classical control system design. this overdesign means that, in other performance
aspects, the LQ regulator may have some deficiencies. One of these turns out to
be that, at the crossover frequency (loop gain = 1), the slope of the multivariable
Bode plot is −20 dB/decade, which is a relatively slow attenuation rate (Doyle
and Stein 1981). By allowing a Q weighting matrix in the PI that is not positive
semi-definite, it is possible to obtain better LQ designs that have higher roll-off
rates at high frequencies (Shin and Chen 1974).

A stability robustness bound like (9.2-49) may be obtained for the loop gain
referred to the input u(t). It is

σ [KG(I + KG)−1] <
1

m(ω)
. (9.5-8)

The inverse of this is

m(ω) <
1

σ [KG(I + KG)−1]
= σ [KG(I + KG)−1]. (9.5-9)

It can be shown (see the problems at the end of the chapter) that (9.5-7) implies
that

σ [I + (KG(jω)) − 1] ≥ 1
2 . (9.5-10)

Therefore, the LQR remains stable for all multiplicative uncertainties in the plant
transfer function that satisfy m(ω) < 1

2 .

Loop-transfer Recovery

The controls design techniques we have discussed in Chapter 8 involve select-
ing a desirable compensator structure using classical controls intuition. Then,
the compensator gains are adjusted using output-feedback design for suitable

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 413

9.5 LQG/LOOP-TRANSFER RECOVERY 413

performance. Robustness may be guaranteed using the multivariable Bode plot
as shown in Sections 9.2 and 9.3.

However, in some cases the plant may be so complex that there is little intu-
ition available for selecting the compensator structure. In this event, the technique
to be presented in this section may be useful for controller design, since it yields
a suitable compensator structure automatically.

Let us examine here the plant

ẋ = Ax + Bu + Gw (9.5-11)

y = Cx + υ, (9.5-12)

with process noise w(t) ∼ (0, M) and measurement n(t) ∼ (0, ν2N) both white,
M > 0, N > 0, and ν a scalar parameter. We have seen that the full state feedback
control

u = −Kx (9.5-13)

has some extremely attractive features, including simplified design equations
(Section 3.4) and some important guaranteed robustness properties. Unfortu-
nately, these are not shared by an output-feedback control law, where the robust-
ness must be checked independently. However, state feedback is usually impos-
sible to use since all the states are seldom available for feedback in any practical
application.

According to Fig. 9.5-4a, where the plant transfer function is

�(s)B = (sI − A)−1B, (9.5-14)

the loop gain, breaking the loop at the input u(t) is

Ls(s) = K�B. (9.5-15)

According to Section 9.4, if an observer or Kalman filter is used to produce a
state estimate x̂(t), which is then used in the control law

u = −Kx̂, (9.5-16)

the result is a regulator that, due to the separation principle, has the same transfer
function as the state-feedback controller.

However, it is known that the guaranteed robustness properties of the full state-
feedback controller are generally lost (Doyle 1978). In this section we assume
that a state-feedback gain K has already been determined using, for instance,
the algebraic Riccati-equation design technique in Section 3.4. This K yields
suitable robustness properties of K�B. We should like to present a technique
for designing a Kalman filter that results in a regulator that recovers the guar-
anteed robustness properties of the full state-feedback control law as the design
parameter ν goes to zero. The technique is called LQG/loop-transfer recovery

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 414

414 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.5-4 (a) Loop gain with full state feedback. (b) Regulator using observer and
estimate feedback. (c) Regulator loop gain.

(LQG/LTR), since the loop gain (i.e., loop-transfer function) K�B of full state
feedback is recovered in the regulator as ν → 0. As we shall see, the key to
robustness using a stochastic regulator is in the selection of the noise spectral
densities M and N .

Regulator Loop Gain Using an observer or Kalman filter, the closed-loop sys-
tem appears in Fig. 9.5-4b, where the regulator is given by (Section 9.4)

U(s) = −K(sI − A + LC)−1BU(s) − K(sI − A + LC)−1LY(s)

= −Hu(s)U(s) − Hy(s)Y (s) (9.5-17)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 415

9.5 LQG/LOOP-TRANSFER RECOVERY 415

and L is the observer or Kalman gain. Denoting the observer resolvent matrix as

�o(s) = (sI − A + LC)−1, (9.5-18)

we write
Hu = K�oB, Hy = K�oL. (9.5-19)

To find an expression for K (s) in Fig. 9.5-4c using the regulator, note that
(I + Hu)U = −HyY , so that

U = −(I + Hu)
−1HyY = −K(s)Y. (9.5-20)

However,

(I + Hu)
−1K = [I + K(sI − (A − LC))−1B]−1K

= [I − K(sI − (A − BK − LC))−1B]K

= K(sI − (A − BK − LC))−1[(sI − (A − BK − LC)) − BK]

= K(sI − (A − BK − LC))−1�−1
o ,

where the matrix inversion lemma was used in the second step. Therefore,

K(s) = (I + Hu)−1Hy

= K[sI − (A − BK − LC)]−1�−1
o �oL

or
K(s) = K[sI − (A − BK − LC)]−1L ≡ K�rL, (9.5-21)

with �r(s) the regulator resolvent matrix.
We now show how to make the loop gain (at the input) using the regulator

Lr(s) = K(s)G(s) = K�rLC�B (9.5-22)

approach the loop gain Ls(s) = K�B using full state feedback, which is
guaranteed to be robust.

Recovery of State-feedback Loop Gain at the Input To design the Kalman
filter so that the regulator loop gain at the input Lr(s) is the same as the state-
feedback loop gain Ls(s), we need to assume that the plant C �B is minimum
phase (i.e., with stable zeros), with B and C of full rank and dim(u) = dim(y).
The references for this subsection are Doyle and Stein (1979, 1981), Athans
(1986), and Stein and Athans (1987).

Let us propose G = I and the process noise spectral density matrix

M = ν2Mo + BBT, (9.5-23)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 416

416 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

with Mo > 0. Then, according to Table 9.4-1,

L = PCT(ν2N)−1 (9.5-24)

and the Kalman filter ARE becomes

0 = AP + PAT + (ν2Mo + BBT) − PCT(ν2N)−1CP. (9.5-25)

According to Kwakernaak and Sivan (1972), if the aforementioned assumptions
hold, then P → 0 as ν → 0, so that

L(ν2N)LT = PCT(ν2N)−1CP → BBT.

The general solution of this equation is

L → 1

ν
BUN−1/2, (9.5-26)

with U any unitary matrix. We claim that in this situation Lr(s) → Ls(s) as
ν → 0. Indeed, defining the full state-feedback resolvent as

�c(s) = (sI − (A − BK))−1 (9.5-27)

we may write

Lr(s) = K(s)G(s) = K[sI − (A − BK − LC)]−1LC�B

= K[�−1
c + LC]−1LC�B

= K[�c − �cL(I + C�cL)−1C�c]LC�B

= K�cL[I − (I + C�cL)−1C�cL]C�B

= K�cL[(I + C�cL) − C�cL](I + C�cL)−1C�B

= K�cL(I + C�cL)−1C�B

→ K�cB(C�cB)−1C�B

= K�B(I + K�B)−1[C�B(I + K�B)−1]−1C�B

= [K�B(C�B)−1]C�B = K�B. (9.5-28)

The matrix inversion lemma was used in going from line 2 to line 3, and from
line 7 to 8. The limiting value (9.5-26) for L was used at the arrow. What we
have shown is that, using G = I and the process noise given by (9.5-23), as
ν → 0 the regulator loop gain using a Kalman filter approaches the loop gain
using full state feedback. This means that, as ν → 0, all the robustness properties

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 417

9.5 LQG/LOOP-TRANSFER RECOVERY 417

of the full state feedback control law are recovered in the stochastic regulator.
The LQG/LTR design procedure is thus as follows:

1. Use the control ARE in Section 3.4 to design a state-feedback gain K
with desirable properties. This may involve iterative design varying the PI
weighting matrices Q and R.

2. Select G = I , process noise spectral density M = ν2M0 + BBT, and noise
spectral density ν2N for some M0 > 0 and N > 0. Fix the design parameter
ν and use the Kalman filter ARE to solve for the Kalman gain L.

3. Plot the maximum and minimum singular values of the regulator loop gain
Lr(s) and verify that the robustness bounds are satisfied. If they are not,
decrease ν and return to 2.

A reduced-order regulator with suitable robustness properties may be designed
by the LQG/LTR approach using the notions at the end of Section 9.4. That is,
either a regulator may be designed for a reduced-order model of the plant, or the
regulator designed for the full-order plant may then have its order reduced. In
using the first approach, a high-frequency bound characterizing the unmodeled
dynamics should be used to guarantee stability robustness.

An interesting aspect of the LQR/LTR approach is that the recovery process
may be viewed as a frequency-domain linear quadratic technique that trades off
the smallness of the sensitivity S (jω) and the consensitivity T (jω) at various
frequencies. These notions are explored in Stein and Athans (1987) and Safonov
et al. (1981).

Nonminimum-phase Plants and Parameter Variations The limiting value of
K (s) is given by the bracketed term in (9.5-28). Clearly, as ν → 0 the regulator
inverts the plant transfer function C �B . If the plant is of minimum phase, with
very stable zeros, the LQG/LTR approach generally gives good results. On the
other hand, if the plant is nonminimum phase or has stable zeros with large time
constants, the approach can be unsuitable.

In some applications, however, even if the plant is nonminimum phase, the
LQG/LTR technique can produce satisfactory results (Athans 1986). In this situa-
tion, better performance may result if the design parameter ν is not nearly zero. If
the right-half-plane zeros occur at high frequencies where the loop gain is small,
the LQG/LTR approach works quite well. An additional defect of the LQG/LTR
approach appears when there are plant parameter variations. As seen in Section
9.2, stability in the presence of parameter variations requires that the loop gain
singular values be below some upper bound at low frequencies. However, this
bound is not taken into account in the LQG/LTR derivation. Thus, LQG/LTR can
yield problems for controls design, where gain scheduling is required. The H∞
design approach (Francis et al. 1984, Francis 1986, Doyle et al. 1989) has been
used with success to overcome this problem.

Recovery of Robust Loop Gain at the Output We have shown that by designing
the state feedback first and then computing the Kalman filter gain using a specific

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 418

418 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

choice of noise spectral densities, the stochastic regulator recovers the robustness
of the loop gain K (s)G(s) referred to the input u(t) in Fig. 9.5-4. However, in
Section 9.2 we saw that for a small tracking error the robustness should be studied
in terms of the loop gain G(s)K (s) referred to the error, or equivalently to the
system output. Here, we show how to design a stochastic regulator that recovers
a robust loop gain G(s)K (s). Thus, suppose we first design a Kalman filter with
gain L using Table 9.4-1. By duality theory, one may see that the Kalman filter
loop gain

Lk(s) = C�L (9.5-29)

enjoys exactly the same guaranteed robustness properties as the state feedback
loop gain K �B that were described earlier in this section. The regulator loop
gain referred to the output is

Lo
r (s) = G(s)K(s) = C�BK�rL. (9.5-30)

Thus, we should like to determine how to design a state-feedback gain K so that
Lo

r (s) approaches C �L. The key to this is in the selection of the PI weighting
matrices Q and R in Section 3.4. To determine K let us propose the PI

J = 1

2

∫ ∞

0
(xTQx + ρ2uTRu)du, (9.5-31)

with
Q = ρ2Q0 + CTC, (9.5-32)

with Q0 > 0. By using techniques dual to those above, we may demonstrate that
as ρ → 0, the state-feedback gain determined using Section 3.4 approaches

K → 1

ρ
R−1/2WC, (9.5-33)

with W a unitary matrix. Using this fact, it may be shown that

Lo
r (s) = G(s)K(s) → C�L. (9.5-34)

The LQG/LTR design technique for loop gain recovery at the output is, there-
fore, exactly dual to that for recovery at the input. Specifically, the Kalman gain
L is first determined using Table 9.4-1 for desired robustness properties. Then, Q
and R are selected, with Q of the special form (9.5-32). For a small value of ρ,
the state-feedback gain K is determined using the results of Section 3.4. If the
singular value Bode plots of Lo

r (s) do not show acceptable robustness, then ρ is
decreased and a new K is determined.

If the plant C �B is minimum phase, all is well as ρ is decreased. However,
if there are zeros in the right-half plane there could be problems as ρ becomes

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 419

9.5 LQG/LOOP-TRANSFER RECOVERY 419

too small, although with care the LQG/LTR technique often still produces good
results for suitable ρ.

Example 9.5-1. LQG/LTR Design of Aircraft Lateral Control System

We shall illustrate the loop-transfer recovery technique on a lateral aircraft control design.
All computations, including solving for the state-feedback gains and Kalman filter gains,
were carried out very easily using MATLAB, Control System Toolbox.

a. Control Objective

The tracking control system shown in Fig. 9.5-5 is meant to provide coordinated turns by
causing the bank angle φ(t) to follow a desired command while maintaining the sideslip
angle β(t) at zero. It is a two-channel system with control input u = [uφ uβ]T. The
reference command is r = [rφ rβ]T. The control system should hold φ at the commanded
value of rφ and β(t) at the commanded value of rβ , which is equal to zero. The tracking
error is e = [eφ eβ]T, with

eω = rφ − �

eβ = rβ − β. (1)

The negatives of the errors appear in the figure since a minus sign appears in u = −Kx̂,
as is standard for LQG design.

FIGURE 9.5-5 Aircraft turn coordinator control system.

b. State Equations of Aircraft and Basic Compensator Dynamics

The nonlinear F-16 model was linearized at the nominal flight condition as in Stevens
and Lewis (1992), retaining as the states sideslip β, bank angle φ, roll rate p, and yaw
rate r . Additional states δa and δr are introduced by the aileron and rudder actuators, both
of which are modeled as having approximate transfer functions of 20.2/(s + 20.2). The
aileron deflection is δa and the rudder deflection is δr .

The singular values versus frequency of the basic aircraft with actuators are shown in
Fig. 9.5-6. Clearly, the steady-state error will be large in closed-loop since the loop gain
has neither integrator behavior nor large singular values at DC. Moreover, the singular
values are widely separated at DC, so that they are not balanced.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 420

420 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.5-6 Singular values of the basic aircraft dynamics.

To correct these deficiencies we may use the techniques of Example 9.2-3. The DC
gain of the system is given by

H(0) =
[−727.37 −76.94
−2.36 0.14

]
. (2)

First, the dynamics are augmented by integrators in each control channel. We denote the
integrator outputs by εφ , εβ .

FIGURE 9.5-7 Singular values of aircraft augmented by integrators.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 421

9.5 LQG/LOOP-TRANSFER RECOVERY 421

FIGURE 9.5-8 Singular values of aircraft augmented by integrators and inverse dc gain
matrix P .

The singular value plots including the integrators are shown in Fig. 9.5-7. The DC
slope is now −20 dB/decade, so that the closed-loop steady-state error will be zero. Next,
the system was augmented by P = H−1(0) to balance the singular values at DC. The net
result is shown in Fig. 9.5-8, which is very suitable.

The entire state vector, including aircraft states and integrator states, is

x = [β φ p r δa δr εφ εβ]T. (3)

The full state-variable model of the aircraft plus actuators and integrators is of the form

ẋ = Ax + Bu, (4)

with

A =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 0.3220 0.0640 0.0364 −0.9917 90.0003 0.0008 0 0

0 0 1 0.0037 0 0 0 0

−30.6492 0 −3.6784 0.6646 −0.7333 0.1315 0 0

8.5395 0 −0.0254 −0.4764 −0.0319 −0.0620 0 0

0 0 0 0 −20.2 0 −0.01 −5.47

0 0 0 0 0 −0.2 −0.168 51.71

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 422

422 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

The output is given by y = [φβ]T, or

y =
[

0 57.2958 0 0 0 0 0 0

57.2958 0 0 0 0 0 0 0

]
x = Cx, (7)

where the factor of 57.2958 converts radians to degrees. Then,

e = r − y. (8)

c. Frequency-domain Robustness Bounds

We now derive the bounds on the loop-gain MIMO Bode magnitude plot that guarantee
robustness of the closed-loop system. Consider first the high-frequency bound. Let us
assume that the aircraft model is accurate to within 10% up to a frequency of 2 rad/sec,
after which the uncertainty grows without bound at the rate of 20 dB/decade. The uncer-
tainty could be due to actuator modeling inaccuracies, aircraft flexible modes, and so on.
This behavior is modeled by

m(ω) = s + 2

20
. (9)

We asume m(ω) to be a bound on the multiplicative uncertainty in the aircraft transfer
function (Section 9.2). For stability robustness in spite of the modeling errors, we saw in
Section 9.2 that the loop-gain referred to the output should satisfy

σ(GK(jω)) < 1/m(ω) =
∣∣∣∣ 20

s + 2

∣∣∣∣ (10)

when 1/m(ω) � 1. The function 1/m(ω) is plotted in Fig. 9.5-9.
Turning to the low-frequency bound on the closed-loop loop gain, the closed-loop

system should be robust to wind gust disturbances. Using techniques like those in
Example 9.3-1, the gust magnitude plot shown in Fig. 9.3-1 may be obtained. According
to Section 9.2, for robust performance in spite of wind gusts, the minimum loop-gain
singular value σ(GK(jω)) should be above this bound.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 423

9.5 LQG/LOOP-TRANSFER RECOVERY 423

FIGURE 9.5-9 Multiplicative uncertainty bound 1/m(ω) for the aircraft dynamical
model.

d. Target Feedback Loop Design

The robustness bounds just derived are expressed in terms of the singular value plots
referred to e(t). To recover the loop gain GK (jω) at e(t), or equivalently at the out-
put, the Kalman filter should be designed first, we should employ LQG/LTR algorithm
number two.

In standard applications of the LQG/LTR technique, the regulator is designed for
robustness, but the time responses are not even examined until the design has been
completed. It is difficult to obtain decent time responses using this approach. In this
example we emphasize the fact that it is not difficult to obtain good time responses as
well as robustness using LQG/LTR. It is only necessary to select the Kalman gain L in
Table 9.4-1 for good robustness properties as well as suitable step responses of the target
feedback loop C�(s)L, where �(s) = (sI − A)−1.

Using MATLAB, the Kalman filter design equations in Table 9.4-1 were solved using

Q = diag{0.01, 0.01, 0.01, 0.010, 0, 1, 1}, (11)

R = rf I , and various values of rf . The maximum and minimum singular values of the
filter open-loop gain C�(s)L for rf = 1 are shown in Fig. 9.5-10a, which also depicts the
robustness bounds. The singular values for several values of rf are shown in Fig. 9.5-10b.

Note how the singular value magnitudes increase as rf decreases, reflecting improved
rejection of low-frequency disturbances. The figures show that the robustness bounds
are satisfied for rf = 1 and rf = 10, but that the high-frequency bound is violated for
rf = 0.1.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 424

424 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.5-10 Singular values of Kalman filter open-loop gain C�L: (a) for rf = 1;
(b) for various values of rf .

The associated step responses of C�(s)L with reference commands of rφ = 1, rβ = 0
are shown in Fig. 9.5-11. The response rate rf = 10 is unsuitable, while the response
for rf = 0.1 is too fast and would not be appreciated by the pilot. On the other hand,
the response for rf = 1 shows suitable time-of-response and overshoot characteristics, as
well as good decoupling between the bank angle φ(t) and the sideslip β(t). Therefore, the

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 425

9.5 LQG/LOOP-TRANSFER RECOVERY 425

FIGURE 9.5-11 Step responses of target feedback loop C�L: (a) rf = 10; (b) rf = 1;
(c) rf = 0.1.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 426

426 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

target feedback loop was selected as C�(s)L with rf = 1, since this results in a design
that has suitable robustness properties and step responses. The corresponding Kalman gain
is given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.007 0.097
0.130 −0.007
0.199 −0.198

−0.093 −0.020
−0.197 −0.185

1.858 1.757
0.685 −0.729
0.729 0.684

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

The Kalman filter poles (e.g., those of A − LC) are given by

s = −0.002,−0.879,−1.470,

− 3.952 ± j3.589,

− 7.205,−20.2,−20.2. (13)

Although there is a slow pole, the step response is good, so this pole evidently has a
small residue.

It is of interest to discuss how the frequency and time responses were plotted. For the
frequency response, we used the open-loop system

ˆ̇x = Ax̂ + Le

ŷ = Cx̂, (14)

which has a transfer function of C�(s)L = C(sI − A)−1L. The program sigma.m was
used which plots the singular values versus frequency for a system given in state-space
form. This yielded Fig. 9.5-10.

For the step response, it is necessary to examine the closed-loop system. In this case,
the loop is closed by using e = r − ŷ in (14), obtaining

ˆ̇x = (A − LC)x̂ + Lr

y = Cx̂. (15)

Using these dynamics in program step.m (MATLAB, Control System Toolbox) with
r = [10]T produces the step response lot.

A word on the choice for Q is in order. The design parameters Q and R should be
selected so that the target feedback loop C�(s)L has good robustness and time-response
properties. It is traditional to select Q = BBT, which accounts for the last two diagonal
entries of (11). However, in this example it was impossible to obtain good step responses
using this selection for Q . Motivated by the fact that the process noise in the aircraft
excites the first four states as well, we experimented with different values for Q , plotting
in each case the singular values and step responses. After a few iterations, the final
choice (11) was made.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 427

9.5 LQG/LOOP-TRANSFER RECOVERY 427

e. Loop Transfer Recovery at the Output

The target feedback loop C�(s)L using rf = 1 has good properties in both the frequency
and time domains. Unfortunately, the closed-loop system with LQG regulator has a loop
gain referred to the output of C�(s)BK�r (s)L, with the regulator resolvent given by

�r(s) = [sI − (A − LC − BK)]−1. (16)

On the other hand, LQG/LTR algorithm shows how to select a state feedback gain K so
that the LQG regulator loop gain approaches the ideal loop gain C�(s)L. Let us now
select such a feedback gain matrix.

Using MATLAB, the LQR design problem in Section 3.4 was solved with Q = CTC,
R = ρ2I , and various values for rc ≡ ρ2 to obtain different feedback gains K . Some
representative singular values of the LQG loop gain C�(s)BK�r(s)L are plotted in
Fig. 9.5-12, where L is the target-loop Kalman gain (12). Note how the actual singular
values approach the target singular values in Fig. 9.5-10a as rc decreases. A good match
is obtained for rc = 10−11.

Figure 9.5-12c also depicts the robustness bounds, which are satisfied for this choice
of rc = 10−11. The corresponding step responses are given in Fig. 9.5-13. A suitable step
response that matches well the target response of Fig. 9.5-11b results when rc = 10−11.

It is of interest to discuss how these plots were obtained. For the LQG singular value
plots, the complete dynamics are given by

ẋ = Ax + Bu
˙̂x = (A − LC)x̂ + Bu + Lw

u = −Kx̂, (17)

where w(t) = −e(t). These may be combined into the augmented system

[
ẋ
˙̂x
]

=
[
A −BK
0 A − LC − BK

] [
x

x̂

]
+

[
0
L

]
w (18)

y = [C 0]

[
x

x̂

]
, (19)

which has transfer function C�(s)BK�r(s)L. The singular values are now easily plotted.
For the step responses, the closed-loop system must be studied. To close the loop, set

w = y − r in (18) to obtain the closed-loop dynamics

[
ẋ
˙̂x
]

=
[

A −BK

LC A − LC − BK

] [
x

x̂

]
+

[
0

−L

]
r (20)

y = [C 0]

[
x

x̂

]
. (21)

These are used with lsim.m to obtain Fig. 9.5-13.
The final LQG regulator is given by the Kalman gain L in (12) and the feedback gain

K corresponding to rc = 10−11.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 428

428 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.5-12 Singular values plots for the LQG regulator. (a) LQG with rc = 10−3.
(b) LQG with rc = 10−7. (c) LQG with rc = 10−11.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 429

9.5 LQG/LOOP-TRANSFER RECOVERY 429

FIGURE 9.5-13 Closed loop step responses of the LQG regulator. (a) LQG with
rc = 10−3. (b) LQG with rc = 10−7. (c) LQG with c = 10−11.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 430

430 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

f. Reduced-order Regulator

The LQG regulator just designed has order n = 8, the same as the plant. This is exces-
sive for an aircraft lateral control system. A reduced-order regulator that produces very
good results may easily be determined using the partial-fraction-expansion approach in
Example 9.2-4, principal component analysis (Moore 1982), or other techniques. This
is easily accomplished using MATLAB. The singular value plots and step response
using the reduced-order regulator should be examined to verify robustness and suitable
performance. �

9.6 H∞ DESIGN

Polynomial Techniques

In the previous sections we have seen the design of MIMO systems for stabil-
ity robustness in the presence of uncertainties in the model. Another approach
to the problem of robust design is the worst-case design. When the system has
a disturbance input of unknown or uncertain (statistical) nature, the effect on
the output is required to be minimized. The worst-case design is the preferred
method of optimization as the controller is designed to account for the worst-case
disturbance input. In this section we approach the problem of the synthesis of
the controller using the polynomial approach to the design of the H∞ controller.
In Section 9.2 we have seen that the design specifications are related to the sen-
sitivity function of the system. Specifically, the sensitivity function is required to
be small at low frequencies for robust performance and the co-sensitivity func-
tion to be small at high frequencies for robust stabilization. Therefore, we can
incorporate these performance criteria into the H∞ design problem by introduc-
ing a suitable weighting function. The procedure for the choice of the weighting
function for the multivariable systems has been elaborated in Doyle and Stein
(1982) and McFarlane and Glover (1992). A typical plot for the weighting func-
tion is shown in Figure 9.6-1. Note that for multivariable systems the choice
of the weighting function is done using the singular value plot. The figure
shows the frequency plot of the maximum singular value of the weighting func-
tion. The standard H∞ problem is to synthesize a controller that minimizes the
H∞ norm of the closed-loop system. When the weighting functions are intro-
duced, they can be absorbed into the plant, and the optimization is done for
the weighted plant. The standard plant and feedback configuration is shown
Figure 9.6-2.

The closed-loop system is given by

Tzw = G11 + G12K(I − G22K)−1G21. (9.6-1)

The objective is to find all the controllers that stabilize the plant and minimize
the H∞ norm of the transfer function Tzw from the disturbance inputs w(t) to
the regulated outputs z(t) using the control input u(t) and the measurement out-
puts y(t). We note that the optimal controllers may be nonunique. The optimal

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 431

9.6 H∞ DESIGN 431

FIGURE 9.6-1 Typical weighting function for MIMO system.

FIGURE 9.6-2 Standard feedback configuration.

controllers are difficult to synthesize; therefore, we will focus on the study of the
suboptimal problem where the H∞ norm of the system satisfies

‖Tzw‖∞ < γ, γ > 0. (9.6-2)

Clearly, γ >γ0 where γ0 is the minimum value of the cost function.
The frequency-domain solution to the problem can obtained through a related

problem of model matching. In fact, many problems, such as the regulation
problem and the robust stabilization problem, can be reformulated in terms of
the model-matching problem. The details of the reformulation can be found in
Francis (1986).

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 432

432 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

FIGURE 9.6-3 Standard feedback configuration.

Model-matching Problem Consider the configuration shown in Figure 9.6-3.
The plants T1, T2, T3 are stable and the model-matching problem is to find a
stable filter so that the H∞ norm of the error function is minimized. That is, find
stable Q so that

‖T1 − T2QT3‖∞ (9.6-3)

is minimized.
Once again we deal with the suboptimal problem of achieving an upper bound

on the norm of the error function. Furthermore, we may assume without loss of
generality that the upper bound is 1 (since this may be achieved by scaling
T1, T2). We will confine our attention to the SISO case to see how the H∞
design problem can be related to the familiar LQG design techniques. For the
SISO problem T1, T2, T3 are scalars, and, hence, without loss of generality we
may assume that T3 = 1. Now, if T2 is minimum phase then the solution is trivial
and is given by

Q = T −1
2 T1. (9.6-4)

In this case, the Q is optimal and the error is zero. On the other hand, if T2

has zeros in the right half-plane, then the problem becomes considerably harder.
To solve this problem we introduce the notion of inner–outer factorizations. An
inner function T (s) satisfies

T (−s)T (s) = 1. (9.6-5)

That is, its magnitude on the jω axis is 1. An outer function has no zeros in the
right half-plane. Now, any stable function can be factored into inner and outer
functions. Therefore,

T2(s) = T2i(s)T2o(s). (9.6-6)

Now,
‖T1 − T2Q‖∞ =

∥∥∥T2i (T
−1

2i T1 − T2oQ

∥∥∥
∞

, (9.6-7)

=
∥∥∥T −1

2i T1 − T2oQ

∥∥∥
∞

, (9.6-8)

= ‖R − X‖∞ , (9.6-9)

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 433

9.6 H∞ DESIGN 433

since |T2i(jω)| = 1. Here R = T −1
2i T1 and has no poles on the jω axis and X =

T2oQ and is stable since T −1
2o is stable. Furthermore, there is a one-to-one corre-

spondence between X and Q . Now, the problem reduces to finding the distance
between the function R and the space of stable functions. This problem has been
solved as the Nehari problem, and a procedure for the solution comprises solving
the Lyapunov equations corresponding to the stable part of R. The optimal Q can
be constructed from the procedure. The details of the procedure entail the defi-
nitions of Hankel operators and are beyond the scope of this chapter. We refer
to Francis (1986) for details of the solution and the solution to the multivariable
case. Another approach to the frequency-domain solution to the model-matching
problem is through the J–spectral factorization approach given by Kimura et al.
(1991).

State-space Techniques

The polynomial techniques described in the earlier section provide the basis for
the problem of the H∞ design. Some connections between the H∞ problem
and the LQR problem can be developed in the state-space domain, which are
intuitively appealing. In this section we develop a method for the solution to the
H∞ problem. It will be seen that the solution can be approached through the
techniques developed for the LQR design procedure.

In Section 9.2 we have seen that the H∞ norm of a transfer function is equal
to the induced norm of the system. Specifically, for a stable system z = Tw,

‖T ‖∞ = maxz∈L2

‖z‖2

‖w‖2
. (9.6-10)

Therefore, the H∞ criterion of bounding the H∞ norm by γ can be translated
into the time domain as follows:

max
z∈L2

‖z‖2
2

‖w‖2
2

< γ 2 ⇔ ‖z‖2
2 − γ 2 ‖w‖2

2 ≤ −ε ‖w‖2
2 , ε > 0. (9.6-11)

We first consider the full-information problem where the state and the distur-
bance inputs are available to the controller. The state-space representation of the
plant is given by

ẋ = Ax + B1w + B2u, (9.6-12)

z = C1x + D12u, (9.6-13)

y =
[
x

w

]
. (9.6-14)

Note that the term D11 is zero. This assumption on the system simplifies the
computations and can be assumed without loss of generality. The general case
can be solved by converting the system to this form by using the so called

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 434

434 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

“loop-shifting” techniques elaborated in Green and Limebeer (1993). Further-
more, we assume

CT
1 D12 = 0, (9.6-15)

DT
12D12 = 1. (9.6-16)

These assumptions ensure that there is no cross-weighting in the state and the
input and the weighting of the input energy is normalized. Furthermore, we
assume that (A, B2) is controllable and (C1, A) is observable. These conditions
ensure that the system is stabilizable. Now, the objective is to design a control
law so that the condition (9.6-11) is satisfied for all disturbance inputs w (t).
Therefore, we seek a linear controller of the form

u = K

[
x

w

]
. (9.6-17)

The H∞ criterion can be rewritten as the inequality (9.6-11). Therefore, we define
the cost function J (u, w) as

J (u, w) = ‖z‖2
2 − γ 2 ‖w‖2

2 , u = Ky. (9.6-18)

Let w * be the worst-case input to the system in the sense that it maximizes the
induced norm. Then, for any disturbance input w (t) we have the relationship,

J (u, w) = J (u, w∗) + ‖z‖2
2 − ∥∥z∗∥∥2

2 , (9.6-19)

≤ J (u, w∗). (9.6-20)

Therefore, we build a controller that achieves the H∞ criterion for the worst-
case input. But we choose the control input so that the cost function is minimized
for the worst-case input. Therefore, using the standard arguments for first-order
variation of the cost function, we obtain

ẋ = Ax + B1w∗ + B2u, x(0) = 0, (9.6-21)

λ̇ = −AT λ − CT Cx, λ(∞) = 0, (9.6-22)

u = −BT
2 λ, (9.6-23)

w∗ = γ −2BT
1 λ. (9.6-24)

Clearly, this corresponds to the Riccati equation

AT X∞ + X∞A − X∞(B2B
T
2 − γ −2B1B

T
1)X∞ + CT

1 C1 = 0. (9.6-25)

However, note that the quadratic term of the Riccati equation is indefinite
unlike in the case of the LQR problem, and, hence, the solution to the Riccati
equation is not guaranteed to exist always. Therefore, the solution to the original

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 435

PROBLEMS 435

H∞ problem exists if the solution to the Riccati equation is positive semi-definite
and stabilizing. Therefore, the H∞ control law (when it exists) is given by the
state feedback

u∗(t) = −B2B
T
2 X∞x(t). (9.6-26)

Furthermore, we note that the worst-case input that maximizes the induced norm
is also linear combination of the state given by

w∗ = γ −2B1B
T
1 X∞x(t). (9.6-27)

Also, note that the solution to the Riccati equation approaches the solution
to the LQR problem as γ tends to infinity. In other words, as the constraint
on the norm is relaxed, the effect of the worst-case disturbance is reduced and
the cost function is optimized only over the control input leading to the LQR
solution. Therefore, we see that the solution to the H∞ problem can be obtained
by using the techniques developed earlier. The H∞ controllers are nonunique,
and a parameterization of all the controllers can be obtained. We will not go into
the details of the parametrization, but refer to Green and Limebeer (1993) for a
more detailed exposition where the output feedback problem has been treated.

PROBLEMS

Section 9.2

9.2-1. Derive in detail the multivariable expressions (9.2-16) and (9.2-17) for the
performance output and the tracking error.

9.2-2. Prove (9.2-56). You will need to neglect any terms that contain second-
order terms in the parameter variation matrices and use the fact that, for small
X, (I − X)−1 ≈ (I + X)

9.2-3. Multivariable closed-loop transfer relations. In Fig. 9.2-1, the plant
G(s) is described by

ẋ =
⎡
⎣0 1 0

0 −3 0
0 0 0

⎤
⎦ x +

⎡
⎣0 0

1 0
0 1

⎤
⎦u, z =

[
1 0 0
0 0 1

]
x

and the compensator is K(s) = 2I2.
a. Find the multivariable loop gain and return difference.
b. Find the sensitivity and cosensitivity.
c. Find the closed-loop transfer function from r(t) to z (t), and, hence, the closed-

loop poles.

9.2-4. For the continuous-time system in Example 9.2-1, plot the individual SISO
Bode magnitude plots from input one to outputs one and two, and from input
two to outputs one and two. Compare them with the MIMO Bode plot to see

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 436

436 ROBUSTNESS AND MULTIVARIABLE FREQUENCY-DOMAIN TECHNIQUES

that there is no obvious relation. Thus, the robustness bounds cannot be given in
terms of the individual SISO Bode plots.

9.2-5. Multivariable bode plot. For the system in Problem 9.2-3, plot the mul-
tivariable Bode magnitude plots for:
a. The loop gain GK .
b. The sensitivity S and cosensitivity T . For which frequency ranges do the plots

for GK (jω) match those for S (jω)? For T (jω)?

9.2-6. Bode plots for F-16 lateral regulator. Plot the loop gain multivariable
Bode magnitude plot for the F-16 lateral regulator designed in Example 8.1-1.

9.2-7. Balancing and zero steady-state error. Find a precompensator for bal-
ancing the singular values at low frequency and ensuring zero steady-state error
for the system

ẋ =
⎡
⎣ 0 1 0

−2 −3 0
0 0 −3

⎤
⎦ x +

⎡
⎣0 0

1 0
0 1

⎤
⎦ u, z =

[
1 0 0
0 0 1

]
x

Plot the singular values of the original and precompensated system.

Section 9.4

9.4-1. Nonzero-mean noise. Use (9.4-49) to write down the best estimate for
x (t) in terms of the filter state x̂(t) if the process noise w (t) and measurement
noise v (t) have nonzero means of w and v, respectively.

9.4-2. Observer for angle of Attack. In Example 8.2-1 a low-pass filter of
10/(s + 10) was used to smooth out the angle-of-attack measurements to design
a pitch rate CAS. An alternative is to use an observer to reconstruct α. This
completely avoids measurements of the angle of attack.
a. Design an observer that uses measurements of q(t) to provide estimates of α(t).

The observer should have ζ = 1/
√

2 and ωn = 10 rad/sec. Use Ackermann’s
formula to find the output-injection matrix L.

b. Delete the α filter in Example 8.2-1, replacing it by the dynamics of the
second-order observer just designed. With the new augmented dynamics, per-
form the LQ design of Example 8.2-1.

c. Compare the performance of this pitch rate CAS to the one using the α filter.

9.4-3. Kalman filter. Software for solving the Kalman filter ARE is available in
the MATLAB Control Systems Toolbox (lqe.m). Alternatively, the Kalman filter
gain L can be found using the software for Table 8.1-1 on the dual plant (AT ,
CT , BT) with B = 1. Repeat Example 9.4-2 if the wind gusts have a turbulence
intensity of 20 ft/sec.

Lewis c09.tex V1 - 10/18/2011 10:28pm Page 437

PROBLEMS 437

Section 9.5

9.5-1. Show that (9.5-7) implies (9.5-10).

9.5-2. LQG/LTR design. Note that the state-feedback gain K can be found using
the software for Table 8.1-1 with C = I . Likewise, the Kalman filter gain L can
be found using the software for Table 8.1-1 on the dual plant (AT ,CT , BT), with
B = I .
a. In Problem 9.4-3, plot the loop gain singular values assuming full state feed-

back.
b. Now, angle-of-attack measurements are not allowed. Design a Kalman filter

for various values of the design parameter. In each case, plot the closed-loop
step response, as well as the loop gain singular values. Compare the step
response and the singular values with the case for full state feedback as ρ

becomes small.

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 438

10
DIFFERENTIAL GAMES

This chapter presents some basic ideas of differential games. Modern day society
relies on the operation of complex systems, including aircraft, automobiles,
electric power systems, economic entities, business organizations, banking and
finance systems, computer networks, manufacturing systems, and industrial pro-
cesses. Decision and control are responsible for ensuring that these systems per-
form properly and meet prescribed performance objectives. Networked dynamical
agents have cooperative team-based goals as well as individual selfish goals, and
their interplay can be complex and yield unexpected results in terms of emergent
teams. Cooperation and conflict of multiple decision-makers for such systems
can be studied within the field of cooperative and noncooperative game theory.

We discussed linear quadratic Nash games and Stackelberg games in Section
8.6. There, a unified treatment was given for linear games and decentralized
control using structured design methods that are familiar from output feedback
design. Controller designs were given based on solving coupled matrix equations.
Here, we discuss nonlinear and linear differential games using a Hamiltonian
function formulation.

In the first part of the book we used the calculus of variations to develop
optimal control results such as those in Tables 3.2-1 and 3.3-1. In this chapter
we use an approach based on the Hamiltonian function, Pontryagin’s minimum
principle (PMP) (Pontryagin et al. 1962), and the Bellman equation to develop
optimal game theoretic solutions. PMP was discussed in Section 5.2 in connection
with constrained input problems. First we show how to use PMP to derive the
solutions to the nonlinear and linear optimal control problems for a single agent
given in Tables 3.2-1 and 3.3-1. The Bellman equation is defined in terms of the
Hamiltonian function and appears naturally in that development. Then we use
PMP and the Bellman equation to solve multi agent decision problems. First we

438

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 439

10.1 PONTRYAGIN’S MINIMUM PRINCIPLE AND THE BELLMAN EQUATION 439

study 2-player noncooperative Nash zero-sum games, which have applications to
H -infinity robust control. Finally, we use PMP and the Bellman equation to solve
multiplayer nonzero sum games, which can have a cooperative team component
as well as noncooperative components. In this chapter we include some proofs
that show the relationship between performance criteria, value functions, and
Lyapunov functions. The proofs also show the way of thinking in this field of
research.

10.1 OPTIMAL CONTROL DERIVED USING PONTRYAGIN’S
MINIMUM PRINCIPLE AND THE BELLMAN EQUATION

In this section we rederive the Hamilton-Jacobi-Bellman (HJB) equation fromQ1
Section 6.3 and the Riccati equation solution of Table 3.3-1 using PMP and the
Bellman equation.

Optimal Control for Nonlinear Systems

Consider the continuous-time nonlinear affine system

ẋ = F(x, u) = f (x) + g(x)u, (10.1-1)

with state x(t) ∈ Rn and control u(t) ∈ Rm. Let the drift dynamics f (x) be
locally Lipschitz and f (0) = 0 so that x = 0 is an equilibrium point. With this
system, associate the performance index or value integral

V (x(t)) =
∞∫
t

r(x, u)dτ =
∞∫
t

(Q(x) + uTRu)dτ (10.1-2)

with Q(x) > 0, R > 0. The quadratic form in the control makes the development
here simpler, but similar results hold for more general positive definite control
weightings. A control u(t) is said to be admissible if it is continuous, stabilizes
the system (10.1-1), and makes the value (10.1-2) finite.

The optimal control problem is to select the control input u(t) in (10.1-1)
to minimize the value (10.1-2). Differentiating V (x(t)) using Leibniz’s formula,
one sees that a differential equivalent to the value integral is given in terms of
the Hamiltonian function H(·) by the Bellman equation

0 = r(x, u) + V̇ = r(x, u) +
(

∂V

∂x

)T

ẋ

or

0 = Q(x) + uTRu +
(

∂V

∂x

)T

(f (x) + g(x)u) ≡ H

(
x,

∂V

∂x
, u

)
. (10.1-3)

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 440

440 DIFFERENTIAL GAMES

That is, given any stabilizing feedback control policy u(x) yielding finite value,
the positive definite solution to the Bellman equation (10.1-3) is the value given
by (10.1-2). The Bellman equation is a partial differential equation for the value.
The initial condition is V (0) = 0.

It is desired to select the control input to minimize the value. A necessary
condition for this is Pontryagin’s minimum principle

H(x∗,
∂V ∗

∂x
, u∗) ≤ H(x∗,

∂V ∗

∂x
, u) (10.1-4)

for all admissible controls u(t), where * denotes the optimal (minimizing) state,
value, and control. Since the control u(t) is unconstrained this is equivalent to
the stationarity condition

∂H

∂u
= 0. (10.1-5)

Applying PMP to (10.1-3) yields

u(x) = u(V (x)) ≡ −1

2
R−1gT(x)

∂V

∂x
= −1

2
R−1gT(x)∇V (x), (10.1-6)

where ∇V (x) = ∂V/∂x ∈ Rn is the gradient, taken as a vector. Substitute this
into the Bellman equation (10.1-3) to obtain

0 = Q(x) + ∇V T(x)f (x) − 1
4∇V T(x)g(x)R−1gT(x)∇V (x). V (0) = 0

(10.1-7)

This is the Hamilton-Jacobi-Bellman (HJB) equation from Section 6.3. It can
also be written as

0 = min
u

[H(x,∇V ∗, u)]. (10.1-8)

This can be written in terms of the optimal Hamiltonian as

0 = H(x∗,∇V ∗, u∗), (10.1-9)

where u∗ = u(V ∗(x)) = − 1
2R−1gT(x)∇V ∗(x).

To solve the optimal control problem, one solves the HJB equation (10.1-7)
for the optimal value V ∗ > 0, then the optimal control is given as a state variable
feedback u(V ∗(x)) in terms of the HJB solution by (10.1-6).

Note that in the calculus of variations derivation of Table 3.2-1, the Hamilto-
nian function H(x, ∇V, u) plays a central role, and its various partial derivatives
define the flows of the state equation and the costate equation, as well as the
optimal control through the stationarity condition. Yet, there is no mention there
that the Hamiltonian should be equal to zero. The Hamiltonian is set to zero
in the Bellman equation (10.1-3), which arises from differentiation of the value
function (10.1-2), to get a differential equivalent to (10.1-2). Note further that
the costate of Table 3.2-1 is the gradient vector ∇V (x).

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 441

10.1 PONTRYAGIN’S MINIMUM PRINCIPLE AND THE BELLMAN EQUATION 441

Now we give a formal proof that the solution to the HJB equation provides
the optimal control solution. The following key fact is instrumental. It shows that
the Hamiltonian function is quadratic in the control deviations from a certain key
control value.

Lemma 10.1-1. For any admissible control policy u(x), let V (x) ≥ 0 be the
corresponding solution to the Bellman equation (10.1-3). Define u∗ = u(V (x))

by (10.1-6) in terms of V (x). Then

H(x, ∇V, u) = H(x, ∇V, u∗) + (u − u∗)TR(u − u∗). (10.1-10)

Proof: The Hamiltonian function is

H(x, ∇V, u) = Q(x) + uTRu + ∇V T(f + gu).

Complete the squares to write

H(x, ∇V, u) = ∇V Tf + Q(x) + (1
2∇V TgR−1 + uT)R(1

2R−1gT∇V + u)

− 1
4∇V TgR−1gT∇V.

�
The next result shows that under certain conditions the HJB solution solves

the optimal control problem. Set Q(x) = hT(x)h(x). System

ẋ = f (x) + g(x)u(x), y = h(x) (10.1-11)

is said to be zero-state observable if u(t) ≡ 0, y(t) ≡ 0 ⇒ x(t) = 0.

Theorem 10.1-2. Solution to Optimal Control Problem. Consider the optimal
control problem for (10.1-1), (10.1-2) with Q(x) = hT(x)h(x). Suppose V ∗(x) ∈
C1 : Rn → R is a smooth positive definite solution to the HJB equation (10.1-7).
Define control u∗ = u(V ∗(x)) as given by (10.1-6). Assume (10.1-11) is zero-
state observable. Then the closed-loop system

ẋ = f (x) + g(x)u∗ = f (x) − 1
2 gR−1gT∇V ∗ (10.1-12)

is locally asymptotically stable. Moreover, u∗ = u(V ∗(x)) minimizes the per-
formance index (10.1-2) over all admissible controls, and the optimal value on
[0, ∞) is given by V ∗(x(0)).

Proof:

a. Stability.

Note that for any C1 function V (x) : Rn → R one has, along the system trajec-
tories,

dV

dt
= ∂V

∂t
+ ∂V

∂x

T

ẋ = ∂V

∂x

T

(f + gu),

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 442

442 DIFFERENTIAL GAMES

so that
dV

dt
+ hTh + uTRu = H(x, ∇V, u).

Suppose now that V (x) satisfies the HJB equation H(x∗,∇V ∗, u∗) = 0. Then
according to (10.1-10) one has

H(x,∇V ∗, u) = H(x∗, ∇V ∗, u∗) + (u − u∗)TR(u − u∗)

= (u − u∗)TR(u − u∗).

Therefore,
dV

dt
+ hTh + uTRu = (u − u∗)TR(u − u∗).

Selecting u = u∗ yields

dV

dt
+ hTh + uTRu = 0

dV

dt
≤ −(hTh + uTRu).

Now LaSalle’s extension shows that the state goes to a region of Rn wherein
V̇ = 0. However, zero-state observable means u(t) ≡ 0, y(t) ≡ 0 ⇒ x(t) = 0.
Therefore, the system is locally asymptotically stable with Lyapunov function
V (x) > 0.

b. Optimality.

For any C1 smooth function V (x) : Rn → R and T > 0 one can write the per-
formance index (10.1-2) as

V (x(0), u) =
T∫

0

(
hTh + uTRu

)
dt +

T∫
0

V̇ dt − V (x(T)) + V (x(0)).

=
T∫

0

(
hTh + uTRu

)
dt +

T∫
0

∇V T(f + gu) dt − V (x(T)) + V (x(0))

=
T∫

0

H(x,∇V, u) dt − V (x(T)) + V (x(0)).

Now, suppose V (x) satisfies the HJB equation (10.1-7). Then 0 = H(x∗,∇V ∗,
u∗) and (10.1-10) yields

V (x(0), u) =
T∫

0

(
(u − u∗)TR(u − u∗)

)
dt − V ∗(x(T)) + V ∗(x(0)).

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 443

10.1 PONTRYAGIN’S MINIMUM PRINCIPLE AND THE BELLMAN EQUATION 443

Assuming u(t) is admissible one has V ∗(x(∞)) = 0 and can write

V (x(0), u) =
∞∫

0

(
(u − u∗)TR(u − u∗)

)
dt + V ∗(x(0)),

which shows that u∗ is an optimal control and the optimal value is V ∗(x(0)). �

Solution of HJB Equations

The HJB equation may not have smooth solutions, but may have the so-called
viscosity solutions (Bardi and Capuzzo-Dolcetla 1997). Under certain local reach-
ability and observability assumptions, it has a local smooth solution (van der
Schaft 1992). Various other assumptions guarantee existence of smooth solutions,
such as that the dynamics not be bilinear and the value not contain cross-terms
in the state and control input.

The HJB equation is difficult to solve for nonlinear systems. An algorithm for
finding an approximate smooth solution to the HJB is given by Abu-Khalaf and
Lewis (2005). The solution to optimal control problems is generally obtained by
solving the HJB equation offline. This does not allow the objectives to change in
real time. The work of Vamvoudakis and Lewis (2010a) shows how to solve the
HJB equation online in real time using data measured along the system trajecto-
ries. This allows solution of the optimal control problem if Q(x), R in (10.1-2)
change slowly with time. Vrabie and Lewis (2009) has provided algorithms for
solving the HJB equations online in real time without knowing the system drift
dynamics f (x).

In Chapter 11 we showed how to solve these equations online in real time using
adaptive control techniques (Vrabie and Lewis 2009, Vamvoudakis and Lewis
2010a). We developed there a class of adaptive controllers that converge online
to optimal control solutions by measuring data along the system trajectories. The
approach is based on techniques of policy iteration from reinforcement learning
and uses two approximator structures: one critic neural network to solve the
Bellman equation (10.1-3), and one actor neural network to compute the control
using (10.1-6). Note that if these two equations are solved simultaneously, then
one has effectively solved the HJB equation (10.1-7).

Linear Quadratic Regulator

For the linear quadratic regulator (LQR) one has the linear dynamics

ẋ = F(x, u) = Ax + Bu, (10.1-13)

with state x(t) ∈ Rn and control u(t) ∈ Rm, and quadratic value integral

V (x(t)) =
∞∫
t

r(x, u)dτ = 1

2

∞∫
t

(xTQx + uTRu)dτ , (10.1-14)

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 444

444 DIFFERENTIAL GAMES

with Q ≥ 0, R > 0. Then, the value is quadratic in the state so that

V (x) = 1
2xTSx (10.1-15)

for some matrix S > 0. Substituting this into (10.1-3) gives the Bellman equation

0 = 1
2 (xTQx + uTRu) + xTS(Ax + Bu) ≡ H(x,∇V, u). (10.1-16)

Using now a linear state variable feedback (SVFB)

u = −Kx (10.1-17)
gives

0 = (A − BK)TS + S(A − BK) + Q + KTRK. (10.1-18)

It has been assumed that the Bellman equation holds for all initial conditions,
and the state x(t) has been cancelled in writing (10.1-18). It is seen that, for the
LQR, the Bellman equation is equivalent to a Lyapunov equation for S in terms
of the prescribed SVFB K . If (A − BK) is stable and (A,

√
Q) observable, there

is a positive definite solution S > 0, and then (10.1-15) is the value (10.1-14) for
that selected feedback K .

The LQR optimal control that minimizes (10.1-14) is (10.1-6), or

u(x) = −R−1BTSx = −Kx. (10.1-19)

Substituting this into (10.1-18) yields the algebraic Riccati equation (ARE)

0 = ATS + SA + Q − SBR−1BTS (10.1-20)

exactly as given in Table 3.3-1.
To solve the optimal control problem, one solves the ARE equation (10.1-20)

for the optimal value kernel S > 0, then the optimal control is given as a state
variable feedback in terms of the ARE solution by (10.1-19). There exists a
solution S > 0 if (A, B) is stabilizable and (A,

√
Q) is observable.

The work of Vamvoudakis and Lewis (2010a) shows how to solve the ARE
equation online in real time using data measured along the system trajectories.
This allows solution of the optimal control problem if the performance index
weighting matrices Q, R change slowly with time. Vrabie and Lewis (2009) has
provided algorithms for solving the ARE equation online in real time without
knowing the system matrix A. In Chapter 11 we showed how to solve the ARE
equation online in real time using adaptive control techniques based on this work.

10.2 TWO-PLAYER ZERO-SUM GAMES

In this section we use the Bellman equation approach to solve the 2-player zero-
sum (ZS) games (Basar and Olsder 1999). ZS games refer to the fact that whatever
one player gains, the other loses. The Nash solution of the 2-player ZS game is

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 445

10.2 TWO-PLAYER ZERO-SUM GAMES 445

important in feedback control because it provides a solution to the bounded L2-
gain problem, and, hence, allows solution of the H -infinity disturbance rejection
problem (Zames 1981, van der Schaft 1992, Knobloch et al. 1993).

Zero-sum Game

Consider the nonlinear time-invariant dynamical system given by

ẋ = f (x) + g(x)u + k(x)d, (10.2-1)

where state x(t) ∈ Rn. This system has two inputs or players, known as the
control input u(t) ∈ Rm and the disturbance input d(t) ∈ Rq . Let f (x) be locally
Lipschitz and f (0) = 0. Define the performance index

J (x(0), u, d) =
∞∫

0

(
Q(x) + uTRu − γ 2 ‖d‖2) dτ ≡

∞∫
t

r(x, u, d)dτ, (10.2-2)

where Q(x) = hT(x)h(x) ≥ 0 for some function h(x), R = RT > 0, and γ > 0.
This is a function of the initial state and the functions u(τ), d(τ) : 0 ≤ τ .

Define the 2-player zero-sum differential game

V ∗(x(0)) = min
u

max
d

J (x, u, d) = min
u

max
d

∞∫
0

(
hTh + uTRu − γ 2 ‖d‖2) dt,

(10.2-3)

where the control player seeks to minimize the value and the disturbance to
maximize it. This game puts the control and disturbance at odds with one another
so that anything one gains in its objective is lost by the other. Therefore, it is
termed a zero-sum game. This is equivalent to defining two performance measures
J1(x(0), u, d) = J (x(0), u, d) = −J2(x(0), u, d) and solving the game where
the control player seeks to minimize J1 and the disturbance player seeks to
minimize J2.

This game has a unique solution if a game theoretic saddle point (u∗, d∗)
exists; that is, if

V ∗(x0) = min
u

max
d

J (x(0), u, d) = max
d

min
u

J (x(0), u, d). (10.2-4)

A saddle point is shown in Figure 10.2-1. The associated value V ∗ is called the
value of the game. This is equivalent to the Nash equilibrium condition

J (x(0), u∗, d) ≤ J (x(0), u∗, d∗) ≤ J (x(0), u, d∗) (10.2-5)

holding for all policies u, d. These conditions depend on the performance integral
(10.2-2) and the dynamics (10.2-1). According to the Nash condition, if both

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 446

446 DIFFERENTIAL GAMES

5

0

−5

−10

−1
−2 −2

−1
0

1
2

2
1

0

FIGURE 10.2-1 Saddle-point equilibrium.

players are at equilibrium, then neither has an incentive to change his policy
unilaterally, since unilateral changes make one’s performance worse.

For fixed control and disturbance feedback policies u(x), d(x)define the value
function

V (x(t), u, d) =
∞∫
t

(
hTh + uTRu − γ 2 ‖d‖2) dτ ≡

∞∫
t

r(x, u, d)dτ, (10.2-6)

which is only a function of the initial state x(t). When the value is finite, a
differential equivalent to this is found by differentiating using Leibniz’s formula.
The result is the nonlinear ZS game Bellman equation given in terms of the
Hamiltonian function as

0 = r(x, u, d) + V̇ = r(x, u, d) + ∇V Tẋ

or

0 = hTh + uTRu − γ 2 ‖d‖2 + ∇V T(f + gu + kd) ≡ H(x,∇V, u, d). (10.2-7)

The boundary condition for this partial differential equation is V (0) = 0. A min-
imal solution such that V (x) ≥ 0 to (10.2-7) is the value (10.2-6) for the given
feedback policy u(x) and disturbance policy d(x).

A necessary condition for Nash condition (10.2-4) is Isaacs’ condition

min
u

max
d

H(x, ∇V, u, d) = max
d

min
u

H(x,∇V, u, d) (10.2-8)

or, equivalently,

H(x,∇V, u∗, d) ≤ H(x,∇V, u∗, d∗) ≤ H(x,∇V, u, d∗) (10.2-9)

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 447

10.2 TWO-PLAYER ZERO-SUM GAMES 447

for all policies u, d. These conditions hold pointwise in time. Under certain
regularity conditions they guarantee (10.2-4). The Isaacs condition generalizes
the PMP (10.1-4) to ZS games.

At equilibrium, one has the two stationarity conditions

∂H

∂u
= 0,

∂H

∂d
= 0. (10.2-10)

Note from (10.2-7) that ∂2H/∂2u = 2R > 0, ∂2H/∂2d = −2γ 2 < 0, so that at
the stationary point the Hamiltonian attains a minimum in u and a maximum in
d , that is, a saddle point.

Applying (10.2-10) to the Hamiltonian (10.2-7) yields the control and distur-
bance policies

u = u(V (x)) ≡ − 1
2R−1gT(x)∇V (10.2-11)

d = d(V (x)) ≡ 1

2γ 2
kT(x)∇V. (10.2-12)

Substituting these into the Bellman equation (10.2-7) yields the Hamilton-Jacobi-
Isaacs (HJI) equation

0 = hTh + ∇V T(x)f (x) − 1

4
∇V T(x)g(x)R−1gT(x)∇V (x)

+ 1

4γ 2
∇V T(x)kkT∇V (x), V (0) = 0, (10.2-13)

which can be written

0 = H(x,∇V ∗, u∗, d∗), V (0) = 0. (10.2-14)

The minimum positive semi-definite (PSD) solution V ∗ of this equation gives the
Nash value, and the Nash equilibrium solution (u∗, d∗) = (u(V ∗(x)), d(V ∗(x)))

is given by (10.2-11), (10.2-12) in terms of ∇V ∗.
For the HJI equation to have a PSD solution, the gain γ should be chosen

large enough (Başar and Olsder 1999, van der Schaft 1992). It is shown that there
exists a critical gain γ ∗ such that the HJI has a PSD solution for any γ > γ ∗.
The critical value γ ∗ is known as the H -infinity gain for system (10.2-1). The
H -infinity gain can be explicitly computed for linear systems (Chen et al. 2004).

Instrumental to the analysis of ZS games is the following key fact, which
shows that the Hamiltonian is quadratic in deviations in the control and distur-
bance about some critical policies.

Lemma 10.2-1. For any policies u(x), d(x) yielding a finite value, let V (x) ≥ 0
be the corresponding solution to the Bellman equation 10.2-7. Define (u∗, d∗) =
(u(V (x)), d(V (x))) by (10.2-11), (10.2-12) in terms of V (x). Then

H(x, ∇V, u, d) = H(x, ∇V, u∗, d∗) + (u − u∗)TR(u − u∗) − γ 2
∥∥d − d∗∥∥2

.

(10.2-15)
�

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 448

448 DIFFERENTIAL GAMES

Exercise 10.2-1.

Prove (10.2-15) by completing the squares in (10.2-7). This result immediately shows
that the Isaacs condition (10.2-9) holds for solutions V ∗ to the HJI equation (10.2-13),
for according to (10.2-15), when (10.2-14) holds one has

H(x, ∇V ∗, u, d) = (u − u∗)TR(u − u∗) − γ 2
∥∥d − d∗∥∥2

, (10.2-16)

which satisfies (10.2-9).
The next result shows that under certain conditions the HJI solution satisfies the Nash

condition (10.2-4) and so solves the ZS game (Başar and Olsder 1999, van der Schaft
1992). System

ẋ = f (x) + g(x)u(x), y = h(x) (10.2-17)

is said to be zero-state observable if u(t) ≡ 0, y(t) ≡ 0 ⇒ x(t) = 0. �

Theorem 10.2-2. Solution to 2-player ZS Game. Assume the game (10.2-3)
has a finite value. Select γ > γ ∗ > 0. Suppose V ∗(x) ∈ C1 : Rn → R is a smooth
positive semi-definite solution to the HJI equation (10.2-13) such that closed-loop
system

ẋ = f (x) + g(x)u∗ + k(x)d∗ = f (x) − 1

2
gR−1gT∇V ∗ + 1

2γ 2
k(x)kT(x)∇V ∗

(10.2-18)

is locally asymptotically stable. Assume (10.2-17) is zero-state observable. The
Nash condition (10.2-5) is satisfied for control u∗ = u(V ∗(x)) given by (10.2-11)
and d∗ = d(V ∗(x)) given by (10.2-12) in terms of V ∗(x). Then the system is in
Nash equilibrium, the game has a value, and (u∗, d∗) is a saddle-point equilibrium
solution among policies in L2[0, ∞). Moreover, the value of the game is given
by the HJI solution V ∗(x(0)).

Proof: One has for any C1 smooth function V (x) : Rn → R and T > 0

JT (x(0), u, d) ≡
T∫
0

(
hTh + uTRu − γ 2 ‖d‖2

)
dt

=
T∫
0

(
hTh + uTRu − γ 2 ‖d‖2) dt +

T∫
0

˙Vdt − V (x(T)) + V (x(0))

=
T∫
0

(
hTh + uTRu − γ 2 ‖d‖2

)
dt

+
T∫
0

∇V T(f + gu + kd) dt − V (x(T)) + V (x(0))

=
T∫
0

H(x,∇V, u, d) dt − V (x(T)) + V (x(0)) .

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 449

10.2 TWO-PLAYER ZERO-SUM GAMES 449

Now, suppose V ∗(x) satisfies the HJI equation (10.2-13). Then 0 = H(x,

∇V ∗, u∗, d∗) and (10.2-15) yields

JT (x(0), u, d) =
T∫

0

(
(u − u∗)TR(u − u∗) − γ 2

∥∥d − d∗∥∥2
)

dt

− V ∗(x(T)) + V ∗(x(0)).

Since u(t), d(t) ∈ L2[0,∞), and since the game has a finite value as T →
∞, this implies that x(t) ∈ L2[0, ∞); therefore, zero state observability implies
x(t) → 0, V ∗(x(∞)) = 0 and

J (x(0), u, d) =
∞∫

0

(
(u − u∗)TR(u − u∗) − γ 2

∥∥d − d∗∥∥2
)

dt + V ∗(x(0)),

which implies saddle-point equilibrium, e.g., (10.2-5). One obtains

J (x(0), u∗, d∗) = min
u

max
d

J (x(0), u, d) = V ∗(x(0)),

which shows the Nash solution is u(t) = u∗(t), d(t) = d∗(t) and the Nash
value is

V ∗(x(0)). �

Solution of HJI Equations

A minimum positive semi-definite solution V ∗(x) ≥ 0 to the HJI is one for which
there is no other solution V (x) ≥ 0 such that V ∗(x) ≥ V (x) ≥ 0. The minimum
positive semi-definite HJI solution is the unique HJI solution such that the closed-
loop system (10.2-18) is locally asymptotically stable (Başar and Olsder 1999,
van der Schaft 1992). More information is provided below on the discussion on
linear quadratic zero-sum games.

The HJI equation may not have smooth solutions, but may have the so-called
viscosity solutions (Bardi and Capuzzo-Dolcetla 1997). Under certain local reach-
ability and observability assumptions, it has a local smooth solution (van der
Schaft 1992).

The HJI equation is difficult to solve for nonlinear systems. An algorithm for
finding an approximate minimum PSD solution to the HJI is given in Abu-Khalaf
et al. (2006, 2008). The solution to ZS games is generally obtained by solving
the HJI equation offline. This does not allow the objectives to change in real
time as the players learn from each other. The work of Vamvoudakis and Lewis
(2010b) shows how to solve the HJI equation online in real time using data
measured along the system trajectories. This allows the weights R, γ in (10.2-2)
to change slowly as the game develops. Vrabie and Lewis (2010a,b) has provided
algorithms for solving the HJI equations online in real time without knowing the

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 450

450 DIFFERENTIAL GAMES

z

x

d

u

u(x)

x = f(x) + g(x)u + k(x)d
y = h(x)

·

FIGURE 10.3-1 Bounded L2-gain control.

system drift dynamics f (x). These references extend the reinforcement learning
techniques presented in Chapter 11 to online solution of zero-sum games.

10.3 APPLICATION OF ZERO-SUM GAMES TO H∞ CONTROL

Consider the system (10.2.1) with output y = h(x) and a performance output
z(t) = [uT(t) yT(t)]T. This setup is shown in Figure 10.3-1. In the bounded
L2-gain problem (Zames 1981, van der Schaft 1992, Başar and Olsder 1999),
one desires to find a feedback control policy u(x) such that, when x(0) = 0 and
for all disturbances d(t) ∈ L2[0, ∞) one has

T∫
0

‖z(t)‖2 dt

T∫
0

‖d(t)‖2 dt

=

T∫
0

(hTh + uTRu)dt

T∫
0

‖d(t)‖2 dt

≤ γ 2 (10.3-1)

for a prescribed γ > 0 and R = RT > 0 and for all T > 0. That is, the L2-gain
from the disturbance to the performance output is less than or equal to γ .

The H -infinity control problem is to find, if it exists, the smallest value γ ∗ > 0
such that for any γ > γ ∗ the bounded L2-gain problem has a solution. In the linear
case an explicit expression can be provided for the H -infinity gain γ ∗ (Chen et al.
2004).

To solve the bounded L2-gain problem, one may use the machinery of 2-player
ZS games just developed. In the 2-player ZS game, both inputs can be controlled,
with the control input seeking to minimize a performance index and the distur-
bance input seeking to maximize it. By contrast, here d(t) is a disturbance that
cannot be controlled, and u(t) is the control input used to offset the deleterious
effects of the disturbance.

The next result provides a solution to the bounded L2-gain problem in terms
of a solution to the HJI equation.

Theorem 10.3-1. Solution to Bounded L2-gain Problem. Select γ > γ ∗ > 0.
Suppose V ∗(x) > 0 ∈ C1 : Rn → R is a smooth positive definite solution to

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 451

10.3 APPLICATION OF ZERO-SUM GAMES TO H∞ CONTROL 451

the HJI equation 10.2-13. Assume (10.2-17) is zero-state observable. Then the
closed-loop system

ẋ = f (x) + g(x)u∗ = f (x) − 1
2 gR−1gT∇V ∗ (10.3-2)

is locally asymptotically stable with control input u∗ = u(V ∗(x)) given by (10.2-
11) in terms of V ∗(x). Moreover, for this choice of control input, (10.3-1) holds
for all disturbances d(t) ∈ L2[0, ∞).

Proof: Note that for any C1 function V (x) : Rn → R one has, along the system
trajectories,

dV

dt
= ∂V

∂t
+ ∂V

∂x

T

ẋ = ∂V

∂x

T

(f + gu + kd),

so that
dV

dt
+ hTh + uTRu − γ 2dTd = H(x,∇V, u, d).

Suppose now that V (x) satisfies the Hamilton-Jacobi-Isaacs (HJI) equation (10.2-
13), (10.2-14). Then according to (10.2-15) one has

H(x, ∇V, u, d) = −γ 2 ‖d − d∗‖2 + (u − u∗)TR(u − u∗).

Therefore,

dV

dt
+ hTh + uTRu − γ 2dTd = −γ 2 ‖d − d∗‖2 + (u − u∗)TR(u − u∗).

Selecting u = u∗ yields

dV

dt
+ hTh + uTRu − γ 2dTd ≤ 0 (10.3-3)

for all d(t). To show asymptotic stability of the closed-loop system (10.3-2) set
d = 0 and note that

dV

dt
≤ −(hTh + uTRu) = − ‖z‖2 .

LaSalle’s extension now shows that the state goes to a region of Rn wherein
V̇ = 0. However, zero-state observable means u(t) ≡ 0, y(t) ≡ 0 ⇒ x(t) = 0.
Therefore, the system is locally asymptotically stable with Lyapunov function
V (x) > 0.

Now, integrating (10.3-3) yields

V (x(T)) − V (x(0)) +
T∫

0

(
hTh + uTRu − γ 2dTd

)
dt ≤ 0.

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 452

452 DIFFERENTIAL GAMES

Select x(0) = 0. Noting that V (0) = 0 and V (x(T))> 0 one has

T∫
0

(
hTh + uTRu

)
dt ≤ γ 2

T∫
0

(dTd) dt,

so the L2 gain is less than γ . �

The disturbance d∗ = d(V ∗) = (1/2γ 2)kT(x)∇V ∗ provided by the ZS game
solution (10.2-12) is known as the worst-case disturbance.

Linear Quadratic Zero-sum Game

In the LQ ZS game one has linear dynamics

ẋ = Ax + Bu + Dd, (10.3-4)

with x(t) ∈ Rn. The value is the integral quadratic form

V (x(t), u, d) = 1

2

∞∫
t

(
xTH THx + uTRu − γ 2 ‖d‖2) dτ ≡

∞∫
t

r(x, u, d)dτ,

(10.3-5)

where R = RT > 0, and γ > 0. Assume that the value is quadratic in the state so
that

V (x) = 1
2xTSx (10.3-6)

for some matrix S > 0. Select state feedbacks for the control and disturbance so
that

u = −Kx (10.3-7)

d = Lx. (10.3-8)

Substituting this into Bellman equation (10.2-7) gives

S(A − BK + DL) + (A − BK + DL)TS + H TH + KTRK − γ 2LTL. (10.3-9)

It has been assumed that the Bellman equation holds for all initial conditions,
and the state x(t) has been canceled. This is a Lyapunov equation for S in terms
of the prescribed SVFB policies K and L. If (A − BK + DL) is stable, (A, H) is
observable, and γ > γ ∗ > 0, then there is a positive definite solution S ≥ 0, and
then (10.3-6) is the value (10.3-5) for the selected feedback policies K and L.

The stationary point control (10.2-11) and disturbance (10.2-12) are given by

u(x) = −R−1BTSx = −Kx (10.3-10)

d(x) = 1

γ 2
DTSx = Lx. (10.3-11)

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 453

10.4 MULTIPLAYER NON-ZERO-SUM GAMES 453

Substituting these into (10.3-9) yields the game algebraic Riccati equation
(GARE)

0 = ATS + SA + H TH − SBR−1BTS + 1

γ 2
SDDTS. (10.3-12)

To solve the ZS game problem, one solves the GARE equation for the optimal
value kernel S ≥ 0, then the optimal control is given as a state-variable feedback
in terms of the ARE solution by (10.3-10) and the worst-case disturbance by
(10.3-11). There exists a solution S > 0 if (A, B) is stabilizable, (A,

√
Q) is

observable, and γ > γ ∗, the H -infinity gain. Since we have developed a solution
to the problem, it is verified that assumption (10.3-6) holds.

There may more than one PSD solution to the GARE. To solve the ZS game
problem, one requires gains such that the poles of (A − BK + DL) are in the open
left-half plane. The minimum PSD solution of the GARE is the unique stabilizing
solution. It is shown in van der Schaft (1992), and Başar and Olsder (1999) that
the stabilizing solution of the GARE corresponds to the stable eigenspace of
a certain Hamiltonian matrix, similarly to the discussion presented in Section
3.4 for the stabilizing ARE solution. A method for finding the minimum PSD
solution is given in (Abu Khalaf et al. 2006).

The work of Vamvoudakis and Lewis (2010b) shows how to solve the GARE
online in real time using data measured along the system trajectories. This allows
the performance index weights R, γ to change slowly as the game develops.
Vrabie and Lewis (2010a) has provided algorithms for solving the HJB equations
online in real time without knowing the system matrix A. These references extend
the reinforcement learning techniques presented in Chapter 11 to online solution
of LQ zero-sum games.

10.4 MULTIPLAYER NON-ZERO-SUM GAMES

In zero-sum games, whatever one player gains, the rest lose. Cooperation and
competition in nature and in human enterprises are fascinating topics. Most often,
there is a balance between cooperation toward team goals and competition among
players to achieve individual goals. This interplay is very nicely captured by the
machinery of non-zero-sum (NZS) multiplayer games (Başar and Olsder 1999).

Nonlinear NZS Games

Consider the nonlinear time-invariant dynamical system given by

ẋ = f (x) +
N∑

j=1

gj (x)uj , (10.4-1)

with state x(t) ∈ Rn and controls uj (t) ∈ Rmj . This system has N inputs or
players, all of whom influence each other through their joint effects on the overall

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 454

454 DIFFERENTIAL GAMES

system state dynamics. Let f (x) be locally Lipschitz, f (0) = 0, and gj (x) be
continuous. Define the performance index of player i as

Ji(x(0), u1, u2, . . . , uN) =
∞∫

0

(Qi(x) +
N∑

j=1

uT
j Rij uj) dt

≡
∞∫

0

ri(x(t), u1, u2, . . . , uN)dt, i ∈ N, (10.4-2)

where function Qi(x) ≥ 0 is generally nonlinear, and Rii > 0, Rij ≥ 0 are sym-
metric matrices. The notation i ∈ N means i = 1, . . . , N.

Define the multiplayer differential game

V ∗
i (x(t), u1, u2, . . . , uN) = min

ui

∞∫
t

(Qi(x) +
N∑

j=1

uT
j Rij uj)dτ, ∀i ∈ N.

(10.4-3)

This game implies that all the players have the same competitive hierarchical
level and seek to attain a Nash equilibrium as given by the following definition.

Definition 10.4-1. Nash equilibrium.

Policies
{
u∗

1(x), u∗
2(x), . . . , u∗

N(x)
}

are said to constitute a Nash equilibrium solu-
tion for the N-player game if

J ∗
i � Ji(u

∗
1, u

∗
2, u

∗
i , ..., u

∗
N) ≤ J1(u

∗
1, u

∗
2, ui, ..., u

∗
N), ∀ui,∀i ∈ N. (10.4-4)

The N-tuple
{
J ∗

1 , J ∗
2 , ..., J ∗

N

}
is known as a Nash equilibrium value set or outcome

of the N -player game.

The implication of this definition is that if any player unilaterally changes
his control policy while the policies of all other players remain the same, then
that player will obtain worse performance. For fixed stabilizing feedback control
policies uj (x)define the value function

Vi(x(t)) =
∞∫
t

(Qi(x) +
N∑

j=1

uT
j Rij uj)dτ =

∞∫
t

r(x, u1, . . . , uN)dτ, i ∈ N,

(10.4-5)

which is only a function of the initial state x(t). When the value is finite, a
differential equivalent to this is found by differentiating using Leibniz’s formula.

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 455

10.4 MULTIPLAYER NON-ZERO-SUM GAMES 455

This yields the nonlinear NZS game Bellman equations given in terms of the
Hamiltonian functions as

0 = Qi(x) +
N∑

j=1

uT
j Rij uj + (∇Vi)

T(f (x) +
N∑

j=1

gj (x)uj)

≡ Hi(x, ∇Vi, u1, . . . , uN), i ∈ N. (10.4-6)

The initial conditions for these partial differential equations are Vi(0) = 0.
At equilibrium, one has the stationarity conditions

∂Hi

∂ui

= 0, i ∈ N, (10.4-7)

which yield the policies

ui(x) = ui(Vi(x)) = − 1
2R−1

ii gT
i (x)∇Vi, i ∈ N. (10.4-8)

Note that ∂2Hi/∂
2ui = 2Rii > 0, so that at the stationary point the Hamiltonian

Hi attains a minimum in control policy ui(x). Using these control policies the
closed-loop system is

ẋ = f (x) − 1

2

N∑
j=1

gj (x)R−1
jj gT

j (x)∇Vj . (10.4-9)

Substituting (10.4-8) into (10.4-6) one obtains the N-coupled Hamilton-Jacobi
(HJ) equations

0 = (∇Vi)
T

⎛
⎝f (x) − 1

2

N∑
j=1

gj (x)R−1
jj gT

j (x)∇Vj

⎞
⎠

+ Qi(x) + 1

4

N∑
j=1

∇V T
j gj (x)R−T

jj Rij R
−1
jj gT

j (x)∇Vj , (10.4-10)

with Vi(0) = 0. These coupled HJ equations are in closed-loop form. The equiv-
alent open-loop form is

0 = ∇V T
i f (x) + Qi(x) − 1

2
∇V T

i

N∑
j=1

gj (x)R−1
jj gT

j (x)∇Vj

+ 1

4

N∑
j=1

∇V T
j gj (x)R−T

jj Rij R
−1
jj gT

j (x)∇Vj . (10.4-11)

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 456

456 DIFFERENTIAL GAMES

These equations can be written as

Hi(x, ∇V ∗
i , u∗

1, . . . , u
∗
N) = 0, (10.4-12)

where u∗
i (x) = ui(V

∗
i (x)) as given by (10.4-8).

The next key result shows that the Hamiltonian function has a specific depen-
dence on control deviations from certain key values.

Lemma 10.4-2. For any control policies ui(x), i = 1, N that yield finite values
(10.4-5), let Vi(x) ≥ 0 be the corresponding solutions to the Bellman equations
(10.4-6). Define u∗

i (x) = ui(Vi(x)) according to (10.4-8) in terms of Vi(x). Then

Hi(x, ∇Vi, u1, . . . , uNx)

= Hi(x, ∇Vi, u
∗
1, . . . , u

∗
N) +

∑
j

(uj − u∗
j)

TRij (uj − u∗
j)

+ ∇V T
i

∑
j

gj (uj − u∗
j) + 2

∑
j

(u∗
j)

TRij (uj − u∗
j). (10.4-13)

�

Exercise 10.4-1.

Prove Lemma 10.4-1 by completing the squares on (10.4-6). This is simplified if one
writes

Hi(x, ∇Vi, u
∗
1, . . . , u

∗
N) = ∇V T

i f (x) + Qi(x) + ∇V T
i

N∑
j=1

gj (x)u∗
j +

N∑
j=1

(u∗
j)

TRij u
∗
j .

(10.4-14)

The next result shows when the coupled HJ solutions solve the multiplayer game
(Basar and Olsder 1999). �

Theorem 10.4-2. Stability and Solution of NZS Game Nash Equilibrium.
Let Qi(x)> 0 in the performance index (10.4-2). Let Vi(x) > 0 ∈ C1, i = 1, N

be smooth solutions to HJ equations (10.4-11), and control policies u∗
i , i ∈ N

be given by (10.4-8) in terms of these solutions Vi . Then

a. System (10.4-9) is asymptotically stable and Vi(x) serve as Lyapunov func-
tions.

b. {u∗
i , i = 1, N} are in Nash equilibrium and the corresponding game values

are

J ∗
i (x(0)) = Vi, i ∈ N.

(10.4-15)

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 457

10.4 MULTIPLAYER NON-ZERO-SUM GAMES 457

Proof:
a. If Vi > 0 satisfies (10.4-11) then it also satisfies (10.4-6). Take the time

derivative to obtain

V̇i = ∇V T
i ẋ = ∇V T

i

⎛
⎝f (x) +

∑
j

gj (x)uj

⎞
⎠

= −1

2

⎛
⎝Qi(x) +

∑
j

uT
j Rij uj

⎞
⎠ ,

(10.4-16)

which is negative definite since Qi > 0. Therefore, Vi(x) is a Lyapunov
function for x and systems (10.4-9) are asymptotically stable.

b. According to part a , x(t) → 0 for the selected control policies. Define u−i

as the set of control policies of all nodes other than node i . For any smooth
functions Vi(x), i ∈ N , such that Vi(0) = 0, by setting Vi(x(∞)) = 0 one
can write (10.4-2) as

Ji(x(0), ui, u−i) = 1

2

∞∫
0

(Qi(x)+
∑

j

uT
j Rij uj) dt +

∞∫
0

V̇idt + Vi(x(0))

or

Ji(x(0), ui, u−i) = 1

2

∞∫
0

(Qi(x) +
∑

j

uT
j Rijuj) dt

+
∞∫

0

∇V T
i (f +

∑
j

gjuj) dt + Vi(x(0))

Ji(x(0), ui, u−i) = 1

2

∞∫
0

Hi(x, ∇Vi, u1, . . . , uN) + Vi(x(0)).

Now let Vi satisfy (10.4-11) and u∗
i , u

∗
−i be the optimal controls given by

(10.4-8). By Lemma 10.4-1 one has

Ji(x(0), ui, u−i) = Vi(x(0)) +
∞∫

0

(
∑

j

(uj − u∗
j)

TRij (uj − u∗
j)

T

− ∇V T
i

∑
j

Bj (uj − u∗
j) +

∑
j

u∗T
j Rij (uj − u∗

j)) dt

(10.4-17)

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 458

458 DIFFERENTIAL GAMES

Ji(x(0), ui, u−i) = Vi(x(0)) +
∞∫

0

(ui − u∗
i)

TRii (ui − u∗
i)

Tdt

+
∞∫

0

(
∑
j �=i

(uj − u∗
j)

TRij (uj − u∗
j)

T
dt

− ∇V T
i

∑
j

Bj (uj − u∗
j) +

∑
j

u∗T
j Rij (uj − u∗

j)) dt.

At the equilibrium point ui = u∗
i and uj = u∗

j , ∀j so

J ∗
i (x(0), u∗

i , u
∗
−i) = Vi(x(0)).

Define

Ji(ui, u
∗
−i) = Vi(x(0)) + 1

2

∞∫
0

(ui − u∗
i)

TRii(ui − u∗
i) dt

(10.4-18)

and J ∗
i = Vi(x(0)). Then clearly J ∗

i and Ji(ui, u
∗
−i) satisfy (10.4-4). �

Note that Lemma 10.4-1 shows that the values are not quadratic in all the
control policies. In the proof this carries over to the fact that the performance
indices (10.4-17) are not quadratic in all the control policies. However, Defini-
tion 10.4-1 of Nash equilibrium requires that the optimal value J ∗

i be quadratic
in ui when all other policies are held at Nash. This definition means that the
nonquadratic terms in (10.4-13) are equal to zero at the equilibrium and do not
cause trouble. Then, (10.4-18) is quadratic in ui , as required.

Solution of the Coupled HJ Equations

The coupled HJ equations are difficult to solve for nonlinear systems and the
solution to multiplayer games is generally obtained by solving these equations
offline. This does not allow the objectives to change in real time as the players
learn from each other. The work of Vamvoudakis (2011) shows how to solve the
coupled HJ equations online in real time using data measured along the system
trajectories. This allows the weight functions Qi(x), Rij in (10.4-2) to change
slowly as the game develops. Vrabie (2010) has provided algorithms for solving
the coupled HJ equations online in real time without knowing the system drift
dynamics f (x). These references extend the reinforcement learning techniques
presented in Chapter 11 to online solution of non-zero-sum games.

Lewis c10.tex V1 - 10/19/2011 5:55pm Page 459

10.4 MULTIPLAYER NON-ZERO-SUM GAMES 459

Cooperative and Competitive Aspects of NZS Games The multiplayer game
formulation allows for considerable freedom of each agent within the framework
of overall team Nash equilibrium. Each agent has a performance objective (10.4-
2) that can embody team objectives as well as individual objectives. In fact, the
performance objective of each agent can be written as

Ji = 1

N

N∑
j=1

Jj + 1

N

N∑
j=1

(Ji − Jj) ≡ Jteam + J i
conflict, (10.4-19)

where Jteam is the overall cooperative (center of gravity) performance objective
of the networked team, and J i

conflict is the conflict of interest or competitive
objective. Jteammeasures how much the players are vested in common goals, and
J i

conflict expresses to what extent their objectives differ. The objective functions
can be chosen by the individual players, or they may be assigned to yield some
desired team behavior.

In the case of N -player zero-sum games, one has Jteam = 0 and there are no
common objectives. One case is the 2-player zero-sum game, where J2 = −J1,
and one has Jteam = 0 and J i

conflict = Ji .

Linear Quadratic Multiplayer Games In linear systems of the form

ẋ = Ax +
N∑

j=1

Bjuj , (10.4-20)

with quadratic performance indices

Ji(x(0), u1, u2, . . . , uN) = 1

2

∞∫
0

(xT Qix +
N∑

j=1

uT
j Rij uj) dt, (10.4-21)

the HJ equations (10.4-11) become the N-coupled generalized algebraic Riccati
equations

0 = PiAc + AT
c Pi + Qi +

N∑
j=1

PjBjR
−T
jj Rij R

−1
jj BT

j Pj , i ∈ N, (10.4-22)

where Ac = A −
N∑

i=1
BiR

−1
ii BT

i Pi . It is shown in Başar and Olsder (1999) that if

there exist solutions to (10.4.22) further satisfying the conditions that for each
i ∈ N the pairs

⎛
⎝A −

∑
j �=i

BjR
−1
jj BT

j Pj , Bi

⎞
⎠ ,

⎛
⎝A −

∑
j �=i

BjR
−1
jj BT

j Pj ,

√
Qi +

∑
j �=i

PjBjR
−T
jj Rij R

−1
jj BT

j Pj

⎞
⎠

Lewis c10.tex V1 - 10/19/2011 5:55pm

460 DIFFERENTIAL GAMES

are respectively stabilizable and detectable, then the N -tuple of stationary feed-
back policies u∗

i (x) = −Kix = − 1
2R−1

ii BT
i Pix, i ∈ N provides a Nash equilib-

rium solution for the linear quadratic N -player differential game. Furthermore,
the resulting system dynamics, described by ẋ = Acx, are asymptotically stable.

Vamvoudakis and Lewis (2011) show how to solve the coupled HJ equations
online in real time using data measured along the system trajectories. Vrabie and
Lewis (2010a,b) have provided algorithms for solving these equations online in
real time without knowing the system A matrix. These references use reinforce-
ment learning techniques based on the development in Chapter 11.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 461

11
REINFORCEMENT LEARNING
AND OPTIMAL ADAPTIVE CONTROL

In this book we have presented a variety of methods for the analysis and design
of optimal control systems. Design has generally been based on solving matrix
design equations assuming full knowledge of the system dynamics. Optimal
control is fundamentally a backward-in-time problem, as we have seen espe-
cially clearly in Chapter 6 Dynamic Programming. Optimal controllers are nor-
mally designed offline by solving Hamilton-Jacobi-Bellman (HJB) equations, for
example, the Riccati equation, using complete knowledge of the system dynam-
ics. The controller is stored and then implemented online in real time. In the linear
quadratic case, this means the feedback gains are stored. Determining optimal
control policies for nonlinear systems requires the offline solution of nonlinear
HJB equations, which are often difficult or impossible to solve analytically.

In this book, we have developed many matrix design equations whose solu-
tions yield various sorts of optimal controllers. This includes the Riccati equation,
the HJB equation, and the design equations in Chapter 10 for differential games.
These equations are normally solved offline. In this chapter we give practical
methods for solving these equations online in real time using data measured along
the system trajectories. Some of the methods do not require knowledge of the
system dynamics.

In practical applications, it is often important to be able to design controllers
online in real time without having complete knowledge of the plant dynamics.
Modeling uncertainties may exist, including inaccurate parameters, unmodeled
high-frequency dynamics, and disturbances. Moreover, both the system dynamics
and the performance objectives may change with time. A class of controllers
known as adaptive controllers learn online to control unknown systems using
data measured in real time along the system trajectories. While learning the
control solutions, adaptive controllers are able to guarantee stability and system

461

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 462

462 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

performance. Adaptive control and optimal control represent different philoso-
phies for designing feedback controllers. Adaptive controllers are not usually
designed to be optimal in the sense of minimizing user-prescribed performance
functions. Indirect adaptive controllers use system identification techniques to
identify the system parameters, then use the obtained model to solve optimal
design equations (Ioannou and Fidan 2006). Adaptive controllers may satisfy
certain inverse optimality conditions, as shown in Li and Krstic (1997).

In this chapter we show how to design optimal controllers online in real time
using data measured along the system trajectories. We present several adaptive
control algorithms that converge to optimal control solutions. Several of these
algorithms do not require full knowledge of the plant dynamics. In the LQR case,
for instance, this amounts to using adaptive control techniques to learn the solu-
tion of the algebraic Riccati equation online without knowing the plant matrix A.
In the nonlinear case, these algorithms allow the approximate solution of com-
plicated HJ equations that cannot be exactly solved using analytic means. Design
of optimal controllers online allows the performance objectives, such as the LQR
weighting matrices, to change slowly in real time as control objectives change.

The framework we use in this chapter is the theory of Markov decision pro-
cesses (MDP). It is shown here that MDP provide a natural framework that
connects reinforcement learning, optimal control, adaptive control, and coop-
erative control (Tsitsiklis 1984, Jadbabaie et al. 2003, Olfati-Saber and Murray
2004). Some examples are given of cooperative decision and control of dynamical
systems on communication graphs.

11.1 REINFORCEMENT LEARNING

Dynamic programming (Chapter 6) is a method for determining optimal control
solutions using Bellman’s principle (Bellman 1957) by working backward in time
from some desired goal states. Designs based on dynamic programming yield
offline solution algorithms, which are then stored and implemented online forward
in time. In this chapter we show that techniques based on reinforcement learning
allow the design of optimal decision systems that learn optimal solutions online
and forward in time. This allows both the system dynamics and the performance
objectives to vary slowly with time. The methods studied here depend on solving
a certain equation, known as Bellman’s equation (Sutton and Barto 1998), whose
solution both evaluates the performance of current control policies and provides
methods for improving those policies.

Reinforcement learning (RL) refers to a class of learning methods that allow
the design of adaptive controllers that learn online, in real time, the solutions
to user-prescribed optimal control problems. In machine learning, reinforcement
learning (Mendel and MacLaren 1970, Werbos 1991, Werbos 1992, Bertsekas
and Tsitsiklis 1996, Sutton and Barto 1998, Powell 2007, Cao 2007, Busoniu
et al. 2009) is a method for solving optimization problems that involves an actor
or agent that interacts with its environment and modifies its actions, or con-
trol policies, based on stimuli received in response to its actions. Reinforcement

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 463

11.1 REINFORCEMENT LEARNING 463

System/
Environment

CRITIC -
Evaluates the current

control policy

Control action

Reward/Response
from
environment

ACTOR -
Implements the
control policy

Policy
update/

improvement

System output

FIGURE 11.1-1 Reinforcement learning with an actor–critic structure. This structure
provides methods for learning optimal control solutions online based on data measured
along the system trajectories.

learning is inspired by natural learning mechanisms, where animals adjust their
actions based on reward and punishment stimuli received from the environment.
Other reinforcement learning mechanisms operate in the human brain, where the
dopamine neurotransmitter in the basal ganglia acts as a reinforcement informa-
tional signal that favors learning at the level of the neuron (Doya et al. 2001,
Schultz 2004).

The actor–critic structures shown in Figure 11.1-1 (Barto et al. 1983) are one
type of reinforcement learning algorithm. These structures give forward-in-time
algorithms for computing optimal decisions that are implemented in real time
where an actor component applies an action, or control policy, to the environ-
ment, and a critic component assesses the value of that action. The learning
mechanism supported by the actor–critic structure has two steps, namely, policy
evaluation, executed by the critic, followed by policy improvement, performed by
the actor. The policy evaluation step is performed by observing from the environ-
ment the results of applying current control actions. These results are evaluated
using a performance index that quantifies how close to optimal the current action
is. Performance can be defined in terms of optimality objectives, such as min-
imum fuel, minimum energy, minimum risk, or maximum reward. Based on
the assessment of the performance, one of several schemes can then be used to
modify or improve the control policy in the sense that the new policy yields a
performance value that is improved relative to the previous value. In this scheme,
reinforcement learning is a means of learning optimal behaviors by observing the
real-time responses from the environment to nonoptimal control policies.

Direct adaptive controllers tune the controller parameters to directly identify
the controller. Indirect adaptive controllers identify the system, and the identified
model is then used in design equations to compute a controller. Actor–critic

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 464

464 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

schemes are a logical extension of this sequence in that they identify the per-
formance value of the current control policy, and then use that information to
update the controller.

This chapter presents the main ideas and algorithms of reinforcement learning
and applies them to design adaptive feedback controllers that converge online to
optimal control solutions relative to prescribed cost metrics. Using these tech-
niques, we can solve online in real time the Riccati equation, the HJB equation,
and the design equations in Chapter 10 for differential games. Some of the
methods given here do not require knowledge of the system dynamics.

We start from a discussion of MDP and specifically focus on a family of tech-
niques known as approximate or adaptive dynamic programming (ADP) (Werbos
1989, 1991, 1992) or neurodynamic programming (Bertsekas and Tsitsiklis 1996).
We show that the use of reinforcement learning techniques provides optimal con-
trol solutions for linear or nonlinear systems using adaptive control techniques.

This chapter shows that reinforcement learning methods allow the solution
of HJB design equations online, forward in time, and without knowing the full
system dynamics. Specifically, the drift dynamics is not needed, but the input
coupling function is needed. In the linear quadratic case, these methods determine
the solution to the algebraic Riccati equation online, without solving the equation
and without knowing the system A matrix. This chapter presents an expository
development of ideas from reinforcement learning and ADP and their applications
in feedback control systems. Surveys of ADP are given in Si et al. (2004), Lewis,
Lendaris, and Liu (2008), Balakrishnan et al. (2008), Wang et al. (2009), and
Lewis and Vrabie (2009).

11.2 MARKOV DECISION PROCESSES

A natural framework for studying RL is provided by Markov decision processes
(MDP). Many dynamical decision problems can be cast into the framework of
MDP. Included are feedback control systems for human engineered systems,
feedback regulation mechanisms for population balance and survival of species
(Darwin 1859, Luenberger 1979), decision-making in multiplayer games, and
economic mechanisms for regulation of global financial markets. Therefore,
we provide a development of MDP here. References for this material include
(Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998, Busoniu et al. 2009).

Consider the Markov decision process (MDP) (X, U,P, R), where X is a set
of states and U is a set of actions or controls. The transition probabilities P : X ×
U × X → [0, 1] give for each state x ∈ X and action u ∈ U the conditional
probability P u

x,x′ = Pr{x′|x, u} of transitioning to state x′ ∈ X given the MDP
is in state x and takes action u . The cost function R: X × U × X → R gives
the expected immediate cost Ru

xx′ paid after transition to state x′ ∈ X given the
MDP starts in state x ∈ X and takes action u ∈ U . The Markov property refers
to the fact that transition probabilities P u

x,x′ depend only on the current state x
and not on the history of how the MDP attained that state. An MDP is shown in
Figure 11.2-1.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 465

11.2 MARKOV DECISION PROCESSES 465

P = 1u2
x1x3

R = 6u2

u2

u1

u1

u1

x1 x2

x3

x1x3

P = 0.4u1
x1x3

R = 2u1
x1x3

P = 1u1
x3x2

R = 5u1
x3x2

P = 0.6u1
x1x2

R = 2u1
x1x2

P = 0.8u2
x2x3

P = 0.2u2
x2x2

R = 3u2
x2x3

R = 0u2
x2x2

FIGURE 11.2-1 MDP shown as a finite state machine with controlled state transitions
and costs associated with each transition.

The basic problem for MDP is to find a mapping π : X × U → [0, 1] that
gives for each state x and action u the conditional probability π(x, u) = Pr{u|x}
of taking action u given the MDP is in state x . Such a mapping is termed a
(closed-loop) control or action strategy or policy.

The strategy or policy π(x, u) = Pr{u|x} is called stochastic or mixed if there
is a nonzero probability of selecting more than one control when in state x . We
can view mixed strategies as probability distribution vectors having as component
i the probability of selecting the i th control action while in state x ∈ X. If the
mapping π : X × U → [0, 1] admits only one control (with probability 1) when
in every state x , it is called a deterministic policy. Then, π(x, u) = Pr{u|x}
corresponds to a function mapping states into controls μ(x): X → U .

Most work on reinforcement learning has been done for MDP that have finite
state and action spaces. These are termed finite MDP.

Optimal Sequential Decision Problems

Dynamical systems evolve causally through time. Therefore, we consider sequen-
tial decision problems and impose a discrete stage index k such that the MDP
takes an action and changes states at nonnegative integer stage values k . The
stages may correspond to time or more generally to sequences of events. We
refer to the stage value as the time. Denote state values and actions at time k by
xk, uk . MDP traditionally evolve in discrete time.

Naturally occurring systems, including biological organisms and living species,
have available a limited set of resources for survival and increase. Natural systems
are therefore optimal in some sense. Likewise, human engineered systems should
be optimal in terms of conserving resources such as cost, time, fuel, energy. Thus,
it is important to capture the notion of optimality in selecting control policies
for MDP.

Define, therefore, a stage cost at time k by rk = rk(xk, uk, xk+1). Then Ru
xx′ =

E{rk |xk = x, uk = u, xk+1 = x′}, with E{·} the expected value operator. Define

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 466

466 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

a performance index as the sum of future costs over time interval [k, k + T]

Jk,T =
T∑

i=0

γ irk+i =
k+T∑
i=k

γ i−kri , (11.2-1)

where 0 ≤ γ < 1 is a discount factor that reduces the weight of costs incurred
further in the future. T is a planning horizon over which decisions are to be
made.

Traditional usage of MDP in the fields of computational intelligence and eco-
nomics consider rk as a reward incurred at time k , also known as utility , and
Jk,T as a discounted return, also known as strategic reward. We refer instead to
stage costs and discounted future costs to be consistent with objectives in the
control of dynamical systems. We may sometimes loosely call rk the utility.

Consider that an agent selects a control policy πk(xk, uk) and uses it at each
stage k of the MDP. We are primarily interested in stationary policies, where
the conditional probabilities πk(xk, uk) are independent of k . Then πk(x, u) =
π(x, u) = Pr{u|x}, for all k. Nonstationary deterministic policies have the form
π = {μ0, μ1, . . .}, where each entry is a function μk(x): X → U ; k = 0, 1,

Stationary deterministic policies are independent of time so that π = {μ, μ, . . .}.
Select a fixed stationary policy π(x, u) = Pr{u|x}. Then the (“closed-loop”)

MDP reduces to a Markov chain with state space X . That is, the transition
probabilities between states are fixed with no further freedom of choice of actions.
The transition probabilities of this Markov chain are given by

px,x′ ≡ P π
x,x′ =

∑
u

Pr{x′|x, u} Pr{u|x} =
∑

u

π(x, u)P u
x,x′ , (11.2-2)

where we have used the Chapman-Kolmogorov identity.
Under the assumption that the Markov chain corresponding to each policy

(with transition probabilities given as in (11.2-2)) is ergodic, it can be shown that
every MDP has a stationary deterministic optimal policy (Wheeler and Narendra
1986, Bertsekas and Tsitsiklis 1996). A Markov chain is ergodic if all states
are positive recurrent and aperiodic (Luenberger 1979). Then, for a given policy
there exists a stationary distribution pπ(x) over X that gives the steady-state
probability the Markov chain is in state x . We shall soon discuss more about the
closed-loop Markov chain.

The value of a policy is defined as the conditional expected value of future
cost when starting in state x at time k and following policy π(x, u) thereafter,

V π
k (x) = Eπ {Jk,T |xk = x} = Eπ

{
k+T∑
i=k

γ i−kri |xk = x

}
. (11.2-3)

Here, Eπ {·} is the expected value given that the agent follows policy π(x, u).
V π(x) is known as the value function for policy π(x, u). It tells the value of
being in state x given that the policy is π(x, u).

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 467

11.2 MARKOV DECISION PROCESSES 467

An important objective of MDP is to determine a policy π(x, u) to minimize
the expected future cost

π∗(x, u) = arg min
π

V π
k (s) = arg min

π

Eπ

{
k+T∑
i=k

γ i−kri |xk = x

}
. (11.2-4)

This is termed the optimal policy , and the corresponding optimal value is given as

V ∗
k (x) = min

π
V π

k (x) = min
π

Eπ

{
k+T∑
i=k

γ i−kri |xk = x

}
. (11.2-5)

In computational intelligence and economics, when we talk about utilities and
rewards, we are interested in maximizing the expected performance index.

A Backward Recursion for the Value

By using the Chapman-Kolmogorov identity and the Markov property we may
write the value of policy π(x, u) as

V π
k (x) = Eπ {Jk|xk = x} = Eπ

{
k+T∑
i=k

γ i−kri |xk = x

}
(11.2-6)

V π
k (x) = Eπ

{
rk + γ

k+T∑
i=k+1

γ i−(k+1)ri |xk = x

}
(11.2-7)

V π
k (x) =

∑
u

π(x, u)
∑
x′

P u
xx′

[
Ru

xx′ + γEπ

{
k+T∑

i=k+1

γ i−(k+1)ri |xk+1 = x′
}]

.

(11.2-8)

Therefore, the value function for policy π(x, u) satisfies

V π
k (x) =

∑
u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV π
k+1(x

′)
]
. (11.2-9)

This provides a backward recursion for the value at time k in terms of the value
at time k + 1.

Dynamic Programming

The optimal cost can be written as

V ∗
k (x) = min

π
V π

k (x) = min
π

∑
u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV π
k+1(x

′)
]
. (11.2-10)

Bellman’s optimality principle (Bellman 1957) states that “an optimal policy has
the property that no matter what the previous control actions have been, the
remaining controls constitute an optimal policy with regard to the state resulting

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 468

468 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

from those previous controls.” Therefore, we may write

V ∗
k (x) = min

π

∑
u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV ∗
k+1(x

′)
]
. (11.2-11)

Suppose we now apply an arbitrary control u at time k and the optimal policy
from time k + 1 on. Then Bellman’s optimality principle says that the optimal
control at time k is given by

u∗
k = arg min

π

∑
u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV ∗
k+1(x

′)
]
. (11.2-12)

Under the assumption that the Markov chain corresponding to each policy
(with transition probabilities given as in (11.2-2)) is ergodic, every MDP has a
stationary deterministic optimal policy. Then we can equivalently minimize the
conditional expectation over all actions u in state x . Therefore,

V ∗
k (x) = min

u

∑
x′

P u
xx′
[
Ru

xx′ + γV ∗
k+1(x

′)
]
, (11.2-13)

u∗
k = arg min

u

∑
x′

P u
xx′
[
Ru

xx′ + γV ∗
k+1(x

′)
]
. (11.2-14)

The backward recursion (11.2-11), (11.2-13) forms the basis for dynamic pro-
gramming (DP), which gives offline methods for working backward in time
to determine optimal policies. DP was discussed in Chapter 6. It is an offline
procedure for finding the optimal value and optimal policies that requires knowl-
edge of the complete system dynamics in the form of transition probabilities
P u

x,x′ = Pr{x′ |x, u} and expected costs Ru
xx′ = E{rk |xk = x, uk = u, xk+1 = x′}.

Once the optimal control has been found offline using DP, it is stored and imple-
mented on the system online forward in time.

Bellman Equation and Bellman Optimality Equation (HJB)

Dynamic programming is a backward-in-time method for finding the optimal
value and policy. By contrast, reinforcement learning is concerned with finding
optimal policies based on causal experience by executing sequential decisions
that improve control actions based on the observed results of using a current
policy. This requires the derivation of methods for finding optimal values and
optimal policies that can be executed forward in time. Here we develop the
Bellman equation, which is the basis for such methods.

To derive forward-in-time methods for finding optimal values and optimal
policies, set now the time horizon T to infinity and define the infinite-horizon
cost

Jk =
∞∑
i=0

γ irk+i =
∞∑
i=k

γ i−kri . (11.2-15)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 469

11.2 MARKOV DECISION PROCESSES 469

The associated (infinite-horizon) value function for policy π(x, u) is

V π(x) = Eπ {Jk |xk = x} = Eπ

{ ∞∑
i=k

γ i−kri |xk = x

}
. (11.2-16)

By using (11.2-8) with T = ∞ we see that the value function for policy
π(x, u) satisfies the Bellman equation

V π(x) =
∑

u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV π(x′)
]
. (11.2-17)

This equation is of extreme importance in reinforcement learning. It is important
that the same value function appears on both sides. This is due to the fact that
the infinite-horizon cost was used. Therefore, (11.2-17) can be interpreted as a
consistency equation that must be satisfied by the value function at each time
stage. The Bellman equation expresses a relation between the current value of
being in state x and the value(s) of being in the next state x ′ given that policy
π(x, u) is used.

The Bellman equation forms the basis for a family of reinforcement learning
algorithms for finding optimal policies by using causal experiences received
stagewise forward in time. In this context, the meaning of the Bellman equation
is shown in Figure 11.2-2, where V π(x) may be considered as a predicted
performance,

∑
u

π(x, u)
∑
x′

P u
xx′Ru

xx′ the observed one-step reward, and V π(x′)

1. Apply control action

2. Update predicted value to satisfy the Bellman equation

3. Improve control action

Vπ (xk) = rk + γVπ (xk+1)

γVπ (xk+1)

Vπ (xk)

Compute predicted value of current state xk

Compute current estimate of future value of next state xk+1

Observe the 1-step reward

rk

k k +1 time

FIGURE 11.2-2 Temporal difference interpretation of Bellman equation, showing how
the Bellman equation captures the action, observation, evaluation, and improvement mech-
anisms of reinforcement learning.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 470

470 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

a current estimate of future behavior. These notions are capitalized on in the
subsequent discussion of temporal difference learning, which uses them to
develop adaptive control algorithms that can learn optimal behavior online in
real-time applications.

If the MDP is finite and has N states, then the Bellman equation (11.2-17)
is a system of N simultaneous linear equations for the value V π(x) of being in
each state x given the current policy π(x, u). The optimal value satisfies

V ∗(x) = min
π

V π(x) = min
π

∑
u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV π(x′)
]
. (11.2-18)

Bellman’s optimality principle then yields the Bellman optimality equation

V ∗(x) = min
π

V π(x) = min
π

∑
u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV ∗(x′)
]
. (11.2-19)

Equivalently, under the ergodicity assumption on the Markov chains correspond-
ing to each policy, we have

V ∗(x) = min
u

∑
x′

P u
xx′
[
Ru

xx′ + γV ∗(x′)
]
. (11.2-20)

If the MDP is finite and has N states, then the Bellman optimality equation is a
system of N nonlinear equations for the optimal value V ∗(x) of being in each
state. The optimal control is given by

u∗ = arg min
u

∑
x′

P u
xx′
[
Ru

xx′ + γV ∗(x′)
]
. (11.2-21)

Though the ideas just introduced may not seem familiar to the control engineer,
it is shown in the next examples that they correspond to some familiar notions
in feedback control system theory.

Example 11.2-1. Bellman Equation for Discrete-time Linear Quadratic Regulator
(DT LQR)

This example studies the Bellman equation for the discrete-time LQR and shows that it
is closely related to ideas developed in Chapter 2.

a. MDP Dynamics for Deterministic DT Systems

Consider the discrete-time (DT) linear quadratic regulator (LQR) problem where the MDP
is deterministic and satisfies the state transition equation

xk+1 = Axk + Buk, (11.2-22)

with k the discrete time index. The associated infinite horizon performance index has
deterministic stage costs and is

Jk = 1

2

∞∑
i=k

ri = 1

2

∞∑
i=k

(
xT

i Qxi + uT
i Rui

)
. (11.2-23)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 471

11.2 MARKOV DECISION PROCESSES 471

In this example, the state space X = Rn and action space U = Rm are infinite and con-
tinuous.

b. Bellman Equation for DT LQR: The Lyapunov Equation

The performance index Jk depends on the current state xk and all future control inputs
uk, uk+1, Select a fixed stabilizing policy uk = μ(xk) and write the associated value
function as

V (xk) = 1

2

∞∑
i=k

ri = 1

2

∞∑
i=k

(
xT

i Qxi + uT
i Rui

)
. (11.2-24)

The value function for a fixed policy depends only on the initial state xk . A difference
equation equivalent to this infinite sum is given by

V (xk) = 1

2

(
xT

k Qxk + uT
k Ruk

)+ 1

2

∞∑
i=k+1

(
xT

i Qxi + uT
i Rui

)

= 1

2

(
xT

k Qxk + uT
k Ruk

)+ V (xk+1). (11.2-25)

That is, the positive definite solution V (xk) to this equation that satisfies V (0) = 0 is the
value given by (11.2-24). Equation (11.2-25) is exactly the Bellman equation (11.2-17)
for the LQR.

Assuming the value is quadratic in the state so that

Vk(xk) = 1
2 xT

k Pxk, (11.2-26)

for some kernel matrix P yields the Bellman equation form

2V (xk) = xT
k Pxk = xT

k Qxk + uT
k Ruk + xT

k+1Pxk+1, (11.2-27)

which, using the state equation, can be written as

2V (xk) = xT
k Qxk + uT

k Ruk + (Axk + Buk)
TP(Axk + Buk). (11.2-28)

Assuming a constant (that is, stationary) state feedback policy uk = μ(xk) = −Kxk for
some stabilizing gain K , we write

2V (xk) = xT
k Pxk = xT

k Qxk + xT
k KTRKxk + xT

k (A − BK)TP(A − BK)xk. (11.2-29)

Since this holds for all state trajectories, we have

(A − BK)TP(A − BK) − P + Q + KTRK = 0. (11.2-30)

This is a Lyapunov equation. That is, the Bellman equation (11.2-17) for the DT LQR is
equivalent to a Lyapunov equation. Since the performance index is undiscounted (γ = 1),
we must select a stabilizing gain K , that is, a stabilizing policy.

The formulations (11.2-25), (11.2-27), (11.2-29), (11.2-30) for the Bellman equation
are all equivalent. Note that forms (11.2-25) and (11.2-27) do not involve the system
dynamics (A, B). On the other hand, the Lyapunov equation (11.2-30) can be used only if
we know the state dynamics (A, B). Optimal controls design using matrix equations is the

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 472

472 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

standard procedure in control systems theory. Unfortunately, by assuming that (11.2-29)
holds for all trajectories and going to (11.2-30), we lose all possibility of applying any
sort of reinforcement learning algorithms to solve for the optimal control and value online
by observing data along the system trajectories. By contrast, it will be shown that by
employing the form (11.2-25) or (11.2-27) for the Bellman equation, we can devise RL
algorithms for learning optimal solutions online by using temporal difference methods.
That is, RL allows us to solve the Lyapunov equation online without knowing A or B .

c. Bellman Optimality Equation for DT LQR: The Algebraic Riccati Equation

The DT LQR Hamiltonian function is

H(xk, uk) = xT
k Qxk + uT

k Ruk + (Axk + Buk)
TP(Axk + Buk) − xT

k Pxk. (11.2-31)

This is known as the temporal difference error in MDP. A necessary condition for opti-
mality is the stationarity condition ∂H(xk, uk)/∂uk = 0, which is equivalent to (11.2-21).
Solving this yields the optimal control

uk = −Kxk = −(BTPB + R)−1BTPAxk.

Putting this into (11.2-31) yields the DT algebraic Riccati equation (ARE)

ATPA − P + Q − ATPB(BTPB + R)−1BTPA = 0. (11.2-32)

This is exactly the Bellman optimality equation (11.2-19) for the DT LQR. �

The Closed-loop Markov Chain

References for this section include (Wheeler and Narendra 1986, Bertsekas and
Tsitsiklis 1996, Luenberger 1979). Consider a finite MDP with N states. Select a
fixed stationary policy π(x, u) = Pr{u|x} Then the “closed-loop” MDP reduces
to a Markov chain with state space X . The transition probabilities of this Markov
chain are given by (11.2-2). Enumerate the states using index i = 1, . . . , N and
denote the transition probabilities (11.2-2) by pij = px=i,x′=j . Define the transi-
tion matrix P = [pij] ∈ RN×N . Denote the expected costs rij = Rπ

ij and define
the cost matrix R = [rij] ∈ RN×N . Array the scalar values of the states V (i) into
a vector V = [V (i)] ∈ RN .

With this notation, we may write the Bellman equation (11.2-17) as

V = γ PV + (P 	 R)1, (11.2-33)

where 	 is the Hadamard (element-by-element) matrix product, P 	 R =
[pijrij] ∈ RN×N is the cost-transition matrix, and 1 is the N -vector of 1’s. This
is a system of N linear equations for the value vector V of using the selected
policy.

Transition matrix P is stochastic, that is, all row sums are equal to one. If the
Markov chain is irreducible, that is, all states communicate with each other with
nonzero probability, then P has a single eigenvalue at 1 and all other eigenvalues

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 473

11.2 MARKOV DECISION PROCESSES 473

inside the unit circle (Gershgorin theorem). Then, if the discount factor is less
than one, I − γ P is nonsingular and there is a unique solution to (11.2-33) for
the value, namely V = (I − γ P)−1(P 	 R)1.

Define vector p ∈ RN as a probability distribution vector (that is, its elements
sum to 1) with element p(i) being the probability that the Markov chain is in
state i . Then, the evolution of p is given by

pT
k+1 = pT

k P, (11.2-34)

with k the time index and starting at some initial distribution p0. The solution
to this equation is

pT
k = pT

0 P k. (11.2-35)

The limiting value of this recursion is the invariant or steady-state distribution,
given by solving

pT
∞ = pT

∞P, pT
∞(I − P) = 0. (11.2-36)

Thus, p∞ is the left eigenvector of the eigenvalue λ = 1 of P . Since P has all row
sums equal one, the right eigenvector of λ = 1 is given by 1. If the Markov chain
is irreducible, the eigenvalue λ = 1 is simple, and vector p∞ has all elements
positive. That is, all states have a nonzero probability of being occupied in steady
state.

Define the average cost per stage and its value under the selected policy as

V (i) = lim
T →∞

1

T
E

(
T −1∑
k=0

rk|x0 = i

)
. (11.2-37)

Define the vector V = [V (i)] ∈ RN . Then we have

V = (P 	 R)1. (11.2-38)

Define the expected value over all the states as V = Ei{V (i)}. Then

V = pT
∞(P 	 R)1. (11.2-39)

The left eigenvector p∞ = [p(i)] for λ = 1 has received a great deal of atten-
tion in the literature about cooperative control (Jadbabaie et al. 2003, Olfati-Saber
and Murray 2004). The meaning of its elements p(i) is interesting. Element p(i)

is the probability that the Markov chain is in state i at steady state, and also the
percentage of time the Markov chain is in state i at steady state. Starting in state
i , the time at which the Markov chain first returns to state i is a random variable
known as the hitting time or first return time. Its expected value Ti is known as
the expected return time to state i . If the Markov chain is irreducible, Ti > 0, ∀i;
then p(i) = 1/Ti .

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 474

474 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT

Given a current policy π(x, u), we can determine its value (11.2-16) by solving
the Bellman equation (11.2-17). As will be discussed, there are several methods
of doing this, several of which can be implemented online in real time. This
procedure is known as policy evaluation .

Moreover, given the value function for any policy π(x, u), we can always use
it to find another policy that is better, or at least no worse. This step is known as
policy improvement . Specifically, suppose V π(x) satisfies (11.2-17). Then define
a new policy π ′(x, u) by

π ′(x, u) = arg min
u

∑
x′

P u
xx′
[
Ru

xx′ + γV π(x′)
]
. (11.3-1)

Then it is easy to show that V π ′
(x) ≤ V π(x) (Bertsekas and Tsitsiklis 1996,

Sutton and Barto 1998). The policy determined as in (11.3-1) is said to be greedy
with respect to value function V π(x).

In the special case that V π ′
(x) = V π(x) in (11.3-1), then V π ′

(x), π ′(x, u)

satisfy (11.2-20) and (11.2-21) so that π ′(x, u) = π(x, u) is the optimal policy
and V π ′

(x) = V π(x) the optimal value. That is, (only) an optimal policy is
greedy with respect to its own value. In computational intelligence, greedy refers
to quantities determined by optimizing over short or 1-step horizons, without
regard to potential impacts far into the future.

Now let us consider algorithms that repeatedly interleave the two procedures.

Policy evaluation by Bellman equation:

V π(x) =
∑

u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV π(x′)
]
, for all x ∈ S ⊆ X. (11.3-2)

Policy improvement:

π ′(x, u) = arg min
u

∑
x′

P u
xx′
[
Ru

xx′ + γV π(x′)
]
, for all x ∈ S ⊆ X. (11.3-3)

S is a suitably selected subspace of the state space, to be discussed later. We call
an application of (11.3-2) followed by an application of (11.3-3) one step. This
is in contrast to the decision time stage k defined above.

At each step of such algorithms, one obtains a policy that is no worse than
the previous policy. Therefore, it is not difficult to prove convergence under
fairly mild conditions to the optimal value and optimal policy. Most such proofs
are based on the Banach fixed-point theorem. Note that (11.2-20) is a fixed-
point equation for V ∗(·). Then the two equations (11.3-2), (11.3-3) define an
associated map that can be shown under mild conditions to be a contraction
map (Bertsekas and Tsitsiklis 1996 and Powell 2007). Then, it converges to the
solution of (11.2-20) for any initial policy.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 475

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT 475

There is a large family of algorithms that implement the policy evaluation and
policy improvement procedures in various ways, or interleave them differently,
or select subspace S ⊆ X in different ways, to determine the optimal value and
optimal policy. We shall soon outline some of them.

The importance for feedback control systems of this discussion is that these
two procedures can be implemented for dynamical systems online in real time
by observing data measured along the system trajectories. This yields a family
of adaptive control algorithms that converge to optimal control solutions. These
algorithms are of the actor–critic class of reinforcement learning systems, shown
in Figure 11.1-1. There, a critic agent evaluates the current control policy using
methods based on (11.3-2). After this has been completed, the action is updated
by an actor agent based on (11.3-3).

Policy Iteration

One method of reinforcement learning for using (11-3.2), (11-3.3) to find the
optimal value and optimal policy is policy iteration (PI).

POLICY ITERATION (PI) ALGORITHM

Initialize.

Select an initial policy π0(x, u). Do for j = 0 until convergence:

Policy evaluation (value update):

Vj(x) =
∑

u

πj(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γVj(x
′)
]
, for all x ∈ X. (11.3-4)

Policy improvement (policy update):

πj+1(x, u) = arg min
u

∑
x′

P u
xx′
[
Ru

xx′ + γVj(x
′)
]
, for all x ∈ X. (11.3-5)

At each step j the PI algorithm determines the solution of the Bellman equation
(11.3-4) to compute the value Vj(x) of using the current policy πj(x, u). This
value corresponds to the infinite sum (11.2-16) for the current policy. Then the
policy is improved using (11.3-5). The steps are continued until there is no change
in the value or the policy.

Note that j is not the time or stage index k , but a PI step iteration index.
It will be seen how to implement PI for dynamical systems online in real time
by observing data measured along the system trajectories. Generally, data for
multiple times k is needed to solve the Bellman equation (11.3-4) at each step j .

If the MDP is finite and has N states, then the policy evaluation equation
(11.3-4) is a system of N simultaneous linear equations, one for each state. The
PI algorithm must be suitably initialized to converge. The initial policy π0(x, u)

and value V0 must be selected so that V1 ≤ V0. Then, for finite Markov chains

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 476

476 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

with N states, PI converges in a finite number of steps (less than or equal to N)
because there are only a finite number of policies.

The Bellman equation (11.3-4) is a system of simultaneous equations. Instead
of directly solving the Bellman equation, we can solve it by an iterative policy
evaluation procedure. Note that (11.3-4) is a fixed-point equation for Vj(·). It
defines the iterative policy evaluation map

V i+1
j (x) =

∑
u

πj(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γV i
j (x′)

]
, i = 1, 2, . . . (11.3-6)

which can be shown to be a contraction map under rather mild conditions. By the
Banach fixed-point theorem the iteration can be initialized at any non-negative
value of V 1

j (·) and it will converge to the solution of (11.3-4). Under certain
conditions, this solution is unique. A good initial value choice is the value func-
tion Vj−1(·) from the previous step j − 1. On (close enough) convergence, we
set Vj(·) = V i

j (·) and proceed to apply (11.3-5).
Index j in (11.3-6) refers to the step number of the PI algorithm. By contrast

i is an iteration index. It is interesting to compare iterative policy evaluation
(11.3-6) to the backward-in-time recursion (11.2-9) for the finite-horizon value.
In (11.2-9), k is the time index. By contrast, in (11.3-6), i is an iteration index.
Dynamic programming is based on (11.2-9) and proceeds backward in time. The
methods for online optimal adaptive control described in this chapter proceed
forward in time and are based on PI and similar algorithms.

The usefulness of these concepts is shown in the next example, where we
use the theory of MDP and iterative policy evaluation to derive the relaxation
algorithm for solution of Poisson’s equation.

Example 11.3-1. Solution of Partial Differential Equations: Relaxation Algorithms

Consider Poisson’s equation in two dimensions

�V (x, y) = ∇2V (x, y) =
(

∂2

∂x2
+ ∂2

∂y2

)
V (x, y) = f (x, y), (11.3-7)

where � = ∇2 is the Laplacian operator and ∇ the gradient. Function f (x, y) is a forcing
function, often specified on the boundary of a region. Discretizing the equation on a
uniform mesh as shown in Figure 11.3-1 with grid size h in the (x, y) plane we write in
terms of the forward difference

∂V (x, y)

∂x
= 1

h
(V (x + h, y) − V (x, y)) + O(h),

∂2V (x, y)

∂x2
= 1

h2
(V (x + h, y) + V (x − h, y) − 2V (x, y)) + O(h2),

(
∂2

∂x2
+ ∂2

∂x2

)
V (x, y) = 1

h2
(V (x + h, y) + V (x − h, y) + V (x, y + h)

+ V (x, y − h) − 4V (x, y)) ≈ f (x, y).

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 477

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT 477

FIGURE 11.3-1 Sampling in the (x , y) plane with a uniform mesh of size h .

Indexing the (x, y) positions with an index i and denoting Xi = (xi, yi) we have approx-
imately to order h2

1

h2

(
V (Xi,R) + V (Xi,L) + V (Xi,u) + V (Xi,D) − 4V (Xi)

) = f (Xi), (11.3-8)

for states not on the boundary and a similar equation for boundary states. Xi,R denotes
the (x, y) location of the state to the right of Xi , and similarly for states to the left, up,
and down relative to Xi . This is a set of N simultaneous equations.

We can interpret (11.3-8) as a Bellman equation (11.2-17) for a properly defined
underlying MDP. Specifically, define an MDP with stage costs equal to zero and γ = 1.
Then, we may interpret the state transitions as deterministic and the control as the equi-
probable control with probabilities of 1/4 (for nonboundary nodes) for moving up, right,
down, and left. Alternatively, we may interpret the control as deterministic and the state
transition probabilities as equi-probable with probabilities of 1/4 for moving up, right,
down, and left. In either case, the Bellman equation for the MDP is (11.3-8). Functions
f (Xi) may be interpreted as stage costs.

Now the iterative policy evaluation method of solution (11.3-6) performs the iterations

V m+1(Xi) = 1
4V m(Xi,U) + 1

4V m(Xi,R) + 1
4 V m(Xi,D) + 1

4 V m(Xi,L) − h2

4 f (Xi).

(11.3-9)

The theory of MDP guarantees that this algorithm will converge to the solution of
(11.3-8). These updates may be done for all nodes or states simultaneously. Then, this
is nothing but the relaxation method for numerical solution of Poisson’s equation. The
relaxation algorithm converges, but may do so slowly. Variants have been developed to
speed it up. �

Value Iteration

A second method for using (11.3-2), (11.3-3) in reinforcement learning is value
iteration (VI), which is easier to implement than policy iteration.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 478

478 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

VALUE ITERATION (VI) ALGORITHM

Initialize.

Select an initial policy π0(x, u). Do for j = 0 until convergence—

Value update:

Vj+1(x) =
∑

u

πj(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γVj(x
′)
]
, for all x ∈ Sj ⊆ X.

(11.3-10)

Policy improvement:

πj+1(x, u) = arg min
u

∑
x′

P u
xx′
[
Ru

xx′ + γVj+1(x
′)
]
, for all x ∈ Sj ⊆ X.

(11.3-11)
We may combine the value update and policy improvement into one equation to
obtain the equivalent form for VI

Vj+1(x) = min
π

∑
u

π(x, u)
∑
x′

P u
xx′
[
Ru

xx′ + γVj(x
′)
]
, for all x ∈ Sj ⊆ X.

(11.3-12)
or, equivalently under the ergodicity assumption, in terms of deterministic
policies

Vj+1(x) = min
u

∑
x′

P u
xx′
[
Ru

xx′ + γVj(x
′)
]
, for all x ∈ Sj ⊆ X. (11.3-13)

Note that, now, (11.3-10) is a simple one-step recursion, not a system of linear
equations as is (11.3-4) in the PI algorithm. In fact, VI uses simply one iteration
of (11.3-6) in its value update step. It does not find the value corresponding to
the current policy, but takes only one iteration toward that value. Again, j is not
the time index, but the VI step index.

It will be seen later how to implement VI for dynamical systems online in
real time by observing data measured along the system trajectories. Generally,
data for multiple times k is needed to solve the update (11.3-10) for each step j .

Asynchronous Value Iteration. Standard VI takes the update set as Sj = X,

for all j . That is, the value and policy are updated for all states simultaneously.
Asynchronous VI methods perform the updates on only a subset of the states at
each step. In the extreme case, one may perform the updates on only one state
at each step.

It is shown in Bertsekas and Tsitsiklis (1996) that standard VI (Sj = X,

for all j) converges for finite MDP for any initial conditions when the discount
factor satisfies 0 < γ < 1. When Sj = X, for all j and γ = 1 an absorbing state
is added and a “properness” assumption is needed to guarantee convergence to

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 479

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT 479

the optimal value. When a single state is selected for value and policy updates at
each step, the algorithm converges, for any choice of initial value, to the optimal
cost and policy if each state is selected for update infinitely often. More general
algorithms result if value update (11.3-10) is performed multiple times for var-
ious choices of Sj prior to a policy improvement. Then updates (11.3-10) and
(11.3-11) must be performed infinitely often for each state, and a monotonicity
assumption must be satisfied by the initial starting value.

Considering (11.2-20) as a fixed-point equation, VI is based on the associated
iterative map (11.3-10), (11.3-11), which can be shown under certain conditions to
be a contraction map. In contrast to PI, which converges under certain conditions
in a finite number of steps, VI generally takes an infinite number of steps to
converge (Bertsekas and Tsitsiklis 1996). Consider finite MDP and consider the
transition probability graph having probabilities (11.2-2) for the Markov chain
corresponding to an optimal policy π∗(x, u). If this graph is acyclic for some
π∗(x, u), then VI converges in at most N steps when initialized with a large value.

Having in mind the dynamic programming equation (11.2-9) and examining
the VI value update (11.3-10), we can interpret Vj(x

′) as an approximation or
estimate for the future stage cost-to-go from the future state x′. See Figure 11.2-2.
Those algorithms wherein the future cost estimate are themselves costs or values
for some policy are called rollout algorithms in Bertsekas and Tsitsiklis (1996).
These policies are forward looking and self-correcting. They are closely related
to receding horizon control, as shown in Zhang et al. (2009).

MDP, policy iteration, and value iteration provide connections between opti-
mal control, decisions on finite graphs, and cooperative control of networked
systems, as amplified in the next examples. The first example shows how to use
VI to derive the Bellman Ford algorithm for finding the shortest path in a graph
to a destination node. The second example uses MDP and iterative policy eval-
uation to develop control protocols familiar in cooperative control of distributed
dynamical systems. The third example shows that for the discrete-time LQR,
policy iteration and value iteration can be used to derive algorithms for solution
of the optimal control problem that are quite familiar in the feedback control
systems community, including Hewer’s algorithm.

Example 11.3-2. Deterministic Shortest Path Problems: The Bellman Ford Algorithm

A special case of finite MDP is the shortest path problems (Bertsekas and Tsitsiklis 1996),
which are undiscounted γ = 1, and have a cost-free termination or absorbing state. These
effectively have the time horizon T finite since the number of states is finite. The setup
is shown in Figure 11.3-2.

Consider a directed graph G = (V , E) with a nonempty finite set of N nodes V =
{v1, . . . , vN } and a set of edges or arcs E ⊆ V × V . We assume the graph is simple,
that is, it has no repeated edges and (vi , vi) /∈ E,∀i no self-loops. Let the edges have
weights eij ≥ 0, with eij > 0 if (vi , vj) ∈ E and eij = 0 otherwise. Note eii = 0. The set
of neighbors of a node vi is Ni = {vj : (vi , vj) ∈ E}, that is, the set of nodes with arcs
coming out from vi .

Consider an agent moving through the graph along edges between nodes. Interpret
the control at each node as the decision on which edge to follow leading out of that

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 480

480 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

1

3

5
6

4

0

2

e12

e10

e24

FIGURE 11.3-2 Sample graph for shortest path routing problem. The absorbing state
0 has only incoming edges. The objective is to find the shortest path from all nodes to
node 0 using only local neighborhood computations.

node. Assume deterministic controls and state transitions. Interpret the edge weights eij as
deterministic costs incurred by moving along that link. Then, the value iteration algorithm
(11.3-13), (11.3-11) in this general digraph is

Vi(k + 1) = min
j∈Ni

(eij + Vj(k)), (11.3-14)

ui(k + 1) = arg min
j∈Ni

(eij + Vj(k)), (11.3-15)

with k an iteration index. We have changed the notation to conform to existing practice in
cooperative control theory. Endow the graph with one node, v0, which uses as its update
law V0(k + 1) = V0(k) = 0. This corresponds to an absorbing state in MDP parlance. It
is interpreted as a node having only incoming edges, none outgoing.

The VI algorithm in this scenario is nothing but the Bellman-Ford algorithm, which
finds the shortest path from any node in the graph to the absorbing node v0. In the
terminology of cooperative systems, each node vi is endowed with two state variables.
The node state variable Vi(k) keeps track of the value, that is, the shortest path length to
node v0, while node state variable ui(k) keeps track of which direction to follow while
leaving the i th node in order to follow the shortest path.

The VI update iterations may be performed on all nodes simultaneously. Alternatively,
updates may be performed on one state at a time, as in asynchronous VI. With simulta-
neous updates at all nodes, according to results about VI (Bertsekas and Tsitsiklis 1996)
it is known that this algorithm converges to the solution to the shortest path problem in a
finite number of steps (less than or equal to N) if there is a path from every node to node
v0 and the graph is acyclic. It is known further that the algorithm converges, possibly
in an infinite number of iterations, if there are no cycles with net negative gain (that
is, the product of gains around the cycle is not negative). With asynchronous updates,
the algorithm converges under these connectivity conditions if each node is selected for
update infinitely often.

What Is a State?

Note that in the terminology of MDP, the nodes are termed states, so that the state space
is finite. On the other hand, in the terminology of feedback control systems theory, the

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 481

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT 481

state (variable) of each node is Vi(m), which is a real number so that the state space is
continuous. �

Example 11.3-3. Cooperative Control Systems

Consider the directed graph G = (V , E) with N nodes V = {v1, . . . , vN } and edge weights
eij ≥ 0, with eij > 0 if (vi , vj) ∈ E and eij = 0 otherwise. The set of neighbors of a node
vi is Ni = {vj: (vi , vj) ∈ E}, that is, the set of nodes with arcs coming out from vi . Define
the out-degree of node i in graph G as di = ∑

j∈Ni

eij. Figure 11.3-3 shows a representative

graph topology.

0

(a) (b)

j

i

FIGURE 11.3-3 Cooperative control of multiple systems linked by a communication
graph structure. The objective is for all nodes to reach consensus to the value of control
node 0 by using only local neighborhood communication. (a) Representative graph struc-
ture. (b) Local neighborhood of node i . Each node has edges incoming and outgoing. The
outgoing edges show the states reached from node i in one step.

On the graph G , define a MDP that has a stochastic policy π(vi , uij) = Pr{uij|vi},
where uij means the control action that takes the MDP from node vi to node vj. Let the
transition probabilities be deterministic. Endow the graph with one absorbing node v0 that
is connected to a few of the existing nodes. If there is an edge from node vi to node v0,
define bi ≡ ei0 as its edge weight. Let actions uij have probabilities uii = 1/(1 + di + bi),
uij = eij/(1 + di + bi), that is, the MDP may return to the same state in one step. Let the
stage costs all be zero. Then, the Bellman equation (11.2-17) is

Vi = 1

1 + di + bi

⎡
⎣Vi +

∑
j∈Ni

eijVj + biV0

⎤
⎦ , (11.3-16)

where Vi is the value of node vi . This is a set of N simultaneous equations in the values
Vi, i = 1, N of the nodes.

Iterative policy evaluation (11.3-6) can be used to solve this set of equations. The
iterative policy evaluation algorithm is written here as

Vi(k + 1) = 1

1 + di + bi

⎡
⎣Vi(k) +

∑
j∈Ni

eijVj(k) + biV0

⎤
⎦ , (11.3-17)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 482

482 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

with k the iteration index, which can be thought of here as a time index. Node v0 keeps
its value constant at V0.

The updates in (11.3-17) may be done simultaneously at all nodes. Then the theory
of MDP shows that it is guaranteed to converge to the solution of the set of equations
(11.3-16). Alternatively, one may use the theory of asynchronous VI or generalized PI to
motivate other update schemes. For instance, if only one node is updated at each value
of k , the theory of MDP shows that the algorithm still converges as long as each node is
selected for update infinitely often.

Algorithm (11.3-17) can be written as the local control protocol

Vi(k + 1) = Vi(k) + 1

1 + di + bi

⎡
⎣∑

j∈Ni

eij
(
Vj(k) − Vi(k)

)+ bi (V0 − Vi(k))

⎤
⎦ .

(11.3-18)
On convergence Vi(k + 1) = Vi(k) so that the term in square brackets converges to zero.
Assuming all nodes have a path to the absorbing node v0, it is easy to show that this
guarantees that

∥∥Vj(k) − Vi(k)
∥∥→ 0, ‖V0 − Vi(k)‖ → 0, for all i, j ; that is, all nodes

reach the same consensus value, namely the value of the absorbing node (Jadbabaie et al.
2003, Olfati-Saber and Murray 2004).

The term in square brackets in (11.3-18) is known as the temporal difference error for
this MDP.

Routing Graph vs. Control Graph

The graphs used in routing problems have edges from node i to node j if the transition
probabilities (11.2-2) in the MDP using a fixed policy π(xi, u), namely pij ≡ P π

xi ,xj
=∑

u

π(xi , u)P u
xi ,xj

, are nonzero. The edge weights are taken as eij = pij. Then, eij is nonzero

if there is an edge coming out of node i to node j . By contrast, the edge weights aij for
graphs in cooperative control problems are generally taken as nonzero if there is an edge
coming in from node j to node i, that is, aij > 0 iff (vj, vi) ∈ E This is interpreted to mean
that information from node j is available to node i for its decision process in computing
its control input.

It is convenient to think of the former as motion or routing graphs, and the latter as
information flow or decision and control graphs. In fact, the routing graph is the reverse of
the decision graph. The reverse graph of a given graph G = (V , E) is the graph with the
same node set, but all edges reversed. Note that the Bellman-Ford protocols (11.3-14),
(11.3-15) assume that node i gets information from its neighbor node j , but that the
shortest path problem is, in fact, solved for motion in the reverse graph having edges eij.

Define the matrix of transition probabilities P = [pij] and the adjacency matrix A =
[aij]. Then A = P T. �

Example 11.3-4. Policy Iteration and Value Iteration for the DT LQR

The Bellman equation (11.2-17) is equivalent for the DT LQR to all the formulations
(11.2-25), (11.2-27), (11.2-29), (11.2-30) in Example 11.2-1. We may use any of these to
implement policy iteration and value iteration.

a. Policy Iteration: Hewer’s Algorithm

With step index j , and using superscripts to denote algorithm steps and subscripts
to denote the time k , the PI policy evaluation step (11.3-4) applied on (11.2-25) in

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 483

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT 483

Example 11.2-1 yields

V j+1(xk) = 1
2

(
xT

k Qxk + uT
k Ruk

)+ V j+1(xk+1). (11.3-19)

PI applied on (11.2-27) yields

xT
k P j+1xk = xT

k Qxk + uT
k Ruk + xT

k+1P
j+1xk+1, (11.3-20)

and PI on (11.2-30) yields the Lyapunov equation

0 = (A − BKj)TP j+1(A − BKj) − P j+1 + Q + (Kj)TRKj . (11.3-21)

In all cases the PI policy improvement step is

μj+1(xk) = Kj+1xk = arg min(xT
k Qxk + uT

k Ruk + xT
k+1P

j+1xk+1), (11.3-22)

which can be written explicitly as

Kj+1 = −(BTP j+1B + R)−1BTP j+1A. (11.3-23)

PI algorithm format (11.3-21), (11.3-23) relies on repeated solutions of Lyapunov
equations at each step, and is nothing but Hewer’s algorithm, well known in control
systems theory. It was proven in Hewer (1971) to converge to the solution of the Riccati
equation (11.2-32) in Example 11.2-1 if (A, B) is reachable and (A,

√
Q) is observable.

It is an offline algorithm that requires complete knowledge of the system dynamics (A, B)

to find the optimal value and control. It requires that the initial gain K0 be stabilizing.

b. Value Iteration: Lyapunov Recursions

Applying VI (11.3-10) to Bellman equation format (11.2-27) in Example 11.2-1 yields

xT
k P j+1xk = xT

k Qxk + uT
k Ruk + xT

k+1P
jxk+1, (11.3-24)

and on format (11.2-30) in Example 11.2-1 yields the Lyapunov recursion

P j+1 = (A − BKj)TP j (A − BKj) + Q + (Kj)TRKj . (11.3-25)

In both cases the policy improvement step is still given by (11.3-22), (11.3-23).
VI algorithm format (11.3-25), (11.3-23) is simply a Lyapunov recursion, which is

easy to implement and does not, in contrast to PI, require Lyapunov equation solutions.
This algorithm was shown in Lancaster and Rodman (1995) to converge to the solution of
the Riccati equation (11.2-32) in Example 11.2-1. It is an offline algorithm that requires
complete knowledge of the system dynamics (A, B) to find the optimal value and control.
It does not require that the initial gain K0 be stabilizing, and can be initialized with any
feedback gain.

c. Online Solution of the Riccati Equation without Knowing Plant Matrix A

Hewer’s algorithm and the Lyapunov recursion algorithm are both offline methods for
solving the algebraic Riccati equation (11.2-32) in Example 11.2-1. Full knowledge of the

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 484

484 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

plant dynamics (A, B) is needed to implement these algorithms. By contrast, it will be seen
that both PI Algorithm format (11.3-20), (11.3-22) and VI Algorithm format (11.3-24),
(11.3-22) can be implemented online to determine the optimal value and control in real
time using data measured along the system trajectories, and without knowing the system
A matrix. This is accomplished through the temporal difference methods to be presented.
That is, RL allows the solution of the algebraic Riccati equation online without knowing
the system A matrix.

d. Iterative Policy Evaluation

Given a fixed policy K , the iterative policy evaluation procedure (11.3-6) becomes

P j+1 = (A − BK)TP j (A − BK) + Q + KTRK. (11.3-26)

This recursion converges to the solution to the Lyapunov equation P = (A − BK)T

P(A − BK) + Q + KTRK if (A − BK) is stable, for any choice of initial value P 0. �

Generalized Policy Iteration

In PI one fully solves the system of linear equations (11.3-4) at each step to
compute the value (11.2-16) of using the current policy πj(x, u). This can be
accomplished by running iterations (11.3-6) until convergence at each step j . By
contrast, in VI one takes only one iteration of (11.3-6) in the value update step
(11.3-10). Generalized policy iteration (GPI) algorithms make several iterations
(11.3-6) in their value update step.

Generally, PI converges to the optimal value in fewer steps j , since it does
more work in solving equations at each step. On the other hand, VI is the eas-
iest to implement as it takes only one iteration of a recursion as per (11.3-10).
GPI provides a suitable compromise between computational complexity and con-
vergence speed. GPI is a special case of the VI algorithm given above, where
we select Sj = X, for all j and perform value update (11.3-10) multiple times
before each policy update (11.3-11).

Q Function

The conditional expected value in (11.2-13)

Q∗
k(x, u) =

∑
x′

P u
xx′
[
Ru

xx′ + γV ∗
k+1(x

′)
] = Eπ {rk + γV ∗

k+1(x
′)|xk = x, uk = u}.

(11.3-27)

is known as the optimal Q (quality) function (Watkins 1989, Watkins and Dayan
1992). This has also been called the action-value function (Sutton and Barto
1998). It is equal to the expected return for taking an arbitrary action u at time
k in state x and thereafter following an optimal policy. It is a function of the
current state x and the action u .

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 485

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT 485

In terms of the Q function, the Bellman optimality equation has the particularly
simple form

V ∗
k (x) = min

u
Q∗

k(x, u), (11.3-28)

u∗
k = arg min

u

Q∗
k(x, u). (11.3-29)

Given any fixed policy π(x, u), define the Q function for that policy as

Qπ
k (x, u) =Eπ {rk + γV π

k+1(x
′)|xk = x, uk = u}=

∑
x′

P u
xx′
[
Ru

xx′ + γV π
k+1(x

′)
]
,

(11.3-30)

where we have used (11.2-9). This is equal to the expected return for taking an
arbitrary action u at time k in state x and thereafter following the existing policy
π(x, u). The meaning of the Q function is elucidated by the next example.

Example 11.3-5. Q Function for the DT LQR

The Q function following a given policy uk = μ(xk) is defined in (11.3-30). For the DT
LQR in Example 11.2-1 the Q function is

Q(xk, uk) = 1
2

(
xT

k Qxk + uT
k Ruk

)+ V (xk+1), (11.3-31)

where the control uk is arbitrary and the policy uk = μ(xk) is followed for k + 1 and
subsequent times. Writing

Q(xk, uk) = xT
k Qxk + uT

k Ruk + (Axk + Buk)
TP(Axk + Buk), (11.3-32)

with P the Riccati solution yields the Q function for the DT LQR:

Q(xk, uk) = 1

2

[
xk

uk

]T [
ATPA + Q BTPA

ATPB BTPB + R

][
xk

uk

]
. (11.3-33)

Define

Q(xk, uk) ≡ 1

2

[
xk

uk

]T

S

[
xk

uk

]
= 1

2

[
xk

uk

]T [
Sxx Sxu

Sux Suu

][
xk

uk

]
, (11.3-34)

for kernel matrix S .
Applying ∂Q(xk, uk)/∂uk = 0 to (11.3-34) yields

uk = −S−1
uu Suxxk, (11.3-35)

and to (11.3-33) yields

uk = −(BTPB + R)−1BTPAxk. (11.3-36)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 486

486 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

The latter equation requires knowledge of the system dynamics (A, B) to perform the
policy improvement step of either PI or VI. On the other hand, the former equation
requires knowledge only of the Q-function matrix kernel S . We shall subsequently show
how to use RL temporal difference methods to determine the kernel matrix S online in
real time without knowing the system dynamics (A, B) using data measured along the
system trajectories. This provides a family of Q learning algorithms that can solve the
algebraic Riccati equation online without knowing the system dynamics (A, B). �

Note that V π
k (x) = Qπ

k (x, π(x, u)) so that (11.3-30) may be written as the
backward recursion in the Q function:

Qπ
k (x, u) =

∑
x′

P u
xx′
[
Ru

xx′ + γQπ
k+1(x

′, π(x′, u′))
]
. (11.3-37)

The Q function is a 2-dimensional function of both the current state x and the
action u . By contrast, the value function is a 1-dimensional function of the state.
For finite MDP, the Q function can be stored as a 2-D lookup table at each
state/action pair. Note that direct minimization in (11.2-11), (11.2-12) requires
knowledge of the state transition probabilities P u

xx′ (system dynamics) and costs
Ru

xx′ . By contrast, the minimization in (11.3-28), (11.3-29) requires knowledge
only of the Q function and not the system dynamics.

The importance of the Q function is twofold. First, it contains information
about control actions in every state. As such, the best control in each state
can be selected using (11.3-29) by knowing only the Q function. Second, the
Q function can be estimated online in real time directly from data observed
along the system trajectories, without knowing the system dynamics information
(that is, the transition probabilities). We shall see how this is accomplished later.

The infinite horizon Q function for a prescribed fixed policy is given by

Qπ(x, u) =
∑
x′

P u
xx′
[
Ru

xx′ + γV π(x′)
]
. (11.3-38)

The Q function also satisfies a Bellman equation. Note that, given a fixed policy
π(x, u),

V π(x) = Qπ(x, π(x, u)), (11.3-39)

whence according to (11.3-38) the Q function satisfies the Bellman equation

Qπ(x, u) =
∑
x′

P u
xx′
[
Ru

xx′ + γQπ(x′, π(x′, u′))
]
. (11.3-40)

It is important that the same Q function Qπ appears on both sides of this equation.
The Bellman optimality equation for the Q function is

Q∗(x, u) =
∑
x′

P u
xx′
[
Ru

xx′ + γQ∗(x′, π∗(x′, u′))
]
, (11.3-41)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 487

11.3 POLICY EVALUATION AND POLICY IMPROVEMENT 487

Q∗(x, u) =
∑
x′

P u
xx′

[
Ru

xx′ + γ min
u′ Q∗(x′, u′)

]
. (11.3-42)

Compare (11.2-20) and (11.3-42), where the minimum operator and the expected
value operator occurrences are reversed.

Based on Bellman equation (11.3-40), PI and VI are especially easy to imple-
ment in terms of the Q function, as follows.

PI USING Q FUNCTION

Policy evaluation (value update):

Qj(x, u) =
∑
x′

P u
xx′
[
Ru

xx′ + γQj(x
′, πj(x

′, u′))
]
, for all x ∈ X. (11.3-43)

Policy improvement:

πj+1(x, u) = arg min
u

Qj(x, u), for all x ∈ X. (11.3-44)

VI USING Q FUNCTION

Value update:

Qj+1(x, u) =
∑
x′

P u
xx′
[
Ru

xx′ + γQj(x
′, πj(x

′, u′))
]
, for all x ∈ Sj ⊆ X.

(11.3-45)

Policy improvement:

πj+1(x, u) = arg min
u

Qj+1(x, u), for all x ∈ Sj ⊆ X. (11.3-46)

Combining both steps of VI yields the form

Qj+1(x, u) =
∑
x′

P u
xx′

[
Ru

xx′ + γ min
u′ Qj(x

′, u′)
]

, for all x ∈ Sj ⊆ X,

(11.3-47)
which should be compared to (11.3-13)

As shall be seen, the importance of the Q function is that these algorithms can
be implemented online in real time, without knowing the system dynamics, by
measuring data along the system trajectories. They yield optimal adaptive control
algorithms—that is, adaptive control algorithms that converge online to optimal
control solutions.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 488

488 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

Methods for Implementing PI and VI

There are different methods for performing the value and policy updates for PI
and VI (Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998, Powell 2007). The
main three are exact computation, Monte Carlo methods, and temporal difference
(TD) learning. The last two methods can be implemented without knowledge of
the system dynamics. TD learning is the means by which optimal adaptive control
algorithms may be derived for dynamical systems. Therefore, TD is covered in
the next section.

Exact computation. PI requires solution at each step of Bellman equation
(11.3-4) for the value update. For a finite MDP with N states, this is a set of
linear equations in N unknowns (the values of each state). VI requires perform-
ing the one-step recursive update (11.3-10) at each step for the value update.
Both of these can be accomplished exactly if we know the transition probabili-
ties P u

x,x′ = Pr{x′ |x, u} and costs Ru
xx′ of the MDP. This corresponds to knowing

full system dynamics information. Likewise, the policy improvements (11.3-5),
(11.3-11) can be explicitly computed if the dynamics are known. It was shown
in Example 11.2-1 that, for the DT LQR, the exact computation method for
computing the optimal control yields the Riccati equation solution approach.
As shown in Example 11.3-4, PI and VI boil down to repetitive solutions of
Lyapunov equations or Lyapunov recursions. In fact, PI becomes nothing but
Hewer’s method (Hewer 1971), and VI becomes a well-known Lyapunov recur-
sion scheme that was shown to converge in Lancaster and Rodman (1995). These
are offline methods relying on matrix equation solutions and requiring complete
knowledge of the system dynamics.

Monte Carlo learning is based on the definition (11.2-16) for the value func-
tion, and uses repeated measurements of data to approximate the expected value.
The expected values are approximated by averaging repeated results along sam-
ple paths. An assumption on the ergodicity of the Markov chain with transition
probabilities (11.2-2) for the given policy being evaluated is implicit. This is
suitable for episodic tasks, with experience divided into episodes (Sutton and
Barto 1998)—namely, processes that start in an initial state and run until termi-
nation, and are then restarted at a new initial state. For finite MDP, Monte Carlo
methods converge to the true value function if all states are visited infinitely
often. Therefore, to ensure good approximations of value functions, the episode
sample paths must go through all the states x ∈ X many times. This is called the
problem of maintaining exploration. There are several ways of ensuring this, one
of which is to use exploring starts , in which every state has nonzero probability
of being selected as the initial state of an episode.

Monte Carlo techniques are useful for dynamic systems control because the
episode sample paths can be interpreted as system trajectories beginning in a
prescribed initial state. However, no updates to the value function estimate or the
control policy are made until after an episode terminates. In fact, Monte Carlo
learning methods are closely related to repetitive or iterative learning control
(ILC) (Moore 1993). They do not learn in real time along a trajectory, but learn
as trajectories are repeated.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 489

11.4 TEMPORAL DIFFERENCE LEARNING AND OPTIMAL ADAPTIVE CONTROL 489

11.4 TEMPORAL DIFFERENCE LEARNING AND OPTIMAL
ADAPTIVE CONTROL

The temporal difference (TD) method (Sutton and Barto 1998) for solving Bell-
man equations leads to a family of optimal adaptive controllers—that is, adaptive
controllers that learn online the solutions to optimal control problems without
knowing the full system dynamics. TD learning is true online reinforcement
learning, wherein control actions are improved in real time based on estimating
their value functions by observing data measured along the system trajectories. In
the context of TD learning, the interpretation of the Bellman equation is shown
in Figure 11.2-2, where V π(x) may be considered a predicted performance,∑
u

π(x, u)
∑
x′

P u
xx′Ru

xx′ , the observed one-step reward, and V π(x′) a current esti-

mate of future behavior.

Temporal Difference Learning along State Trajectories

PI requires solution at each step of N linear equations (11.3-4). VI requires
performing the recursion (11.3-10) at each step. Temporal difference RL meth-
ods are based on the Bellman equation, and solve equations such as (11.3-4)
and (11.3-10) without using systems dynamics knowledge, but using and data
observed along a single trajectory of the system. This makes them extremely
applicable for feedback control applications. TD updates the value at each time
step as observations of data are made along a trajectory. Periodically, the new
value is used to update the policy. TD methods are related to adaptive control in
that they adjust values and actions online in real time along system trajectories.

TD methods can be considered to be stochastic approximation techniques,
whereby the Bellman equation (11.2-17), or its variants (11.3-4), (11.3-10), is
replaced by its evaluation along a single sample path of the MDP. This turns the
Bellman equation, into a deterministic equation, which allows the definition of a
so-called temporal difference error .

Equation (11.2-9) was used to write the Bellman equation (11.2-17) for the
infinite-horizon value (11.2-16). According to (11.2-7)–(11.2-9), an alternative
form for the Bellman equation is

V π(xk) = Eπ {rk |xk} + γEπ {V π(xk+1)|xk}. (11.4-1)

This equation forms the basis for TD learning.
Temporal difference RL uses one sample path, namely the current system

trajectory, to update the value. That is (11.4-1) is replaced by the deterministic
Bellman equation

V π(xk) = rk + γV π(xk+1), (11.4-2)

which holds for each observed data experience set (xk, xk+1, rk) at each time
stage k . This set consists of the current state xk, the observed cost incurred rk ,

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 490

490 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

and the next state xk+1. The temporal difference error is defined as

ek = −V π(xk) + rk + γV π(xk+1), (11.4-3)

and the value estimate is updated to make the temporal difference error small.
The Bellman equation can be interpreted as a consistency equation, which

holds if the current estimate for the value V π(xk) is correct. Therefore, TD
methods update the value estimate V̂ π (xk) to make the TD error small. The
idea is that if the deterministic version of Bellman’s equation is used repeatedly,
then on average one will converge toward the solution of the stochastic Bellman
equation.

11.5 OPTIMAL ADAPTIVE CONTROL FOR DISCRETE-TIME
SYSTEMS

A family of optimal adaptive control algorithms can now be developed for
dynamical systems. Physical analysis of dynamical systems using Lagrangian
mechanics, Hamiltonian mechanics, etc. produces system descriptions in terms
of nonlinear ordinary differential equations. Discretization yields nonlinear dif-
ference equations. The bulk of research in RL has been conducted for systems
that operate in discrete time (DT). Therefore, we cover DT dynamical systems
first, then continuous-time systems.

TD learning is a stochastic approximation technique based on the deterministic
Bellman’s equation (11.4-2). Therefore, we lose little by considering deterministic
systems here. Consider a class of discrete-time systems described by deterministic
nonlinear dynamics in the affine state space difference equation form

xk+1 = f (xk) + g(xk)uk, (11.5-1)

with state xk ∈ Rn and control input uk ∈ Rm. We use this form because its
analysis is convenient. The following development can be generalized to the
general sampled-data form xk+1 = F(xk, uk).

A control policy is defined as a function from state space to control space
h(·): Rn → Rm. That is, for every state xk , the policy defines a control action

uk = h(xk). (11.5-2)

That is, a policy is simply a feedback controller.
Define a cost function that yields the value function

V h(xk) =
∞∑
i=k

γ i−kr(xi, ui) =
∞∑
i=k

γ i−k
(
Q(xi) + uT

i Rui

)
, (11.5-3)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 491

11.5 OPTIMAL ADAPTIVE CONTROL FOR DISCRETE-TIME SYSTEMS 491

with 0 < γ ≤ 1 a discount factor, Q(xk) > 0, R > 0, and uk = h(xk) a prescribed
feedback control policy. The stage cost

r(xk, uk) = Q(xk) + uT
k Ruk. (11.5-4)

is taken to be quadratic in uk to simplify developments, but can be any positive
definite function of the control. We assume the system is stabilizable on some
set � ∈ Rn; that is, there exists a control policy uk = h(xk) such that the closed-
loop system xk+1 = f (xk) + g(xk)h(xk) is asymptotically stable on �. A control
policy uk = h(xk) is said to be admissible if it is stabilizing and yields a finite
cost V h(xk) for trajectories in �.

For the deterministic DT system, the optimal value is given by Bellman’s
optimality equation

V ∗(xk) = min
h(·)
(
r(xk, h(xk)) + γV ∗(xk+1)

)
. (11.5-5)

This is just the discrete-time Hamilton-Jacobi-Bellman (HJB) equation. One then
has the optimal policy as

h∗(xk) = arg min
h(·)

(
r(xk, h(xk)) + γV ∗(xk+1)

)
. (11.5-6)

In this setup, the deterministic Bellman’s equation (11.4-2) is

V h(xk) = r(xk, uk) + γV h(xk+1) = Q(xk) + uT
k Ruk + γV h(xk+1), V

h(0) = 0.

(11.5-7)

This is nothing but a difference equation equivalent of the value (11.5-3). That
is, instead of evaluating the infinite sum (11.5-3), one can solve the difference
equation (11.5-7), with boundary condition V (0) = 0, to obtain the value of using
a current policy uk = h(xk).

The DT Hamiltonian function is

H(xk, h(xK), �Vk) = r(xk, h(xk)) + γV h(xk+1) − V h(xk), (11.5-8)

where �Vk = γVh(xk+1) − Vh(xk) is the forward difference operator. The Hamil-
tonian function captures the energy content along the trajectories of a system.
In fact, the Hamiltonian is the temporal difference error (11.4-3). The Bellman
equation requires that the Hamiltonian be equal to zero for the value associated
with a prescribed policy.

For the DT linear quadratic regulator (DT LQR) case,

xk+1 = Axk + Buk, (11.5-9)

V h(xk) = 1

2

∞∑
i=k

γ i−k
(
xT

i Qxi + uT
i Rui

)
, (11.5-10)

and the Bellman equation is written in several ways, as seen in Example 11.2-1.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 492

492 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

Policy Iteration and Value Iteration Using Temporal Difference Learning

It has been seen that two forms of reinforcement learning can be based on policy
iteration and value iteration. For TD learning, PI is written as follows in terms
of the deterministic Bellman equation.

POLICY ITERATION USING TD LEARNING

Initialize.

Select any admissible control policy h0(xk). Do for j = 0 until convergence—

Policy evaluation:

Vj+1(xk) = r(xk, hj(xk)) + γVj+1(xk+1). (11.5-11)

Policy improvement:

hj+1(xk) = arg min
h(.)

(
r(xk, h(xk)) + γVj+1(xk+1)

)
, (11.5-12)

or equivalently
hj+1(xk) = −γ

2
R−1gT(xk)∇Vj+1(xk+1), (11.5-13)

where ∇V (x) = ∂V (x)/∂x is the gradient of the value function, interpreted here
as a column vector.

VI is similar, but the policy evaluation procedure is performed as follows.

VALUE ITERATION USING TD LEARNING

Value update step:

Update the value using

Vj+1(xk) = r(xk, hj(xk)) + γVj(xk+1). (11.5-14)

Also, in VI we may select any initial control policy h0(xk), not necessarily
admissible or stabilizing.

It has been shown in Example 11.2-1 that for DT LQR the Bellman equation
(11.5-7) is nothing but a linear Lyapunov equation and that (11.5-5) is the DT
algebraic Riccati equation (ARE). In Example 11.3-4 it was seen that for the
DT LQR the policy evaluation step (11.5-11) in PI is a Lyapunov equation
and PI exactly corresponds to Hewer’s algorithm (Hewer 1971) for solving the
DT ARE. Hewer proved that it converges under stabilizability and detectability
assumptions. For DT LQR, VI is a Lyapunov recursion, which has been shown
to converge to the solution to the DT ARE under the stated assumptions by
(Lancaster and Rodman 1995).

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 493

11.5 OPTIMAL ADAPTIVE CONTROL FOR DISCRETE-TIME SYSTEMS 493

Value update using Bellman equation

Use RLS until convergence

Vj+1(xk) = r (xk, hj (xk)) + γVj+1(xk+1)

Control policy update
Reward/Response
from
environment

System outputControl action

hj+1(xk) = arg min (r (xk, uk) + γVj+1(xk+1))
uk

hj (xk)

(xk,xk+1), r (xk,hj (xk+1)))

System/
Environment

CRITIC -
Evaluates the current

control policy

ACTOR -
Implements the
control policy

FIGURE 11.5-1 Temporal difference learning using policy iteration. At each time one
observes the current state, the next state, and the cost incurred. This is used to update the
value estimate. Based on the new value, the action is updated.

The online implementation of PI using temporal difference learning is shown
in Figure 11.5-1. PI and VI using TD learning have an actor–critic structure, as
shown in Figure 11.1-1. The critic evaluates the current policy by solving the
Bellman equation (11.5-11). Then, the actor updates the policy using (11.5-12).

Value Function Approximation

PI and VI can be implemented for finite MDP by storing and updating look-
up tables. The key to practical schemes for implementing PI and VI online
for dynamical systems with infinite state and action spaces is to approximate
the value function by a suitable approximator structure in terms of unknown
parameters. Then, the unknown parameters are tuned online exactly as in sys-
tem identification. This idea of value function approximation (VFA) was used by
Werbos (1989, 1991, 1992) and called approximate dynamic programming (ADP)
or adaptive dynamic programming. It was used by Bertsekas and Tsitsiklis (1996)
and called neuro-dynamic programming (NDP). See Powell (2007) and Busoniu
et al. (2009).

In the LQR case it is known that the value is quadratic in the state so that

V (xk) = 1
2xT

k Pxk = 1
2 (vec(P))T(xk ⊗ xk) ≡ pTxk ≡ pTφ(xk), (11.5-15)

for some kernel matrix P . The Kronecker product ⊗ (Brewer 1978) allows us to
write this quadratic form as linear in the parameter vector p = vec(P), which is
formed by stacking the columns of the P matrix. The vector φ(xk) = xk = xk ⊗

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 494

494 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

xk is the quadratic polynomial vector containing all possible pairwise products
of the n components of xk. Noting that P is symmetric and has only n(n + 1)/2
independent elements, we remove the redundant terms in xk ⊗ xk to define a
quadratic basis set φ(xk) with n(n + 1)/2 independent elements.

For general nonlinear systems (11.5-1) the value function contains higher-
order nonlinearities. Then, we assume the Bellman equation (11.5-7) has a local
smooth solution (van der Schaft 1992). According to the Weierstrass higher-order
approximation theorem, there exists a dense basis set {ϕi(x)} such that

V (x) =
∞∑
i=1

wiϕi(x) =
L∑

i=1

wiϕi(x) +
∞∑

i=L+1

wiϕi(x) ≡ WTφ(x) + εL(x),

(11.5-16)
where basis vector φ(x) = [ϕ1(x) ϕ2(x) · · · ϕL(x)

]
: Rn → RL, and εL(x)

converges uniformly to zero as the number of terms retained L → ∞. In the
Weierstrass Theorem, standard usage takes a polynomial basis set. In the neural
network (NN) community, approximation results have been shown for various
other basis sets including sigmoid, hyperbolic tangent, Gaussian radial basis func-
tions, etc. There, standard results show that the NN approximation error εL(x)

is bounded by a constant on a compact set. L is referred to as the number of
hidden-layer neurons, ϕi(x) as the NN activation functions, and wi as the NN
weights.

Optimal Adaptive Control Algorithms for DT Systems

We are now in a position to present several adaptive control algorithms based on
TD RL that converge online to the optimal control solution.

The parameters in p or W are unknown. Substituting the value function
approximation into the value update (11.5-11) in PI we obtain the following
algorithm.

OPTIMAL ADAPTIVE CONTROL USING A POLICY ITERATION
ALGORITHM

Initialize.

Select any admissible control policy h0(xk). Do for j = 0 until convergence—

Policy evaluation step:

Determine the least-squares solution Wj+1 to

WT
j+1 (φ(xk) − γφ(xk+1)) = r(xk, hj(xk)) = Q(xk) + hT

j (xk)Rhj(xk).

(11.5-17)
Policy improvement step:

Determine an improved policy using

hj+1(xk) = −γ

2
R−1gT(xk)∇φT(xk+1)Wj+1. (11.5-18)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 495

11.5 OPTIMAL ADAPTIVE CONTROL FOR DISCRETE-TIME SYSTEMS 495

This algorithm is easily implemented online by standard system identification
techniques (Ljung 1999). In fact, note that (11.5-17) is a scalar equation, whereas
the unknown parameter vector Wj+1 ∈ RL has L elements. Therefore, data from
multiple time steps is needed for its solution. At time k + 1 one measures the
previous state xk, the control uk = hj(xk), the next state xk+1, and computes the
resulting utility r(xk, hj(xk)). This gives one scalar equation. This is repeated for
subsequent times using the same policy hj(·) until we have at least L equations,
at which point we may determine the LS solution Wj+1. We may use batch LS
for this.

Alternatively, note that equations of the form (11.5-17) are exactly those solved
by recursive least-squares (RLS) techniques (Ljung 1999) Therefore, we may run
RLS online until convergence. Write (11.5-17) as

WT
j+1�(k) ≡ WT

j+1 (φ(xk) − γφ(xk+1)) = r(xk, hj(xk)), (11.5-19)

with �(k) ≡ (φ(xk) − γφ(xk+1)) a regression vector. At step j of the PI algo-
rithm, one fixes the control policy at u = hj(x). Then, at each time k one measures
the data set

(
xk, xk+1, r(xk, hj(xk))

)
. One step of RLS is then performed. This is

repeated for subsequent times until convergence to the parameters corresponding
to the value Vj+1(x) = WT

j+1φ(x).
Note that for RLS to converge, the regression vector �(k) ≡ (φ(xk) −

γφ(xk+1)) must be persistently exciting.
As an alternative to RLS, we could use a gradient descent tuning method

such as

Wi+1
j+1 = Wi

j+1 − α�(k)

((
Wi

j+1

)T
�(k) − r(xk, hj(xk))

)
, (11.5-20)

with α > 0 a tuning parameter. The step index j is held fixed, and index i is
incremented at each increment of the time index k . Note that the quantity inside
the large brackets is just the temporal difference error.

Once the value parameters have converged, the control policy is updated
according to (11.5-18). Then, the procedure is repeated for step j + 1. This
entire procedure is repeated until convergence to the optimal control solution.

This provides an online reinforcement learning algorithm for solving the opti-
mal control problem using policy iteration by measuring data along the system
trajectories. Likewise, an online reinforcement learning algorithm can be given
based on value iteration. Substituting the value function approximation into the
value update (11.5-14) in VI we obtain the following algorithm.

OPTIMAL ADAPTIVE CONTROL USING A VALUE
ITERATION ALGORITHM

Initialize

Select any control policy h0(xk), not necessarily admissible or stabilizing. Do for
j = 0 until convergence—

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 496

496 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

Value update step:

Determine the least-squares solution Wj+1 to

WT
j+1φ(xk) = r(xk, hj(xk)) + WT

j γφ(xk+1). (11.5-21)

Policy improvement step:

Determine an improved policy using (11.5-18).

To solve (11.5-21) in real-time we can use batch LS, RLS, or gradient-based
methods based on data

(
xk, xk+1, r(xk, hj(xk))

)
measured at each time along the

system trajectories. Then the policy is improved using (11.5-18).
Note that the old weight parameters are on the right-hand side of (11.5-21).

Thus, the regression vector is now φ(xk), which must be persistently exciting for
convergence of RLS.

Online Solution of Lyapunov and Riccati Equations

It is important to note that the PI and VI adaptive optimal control algorithms
just given actually solve the Bellman equation (11.5-7) and the HJB equation
(11.5-5) online in real time by using data measured along the system trajectories.
The system drift function f (xk) (or the A matrix in the LQR case) is not needed
in these algorithms. That is, these algorithms solve the Riccati equation online
in real time without knowledge of the A matrix. The online implementation of
PI is shown in Figure 11.5-1.

According to Example 11.3-4, for DT LQR policy iteration, this means that
the Lyapunov equation

0 = (A − BKj)TP j+1(A − BKj) − P j+1 + Q + (Kj)TRKj , (11.5-22)

has been replaced by (11.5-17) or

pT
j+1 (xk+1 − xk) = r(xk, hj(k)) = xT

k (Q + KT
j RKj)xk, (11.5-23)

which is solved for the parameters pj+1 = vec(P j+1) using, for instance, RLS
by measuring the data set

(
xk, xk+1, r(xk, hj(xk))

)
at each time. For this step the

dynamics (A, B) can be unknown, as they are not needed. For DT LQR value
iteration, the Lyapunov recursion

P j+1 = (A − BKj)TP j (A − BKj) + Q + (Kj)TRKj (11.5-24)

has been replaced by (11.5-21) or

pT
j+1xk+1 = r(xk, hj(k)) + pT

j xk = xT
k (Q + KT

j RKj)xk + pT
j xk, (11.5-25)

which may be solved for the parameters pj+1 = vec(Pj+1) using RLS without
knowing A,B .

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 497

11.5 OPTIMAL ADAPTIVE CONTROL FOR DISCRETE-TIME SYSTEMS 497

Introduction of a Second “Actor” Neural Network

Using value function approximation allows standard system identification tech-
niques to be used to find the value function parameters that approximately solve
the Bellman equation. The approximator structure just described that is used
for approximation of the value function is known as the critic NN (neural net-
work), as it determines the value of using the current policy. Using VFA, the
PI and VI reinforcement learning algorithm solve the Bellman equation during
the value update portion of each iteration step j by observing only the data
set
(
xk, xk+1, r(xk, hj(xk))

)
at each time along the system trajectory and solving

(11.5-17) or (11.5-21).
However, according to Example 11.3-4, in the LQR case, the policy update

(11.5-18) is given by

Kj+1 = −(BTP j+1B + R)−1BTP j+1A, (11.5-26)

which requires full knowledge of the dynamics (A, B). Note further that the
embodiment (11.5-18) cannot easily be implemented in the nonlinear case
because it is implicit in the control, since xk+1 depends on uk and is the
argument of a nonlinear activation function.

These problems are both solved by introducing a second neural network for
the control policy, known as the actor NN (Werbos, 1989, 1991, 1992). Introduce
a parametric approximator structure for the control action

uk = h(xk) = UTσ(xk), (11.5-27)

with σ(x): Rn → RM a vector of M activation or basis functions and U ∈ RM×m

a matrix of weights or unknown parameters. After convergence of the critic NN
parameters to Wj+1 in PI or VI, it is required to perform the policy update
(11.5-18). To achieve this we may use a gradient descent method for tuning the
actor weights U such as

Ui+1
j+1 = Ui

j+1 − βσ(xk)

(
2R
(
Ui

j+1

)T
σ(xk) + γg(xk)

T∇φT(xk+1)Wj+1

)T

,

(11.5-28)

with β > 0 a tuning parameter. The tuning index i may be incremented with the
time index k . On convergence, set the updated policy to hj+1(xk) = (Ui

j+1)
Tσ(xk).

Several items are worthy of note at this point. First, the tuning of the actor
NN requires observations at each time k of the data set (xk, xk+1), that is, the
current state and the next state. However, as per the formulation (11.5-27), the
actor NN yields the control uk at time k in terms of the state xk at time k . The
next state xk+1 is not needed in (11.5-27). Thus, after (11.5-28) has converged,
(11.5-27) is a legitimate feedback controller. Second, in the LQR case, the actor
NN (11.5-27) embodies the feedback gain computation (11.5-26). This is highly
intriguing, for the latter contains the state internal dynamics A, but the former

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 498

498 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

does not. This means that the A matrix is not needed to compute the feedback
control. The reason is that the actor NN has learned information about A in its
weights, since (xk, xk+1) are used in its tuning.

Finally, note that only the input function g(·) (in the LQR case, the B matrix)
is needed in (11.5-28) to tune the actor NN. Thus, introducing a second actor
NN has completely avoided the need for knowledge of the state drift dynamics
f (·) (or A in the LQR case).

Example 11.5-1. Discrete-time Optimal Adaptive Control of Power System Using Value
Iteration

In this simulation we show how to use DT value iteration to solve the DT ARE online
without knowing the system matrix A. We simulated the online VI algorithm (11.5-21),
(11.5-28) for load frequency control of an electric power system. Power systems are
complex nonlinear systems. However, during normal operation the system load, which
gives the nonlinearity, has only small variations. As such, a linear model can be used
to represent the system dynamics around an operating point specified by a constant load
value. A problem rises from the fact that in an actual plant the parameter values are not
precisely known, as reflected in an unknown system A matrix, yet an optimal control
solution is sought.

The model of the system that is considered here is ẋ = Ax + Bu, where

A =

⎡
⎢⎢⎣

−1/Tp Kp/Tp 0 0
0 −1/TT 1/TT 0

−1/RTG 0 −1/TG −1/TG

KE 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0

1/TG

0

⎤
⎥⎥⎦ .

The system state is x(t) = [�f (t) �Pg(t) �Xg(t) �E(t)
]T

, where �f (t) is the
incremental frequency deviation (Hz), �Pg(t) is the incremental change in generator
output (p.u. MW), �Xg(t) is the incremental change in governor position (p.u. MW), and
�E(t) is the incremental change in integral control. The system parameters are TG, the
governor time constant; TT , turbine time constant; TP , plant model time constant; KP,
planet model gain; R, speed regulation due to governor action; and KE, integral control
gain.

The values of the CT system parameters were randomly picked within specified oper-
ating ranges so that

A =

⎡
⎢⎢⎣

−0.0665 8 0 0
0 −3.663 3.663 0

−6.86 0 −13.736 −13.736
0.6 0 0 0

⎤
⎥⎥⎦ , B = [0 0 13.7355 0

]
.

The discrete-time dynamics was obtained using the zero-order hold method with a sam-
pling period of T = 0.01 sec. The solution to the DT ARE with cost function weights
Q = I , R = I , and γ = 1 is

PDARE =

⎡
⎢⎢⎣

0.4750 0.4766 0.0601 0.4751
0.4766 0.7831 0.1237 0.3829
0.0601 0.1237 0.0513 0.0298
0.4751 0.3829 0.0298 2.3370

⎤
⎥⎥⎦ .

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 499

11.5 OPTIMAL ADAPTIVE CONTROL FOR DISCRETE-TIME SYSTEMS 499

In this simulation, only the time constant TG of the governor, which appears in the
B matrix, is considered to be known, while the values for all the other parameters appear-
ing in the system A matrix are not known. That is, the A matrix is needed only to simulate
the system and obtain the data and is not needed by the control algorithm.

For the DT LQR, the value is quadratic in the states V (x) = 1
2 xTPx, as in (11.5-15).

Therefore, the basis functions for the critic NN in (11.5-16) are selected as the quadratic
polynomial vector in the state components. Since there are n = 4 states, this vector has
n(n + 1)/2 = 10 components. The control is linear in the states u = −Kx, so the basis
functions for the actor NN (11.5-27) are taken as the state components.

The online implementation of VI may be done by setting up a batch least-squares
problem to solve for the 10 critic NN parameters, that is the Riccati solution entries
pj+1 ≡ Wj+1 in (11.5-21), for each step j . In this simulation the matrix P j+1 is determined
after collecting 15 points of data (xk, xk+1, r(xk, uk)) for each least-squares problem.
Therefore, a least-squares problem for the critic weights is solved each 0.15 sec. Then
the actor NN parameters (that is, the feedback gain matrix entries) are updated using
(11.5-28). The simulations were performed over a time interval of 60 sec.

The system states trajectories are given in Figure 11.5-2, which shows that they are
regulated to zero as desired. The convergence of the Riccati matrix parameters is shown
in Figure 11.5-3. The final values of the critic NN parameter estimates are

Pcritic NN =

⎡
⎢⎢⎢⎣

0.4802 0.4768 0.0603 0.4754

0.4768 0.7887 0.1239 0.3834

0.0603 0.1239 0.0567 0.0300

0.4754 0.3843 0.0300 2.3433

⎤
⎥⎥⎥⎦ .

0 1 2 3 4 5 6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
System states

Time (s)

FIGURE 11.5-2 System states during the first 6 sec. This figure shows that even though
the A matrix of the power system is unknown, the adaptive controller based on value
iteration keeps the states stable and regulates them to zero.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 500

500 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

P matrix parameters P(1,1), P(1,3), P(2,4), P(4,4)

P(1,1)
P(1,3)
P(2,4)
P(4,4)

FIGURE 11.5-3 Convergence of selected ARE solution parameters. This figure shows
that the adaptive controller based on VI converges to the Riccati-equation solution in real
time without knowing the system A matrix.

The optimal adaptive control VI algorithm has converged to the optimal control solution,
as given by the ARE solution. This has been accomplished in real time without knowing
the system A matrix. �

Actor–Critic Implementation of DT Optimal Adaptive Control

Two algorithms for optimal adaptive control of DT systems based on RL have
been given. A PI algorithm is implemented by solving (11.5-17) using RLS or
batch LS to determine the value of the current policy, then the policy is updated
by running (11.5-28). A VI algorithm is implemented by solving (11.5-21) using
RLS or batch LS to determine the value of the current policy, then the policy is
updated by running (11.5-28).

The implementation of reinforcement learning using two NNs, one as a critic
and one as an actor, yields the actor–critic RL structure shown in Figure 11.1-1.
In this control system, the critic and the actor are tuned online using the observed
data

(
xk, xk+1, r(xk, hj(xk))

)
along the system trajectory. The critic and actor are

tuned sequentially in both the PI and the VI algorithms. That is, the weights
of one NN are held constant while the weights of the other are tuned until
convergence. This procedure is repeated until both NN have converged. Then,
the controller has learned the optimal controller online. Thus, this is an online
adaptive optimal control system wherein the value function parameters are tuned
online and the convergence is to the optimal value and control. The convergence
of value iteration using two NN for the DT nonlinear system (11.5-1) was proven
in Al-Tamimi et al. (2008).

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 501

11.5 OPTIMAL ADAPTIVE CONTROL FOR DISCRETE-TIME SYSTEMS 501

Q Learning for Optimal Adaptive Control

The Q learning RL method gives an adaptive control algorithm that converges
online to the optimal control solution for completely unknown systems. That is,
it solves the Bellman equation (11.5-7) and the HJB equation (11.5-5) online
in real time by using data measured along the system trajectories, without any
knowledge of the dynamics f (xk), g(xk).

Q learning is a simple method for reinforcement learning that works for
unknown MDP, that is, for systems with completely unknown dynamics. It
was developed by Watkins (1989) and Watkins and Dayan (1992) and Werbos
(1989, 1991, 1992), who called it action-dependent heuristic dynamic program-
ming (ADHDP), since the Q function depends on the control input. Q learning
learns the Q function (11.3-38) using TD methods by performing an action uk

and measuring at each time stage the resulting data experience set (xk, xk+1, rk)

consisting of the current state, the next state, and the resulting stage cost. Writing
the Q function Bellman equation (11.3-40) along a sample path gives

Qπ(xk, uk) = r(xk, uk) + γQπ(xk+1, h(xk+1)), (11.5-29)

which defines a TD error

ek = −Qπ(xk, uk) + r(xk, uk) + γQπ(xk+1, h(xk+1)). (11.5-30)

The VI algorithm for Q function is given as (11.3-47). Based on this, the
Q function is updated using the algorithm

Qk(xk, uk)=Qk−1(xk, uk) +αk

[
r(xk, uk) + γ min

u
Qk−1(xk+1, u)−Qk−1(xk, uk)

]
.

(11.5-31)

This Q learning algorithm is similar to stochastic approximation methods of adap-
tive control or parameter estimation used in control systems. It was developed
for finite MDP and the convergence proven by Watkins (1989) using stochas-
tic approximation methods. It was shown that the algorithm converges for finite
MDP provided that all state–action pairs are visited infinitely often and

∞∑
k=1

αk = ∞,

∞∑
k=1

α2
k < ∞, (11.5-32)

that is, standard stochastic approximation conditions. On convergence, the TD
error is (approximately) equal to zero. For finite MDP, Q learning requires storing
a 2-D lookup table in terms of all the states x and actions u .

The requirement that all state–action pairs are visited infinitely often trans-
lates to the problem of maintaining sufficient exploration during learning. Let us
now derive methods for Q learning for dynamical systems that yield adaptive

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 502

502 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

control algorithms that converge to optimal control solutions. PI and VI algo-
rithms have been given using the Q function in (11.3-43)–(11.3-47). A Q learn-
ing algorithm is easily developed for DT dynamical systems using Q function
approximation (Werbos 1989, 1991, 1992; Bradtke et al. 1994). It was shown in
Example 11.3-5 that for DT LQR the Q function is a quadratic form in terms
of zk ≡ [xT

k uT
k]T ∈ Rn+m. Assume, therefore, that for nonlinear systems the

Q function is parameterized as

Q(x, u) = WTφ(z),

for some unknown parameter vector W and basis set vector φ(z). For the DT
LQR, φ(z) is the quadratic basis set formed from the state and input components.
Substituting the Q function approximation into the TD error (11.5-30) yields

ek = −WTφ(zk) + r(xk, uk) + γWTφ(zk+1), (11.5-33)

upon which either PI or VI algorithms can be based. Considering the PI algorithm
(11.3-43), (11.3-44) yields the Q function evaluation step

WT
j+1 (φ(zk) − γφ(zk+1)) = r(xk, hj(xk)) (11.5-34)

and the policy improvement step

hj+1(xk) = arg min
u

(
WT

j+1φ(xk, u)
)

, for all x ∈ X. (11.5-35)

Q learning using VI (11.3-45) is given by

WT
j+1φ(zk) = r(xk, hj(xk)) + γWT

j φ(zk+1), (11.5-36)

and (11.5-35). These equations do not require knowledge of the dynamics
f (·), g(·).

For online implementation, batch LS or RLS can be used to solve (11.5-34)
for the parameter vector Wj+1 given the regression vector (φ(zk) − γφ(zk+1)), or
(11.5-36) using regression vector φ(zk). The observed data at each time instant
is (zk, zk+1, r(xk, uk)) with zk ≡ [xT

k uT
k]T. We take zk+1 ≡ [xT

k+1 uT
k+1]T, with

uk+1 = hj(xk+1) and hj(·) the current policy. Probing noise must be added to the
control input to obtain persistence of excitation.

After convergence of the Q function parameters, the action update (11.5-35)
is performed. This is easily accomplished without knowing the system dynam-
ics due to the fact that the Q function contains uk as an argument so that
∂
(
WT

j+1φ(xk, u)
)

/∂u can be explicitly computed. In fact,

∂Q(x, u)

∂u
=
(

∂z

∂u

)T (
∂φ(z)

∂z

)T

W = [0m,n Im

]∇φTW, (11.5-37)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 503

11.6 OPTIMAL ADAPTIVE CONTROL OF CONTINUOUS-TIME SYSTEMS 503

where 0m,n ∈ Rm×n is a matrix of zeros. For the specific case of the DT LQR,

Q1

for instance, from Example 11.3-5 we have

Q(x, u) ≡ 1

2

[
x

u

]T

S

[
x

u

]
= 1

2
zTSz = 1

2
vecT(S)(z ⊗ z) ≡ WTφ(z), (11.5-38)

with ⊗ the Kronecker product (Brewer 1978) and vec(S) ∈ R(n+m)2
the vector

formed by stacking the columns of the S matrix. The basis vector φ(z) = z ⊗
z ∈ R(n+m)2

is the quadratic polynomial vector containing all possible pairwise
products of the n + m components of z . Define N = n + m. Then,

∇φT = ∂φT

∂z
= (IN ⊗ z + z ⊗ IN)T ∈ RN×N2

(11.5-39)

Using these equations we obtain a form equivalent to the control update (11.5-35)
given in Example 11.3-5, which can be done knowing the Q function parameters
S without knowing system matrices A,B .

If the control can be computed explicitly from the action update (11.5-35), as
in the DT LQR case, an actor NN is not needed for Q learning and it can be
implemented using only one critic NN for Q function approximation.

11.6 INTEGRAL REINFORCEMENT LEARNING FOR OPTIMAL
ADAPTIVE CONTROL OF CONTINUOUS-TIME SYSTEMS

Reinforcement learning is considerably more difficult for continuous-time (CT)
systems than for discrete-time systems, and its development has lagged. See
(Abu-Khalaf et al. 2006) for the development of a PI method for CT systems.
Using a method known as integral reinforcement learning (IRL) (Vrabie et al.
Vrabie and Lewis 2009) allows the application of RL to formulate online optimal
adaptive control methods for CT systems.

Consider the continuous-time nonlinear dynamical system

ẋ = f (x) + g(x)u, (11.6-1)

with state x(t) ∈ Rn, control input u(t) ∈ Rm, and the usual assumptions required
for existence of unique solutions and an equilibrium point at x = 0, e.g., f (0) = 0
and f (x) + g(x)u Lipschitz on a set � ⊆ Rn that contains the origin. We assume
the system is stabilizable on �; that is, there exists a continuous control function
u(t) such that the closed-loop system is asymptotically stable on �.

Define a performance measure or cost function that has the value associated
with the feedback control policy u = μ(x) given by

V μ(x(t)) =
∞∫
t

r(x(τ), u(τ)) dτ , (11.6-2)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 504

504 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

with utility r(x, u) = Q(x) + uTRu, Q(x) positive definite, that is, Q(x) > 0
for all x and x = 0 ⇒ Q(x) = 0, and R > 0 a positive definite matrix. For the
CT linear quadratic regulator (LQR) we have

ẋ = Ax + Bu, (11.6-3)

V μ(x(t)) = 1

2

∞∫
t

(xTQx + uTRu) dτ . (11.6-4)

A policy is called admissible if it is continuous, stabilizes the system, and has
a finite associated cost. If the cost is smooth, then an infinitesimal equivalent to
(11.6-2) can be found by differentiation to be the nonlinear equation

0 = r(x, μ(x)) + (∇V μ)T(f (x) + g(x)μ(x)), V μ(0) = 0, (11.6-5)

where ∇V μ (a column vector) denotes the gradient of the cost function V μ with
respect to x . This is the CT Bellman equation. It is defined based on the CT
Hamiltonian function

H(x, μ(x), ∇V μ) = r(x, μ(x)) + (∇V μ)T(f (x) + g(x)μ(x)). (11.6-6)

The optimal value satisfies the CT Hamilton-Jacobi-Bellman (HJB) equation
(Chapter 6),

0 = min
μ

H(x, μ(x), ∇V ∗), (11.6-7)

and the optimal control satisfies

μ∗ = arg min
μ

H(x, μ(x), ∇V ∗). (11.6-8)

We now see the problem with CT systems immediately. Compare the CT
Bellman Hamiltonian (11.6-6) to the DT Hamiltonian (11.5-8). The former con-
tains the full system dynamics f (x) + g(x)u, while the DT Hamiltonian does
not. This means the CT Bellman equation (11.6-5) cannot be used as a basis for
reinforcement learning unless the full dynamics are known.

Reinforcement learning methods based on (11.6-5) can be developed (Baird
1994, Doya 2000, Murray et al. 2001, Mehta and Meyn 2009, Hanselmann et al.
2007). These have limited use for adaptive control purposes because the system
dynamics must be known. In another approach, one can use Euler’s method to
discretize the CT Bellman equation (Baird 1994). Noting that

0 = r(x, μ(x)) + (∇V μ)T(f (x) + g(x)μ(x)) = r(x, μ(x)) + V̇ μ, (11.6-9)

We use Euler’s method to discretize this to obtain

0 = r(xk, uk) + V μ(xk+1) − V μ(xk)

T
≡ rS(xk, uk)

T
+ V μ(xk+1) − V μ(xk)

T
,

(11.6-10)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 505

11.6 OPTIMAL ADAPTIVE CONTROL OF CONTINUOUS-TIME SYSTEMS 505

with sample period T so that t = kT. The discrete sampled utility is rS(xk, uk) =
r(xk, uk)T , where it is important to multiply the CT utility by the sample period.

Now note that the discretized CT Bellman equation (11.6-10) has the same
form as the DT Bellman equation (11.5-7). Therefore, all the reinforcement learn-
ing methods just described for DT systems can be applied.

However, this is an approximation only. An alternative exact method for CT
reinforcement learning was given by Vrabie et al. (2009) and Vrabie and Lewis
(2009). This is termed integral reinforcement learning (IRL). Note that we may
write the cost (11.6-2) in the integral reinforcement form

V μ(x(t)) =
t+T∫
t

r(x(τ), u(τ)) dτ + V μ(x(t + T)), (11.6-11)

for any T > 0. This is exactly in the form of the DT Bellman equation (11.5-7).
According to Bellman’s principle, the optimal value is given in terms of this
construction as (Chapter 6)

V ∗(x(t)) = min
u(t :t+T)

⎛
⎝

t+T∫
t

r(x(τ), u(τ)) dτ + V ∗(x(t + T))

⎞
⎠ ,

where u(t : t + T) = {u(τ): t ≤ τ < t + T }. The optimal control is

μ∗(x(t)) = arg min
u(t :t+T)

⎛
⎝

t+T∫
t

r(x(τ), u(τ)) dτ + V ∗(x(t + T))

⎞
⎠ .

It is shown in (Vrabie et al. 2009) that the nonlinear equation (11.6-5) is
exactly equivalent to the integral reinforcement form (11.6-11). That is, the pos-
itive definite solution of both that satisfies V (0) = 0 is the value (11.6-2) of the
policy u = μ(x). Therefore, integral reinforcement form (11.6-11) also serves as
a Bellman equation for CT systems and serves is a fixed-point equation. Thus,
we can define the temporal difference error for CT systems as

e(t : t + T) =
t+T∫
t

r(x(τ), u(τ)) dτ + V μ(x(t + T)) − V μ(x(t)). (11.6-12)

This does not involve the system dynamics.
Now, policy iteration and value iteration can be directly formula for CT sys-

tems. The following algorithms are termed integral reinforcement learning for
CT systems (Vrabie et al. 2009). They both give optimal adaptive controllers for
CT systems, that is, adaptive control algorithms that converge to optimal control
solutions.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 506

506 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

IRL OPTIMAL ADAPTIVE CONTROL USING POLICY
ITERATION (PI)

Initialize

Select any admissible control policy μ0(x). Do for j = 0 until convergence—

Policy evaluation step:

Solve for Vj+1(x(t)) using

Vj+1(x(t)) =
t+T∫
t

r(x(s), μj(x(s))) ds + Vj+1(x(t + T)), with Vj+1(0) = 0.

(11.6-13)

Policy improvement step:

Determine an improved policy using

μj+1 = arg min
u

[H(x, u, ∇Vj+1)], (11.6-14)

which explicitly is

μj+1(x) = − 1
2R−1gT(x)∇Vj+1. (11.6-15)

IRL OPTIMAL ADAPTIVE CONTROL USING VALUE
ITERATION (VI)

Initialize

Select any control policy μ0(x), not necessarily stabilizing. Do for j = 0 until
convergence—

Policy evaluation step:

Solve for Vj+1(x(t)) using

Vj+1(x(t)) =
t+T∫
t

r(x(s), μj(x(s))) ds + Vj(x(t + T)). (11.6-16)

Policy improvement step:

Determine an improved policy using (11.6-15).

Note that neither algorithm requires knowledge about the system drift dynamics
function f (x). That is, they work for partially unknown systems. Convergence
of PI is proved in Vrabie et al. (2009).

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 507

11.6 OPTIMAL ADAPTIVE CONTROL OF CONTINUOUS-TIME SYSTEMS 507

Online Implementation of IRL—A Hybrid Optimal Adaptive Controller

Both of these IRL algorithms may be implemented online by reinforcement learn-
ing techniques using value function approximation V (x) = WTφ(x) in a critic
approximator network. Using VFA in the PI algorithm (11.6-13) yields

WT
j+1 [φ(x(t)) − φ(x(t + T))] =

t+T∫
t

r(x(s), μj(x(s))) ds. (11.6-17)

Using VFA in the VI algorithm (11.6-16) yields

WT
j+1φ(x(t)) =

t+T∫
t

r(x(s), μj(x(s))) ds + WT
j φ(x(t + T)). (11.6-18)

RLS or batch LS can be used to update the value function parameters in these
equations. On convergence of the value parameters, the action is updated using
(11.6-15). The implementation is shown in Figure 11.6-1. This is an optimal
adaptive controller, that is, an adaptive controller that measures data along the
system trajectories and converges to optimal control solutions. Note that only the
system input coupling dynamics g(x) are needed to implement these algorithms,
since it appears in action update (11.6-15). The drift dynamics f (x) are not
needed.

Run RLS or use batch L.S.
To identify vakue of current control

Update FB gain after
Critic has coverged

Dynamic
Control
System
w/ MEMORY

Critic

ZOH T

Actor System
µ (x)

T

u x

T

·

·

ρ

ρ = r (x (t), u (t))

x = f (x) + g (x)u

FIGURE 11.6-1 Hybrid optimal adaptive controller based on integral reinforcement
learning (IRL), showing the two-time scale hybrid nature of the IRL controller. The
integral reinforcement signal is added as an extra state and functions as the memory of
the controller. The critic runs on a slow time scale and learns the value of using the
current control policy. When the critic has converged, the actor control policy is updated
to obtain an improved value.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 508

508 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

The time is incremented at each iteration by the reinforcement learning time
interval T . This time interval need not be the same at each iteration. T can be
changed depending on how long it takes to get meaningful information from the
observations. T is not a sample period in the standard meaning.

The measured data at each time increment is (x(t), x(t + T), ρ(t : t + T)),
where

ρ(t : t + T) =
t+T∫
t

r(x(τ), u(τ)) dτ , (11.6-19)

is the integral reinforcement measured on each time interval. This can be imple-
mented by introducing an integrator ρ̇ = r(x(t), u(t)), as shown in Figure 11.6-1.
That is, the integral reinforcement ρ(t) is added as an extra continuous-time state.
It functions as the memory or controller dynamics. The remainder of the controller
is a sampled data controller.

Note that the control policy μ(x) is updated periodically after the critic weights
have converged to the solution of (11.6-17) or (11.6-18). Therefore, the policy
is piecewise constant in time. On the other hand, the control varies continuously
with the state between each policy update. IRL for CT systems is, in fact, a
hybrid CT/DT adaptive controller that converges to the optimal control solution
in real time without knowing the drift dynamics f (x). Due to the fact that the
policy update (11.6-15) for CT systems does not involve the drift dynamics f (x),
no actor NN is needed in IRL. Only a critic NN is needed for VFA.

Online Solution of the Algebraic Riccati Equation without Full
Plant Dynamics

It can be shown that the integral reinforcement form (11.6-11) is equivalent to
the nonlinear Lyapunov (11.6-5) (Vrabie et al. 2009). Thus, the IRL controller
solves the Lyapunov equation online without knowing the drift dynamics f (x).
Moreover, it converges to the optimal control so that it solves the HJB equation
(11.6-7).

In the CT LQR case (11.6-3), (11.6-4) we have linear state feedback control
policies u = −Kx. Then, equation (11.6-5) is

(A − BK)TP + P(A − BK) + Q + KTRK = 0, (11.6-20)

which is a Lyapunov equation. The HJB equation (11.6-7) becomes the CT ARE

ATP + PA + Q − PBR−1BTP = 0. (11.6-21)

Thus, IRL solves both the Lyapunov equation and the ARE online in real time,
using data measured along the system trajectories, without knowing the A matrix.

For the CT LQR, (11.6-13) is equivalent to a Lyapunov equation at each step,
so that policy iteration is exactly the same as Kleinman’s algorithm (Kleinman
1968) for solving the CT Riccati equation. This is a Newton method for finding

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 509

11.6 OPTIMAL ADAPTIVE CONTROL OF CONTINUOUS-TIME SYSTEMS 509

the optimal value. CT value iteration, on the other hand, is a new algorithm
that solves the CT ARE based on iterations on certain discrete-time Lyapunov
equations that are equivalent to (11.6-16).

Example 11.6-1. Continuous-time Optimal Adaptive Control Using IRL

This example shows the hybrid control nature of the IRL optimal adaptive controller.
Consider the DC motor model

ẋ = Ax + Bu =
[−10 1
−0.002 −2

]
x +

[
0
2

]
u,

with cost weight matrices Q = I , R = I . The solution to the CT ARE is computed to be

P =
[

0.05 0.0039
0.0039 0.2085

]
.

In this simulation we used the IRL-based CT VI algorithm. This algorithm does not
require knowledge of the system A matrix. For the CT LQR, the value is quadratic in the
states. Therefore, the basis functions for the critic NN are selected as the quadratic polyno-
mial vector in the state components, φ(x) = [x2

1 x1x2 x2
2

]
. The IRL time interval was

selected as T = 0.04 sec. To update the 3 critic weights pj+1 ≡ Wj+1 (that is, the ARE
solution elements) using (11.6-18), a batch LS solution can be obtained. Measurements of
the data set (x(t), x(t + T), ρ(t : t + T)) are taken over 3 time intervals of T = 0.04 sec.
Then, provided that there is enough excitation in the system, after each 0.12 sec enough
data are collected from the system to solve for the value of the matrix P . Then a greedy
policy update is performed using (11.6-15), that is, u = −R−1BTPx ≡ −Kx.

The states are shown in Figure 11.6-2, which shows the good regulation achieved.
The control input and feedback gains are shown in Figure 11.6-3. Note that the control

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4
System states

Time (s)

FIGURE 11.6-2 System states during the first 2 sec, showing that the continuous time
IRL adaptive controller regulates the states to zero without knowing the system A matrix.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 510

510 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

−0.3

−0.2

−0.1

0
Control signal

0 0.5 1 1.5 2
−0.4

−0.2

0
Controller parameters

Time (s)

0 0.5 1 1.5 2
Time (s)

FIGURE 11.6-3 Control input and feedback gains, showing the hybrid nature of the
IRL optimal adaptive controller. The controller gain parameters are discontinuous and
piecewise constant, while the control signal itself is continuous between the gain parameter
updates.

0
0

0.05

0.1

0.15

0.2

1 2 3 4

Time (s)

Critic parameters

5 6

FIGURE 11.6-4 P matrix parameter estimates, showing that the IRL adaptive controller
converges online to the optimal control Riccati equation solution without knowing the
system A matrix.

gains are piecewise constant, while the control input is a continuous function of the state
between policy updates. The critic NN parameter estimates are shown in Figure 11.6-4.
They converge almost exactly to the entries in the Riccati solution matrix P . Thus, the
ARE has been solved online without knowing the system A matrix. �

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 511

11.6 OPTIMAL ADAPTIVE CONTROL OF CONTINUOUS-TIME SYSTEMS 511

Example 11.6-2. Continuous-time Optimal Adaptive Control for Power System
Using IRL

In this example we simulate the CT IRL optimal adaptive control based on VI for the
electric power system in Example 11.5-1. The same system matrices and performance
index were used. The solution to the CT ARE is computed to be

PARE =

⎡
⎢⎢⎣

0.4750 0.4766 0.0601 0.4751
0.4766 0.7831 0.1237 0.3829
0.0601 0.1237 0.0513 0.0298
0.4751 0.3829 0.0298 2.3370

⎤
⎥⎥⎦ .

This is close to the DT ARE solution presented in Example 11.5-1, since the sample
period used there is small.

The VI IRL algorithm was simulated, which does not require knowledge of the system
A matrix. The IRL time interval was taken as T = 0.1 sec. (Note the IRL interval is
not related at all to the sample period used to discretize the system in Example 11.5-1.)
Fifteen data points (x(t), x(t + T), ρ(t : t + T)) were taken to compute each batch LS
update for the critic parameters pj+1 ≡ Wj+1 (e.g., the elements of the ARE solution P)
using (11.6-18). Hence, the value estimate was updated every 1.5 sec. Then the policy
was computed using (11.6-15), that is, u = −R−1BTPx ≡ −Kx.

The state trajectories are similar to those presented in Example 11.5-1. The critic
parameter estimates for the P matrix entries are shown in Figure 11.6-5. They converge
to the true solution to the CT ARE. Thus, the ARE has been solved online without
knowing the system A matrix.

0
−0.5

0

0.5

1

1.5

2

2.5

10 20 30

Time (s)

P matrix parameters P(1,1), P(1,3) P(2,4), P(4,4)

40 50 60

FIGURE 11.6-5 P matrix parameter estimates, showing that the IRL adaptive controller
converges online to the optimal control Riccati equation solution without knowing the
system A matrix.

Note that far less computation is needed using this IRL algorithm on the CT dynamics
than was used in Example 11.5-1 for the DT optimal adaptive control algorithm. There,
the critic parameter estimates were updated every 0.15 sec. Yet, the parameter estimates
for the P matrix entries almost overlay each other. �

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 512

512 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

Example 11.6-3. Continuous-time IRL Optimal Adaptive Control
for Nonlinear System

In this example we show that IRL can solve the HJB equation for nonlinear CT systems
by using data measured along the trajectories in real time. This example was developed
using the converse HJB approach (Nevistic and Primbs 1996), which allows construction
of nonlinear systems starting from the known optimal cost function.

Consider the nonlinear system given by the equations

{
ẋ1 = −x1 + x2 + 2x3

2

ẋ2 = f (x) + g(x)u
, (11.6-22)

with f (x) = − 1
2 (x1 + x2) + 1

2 x2(1 + 2x2
2) sin2(x1), g(x) = sin(x1). If we define Q(x) =

x2
1 + x2

2 + 2x4
2 , R = 1, then the optimal cost function for this system is V ∗(x) = 1

2 x2
1 +

x2
2 + x4

2 and the optimal controller is u∗(x) = − sin(x1)(x2 + 2x3
2). It can be verified that

for these choices the HJB equation (11.6-7) and the Bellman equation (11.6-5) are both
satisfied.

The cost function was approximated by the smooth function Vj(x(t)) = WT
j φ(x(t))

with L = 8 neurons and φ(x) = [x2
1 x1x2 x2

2 x4
1 x3

1x2 x2
1x2

2 x1x
3
2 x4

2

]T
. The

PI IRL algorithm (11.6-17), (11.6-15) was used. This does not require knowledge of the
drift dynamics f (x).

To ensure exploration so that the HJB solution is found over a suitable region, data were
taken along five trajectories defined by five different initial conditions chosen randomly in
the region � = {−1 ≤ xi ≤ 1; i = 1, 2}. The IRL time period was taken as T = 0.1 sec.
At each iteration step we set up a batch least-squares problem to solve for the eight NN
weights using 40 data points measured on each of the 5 trajectories in �. Each data
point consists of (x(t), x(t + T), ρ(t : t + T)) , with ρ(t : t + T) the measured integral

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3
Critic parameters

Time (s)

w1

w2

w3

w4

w5

w6

w7

w8

FIGURE 11.6-6 Convergence of critic NN parameters, showing that the IRL adap-
tive controller converges online to the optimal control Riccati equation solution without
knowing the system A matrix.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 513

11.7 CONTINUOUS-TIME SYSTEMS 513

reinforcement cost. In this way, at every 4 sec, the value was solved for and then a policy

Q2

update was performed.
The result of applying the algorithm is presented in Figure 11.6-6, which shows thatQ3

the parameters of the critic neural network converged to the coefficients of the optimal
cost function V ∗(x) = 1

2x2
1 + x2

2 + x4
2 , that is, W = [0.5 0 1 0 0 0 0 1

]T
.

We observe that after 3 iteration steps (that is, after 12 sec) the critic NN parame-
ters have effectively converged. Then the controller is close to the optimal controller
u∗(x) = − sin(x1)(x2 + 2x3

2). The approximate solution to the HJB equation has been
determined online and the optimal control has been found without knowing the system
drift dynamics f (x). Note that analytic solution of the HJB equation in this example
would be intractable. �

11.7 SYNCHRONOUS OPTIMAL ADAPTIVE CONTROL
FOR CONTINUOUS-TIME SYSTEMS

The integral reinforcement learning controller just given tunes the critic NN to
determine the value while holding the control policy fixed, then a policy update
is performed. Now we develop an adaptive controller that has two NN, one for
value function approximation and one to approximate the control. We could call
these the critic NN and actor NN. These two NN are tuned simultaneously, that
is, synchronously in time (Vamvoudakis and Lewis 2010a and b). This is more
nearly in line with accepted practice in adaptive control. Though this synchronous
controller does require knowledge of the dynamics, it converges to the approx-
imate local solutions to the HJB equation and the Bellman equation online, yet
does not require explicitly solving either one. The HJB is generally impossible
to solve for nonlinear systems.

Based on the CT Hamiltonian (11.6-6) and the stationarity condition 0 =
∂H(x, u, ∇V μ)/∂u, we could write a PI algorithm for CT systems based on the
policy evaluation step

0 = H(x, μj(x), ∇Vj+1) = r(x, μj(x)) + (∇Vj+1)
T(f (x) + g(x)μj(x)),

Vj+1(0) = 0 (11.7-1)

and the policy improvement step

μj+1 = arg min
μ

H(x, μ,∇Vj+1). (11.7-2)

Unfortunately, the full dynamics f (x), g(x) are needed to implement this algo-
rithm. Moreover, (11.7-1) is a nonlinear equation and cannot generally be solved.

However, this algorithm provides the structure needed to develop another
adaptive control algorithm that can be implemented online using measured data
along the trajectories and converges to the optimal control. Specifically, select a
value function approximation (VFA), or critic NN, structure as

V (x) = WT
1 φ(x) (11.7-3)

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 514

514 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

and a control action approximation structure or actor NN as

u(x) = − 1
2R−1gT(x)∇φTW2, (11.7-4)

which could be, for instance, two neural networks with unknown parameters
(weights) W1,W2, and φ(x) the basis set (activation functions) of the first NN.
The structure of the second action NN comes from (11.6-15). Then, it can be
shown that tuning the NN weights as

Ẇ1 = −α1
σ

(σ Tσ + 1)2
[σ TW1 + Q(x) + uTRu], (11.7-5)

Ẇ2 = −α2{(F2W2 − F1σ
TW1) − 1

4D(x)W2m
T(x)W1}, (11.7-6)

guarantees system stability as well as convergence to the optimal value and
control (Vamvoudakis and Lewis, 2010a,b).

In these parameter estimation algorithms, α1, α2, F1, F2 are algorithm tun-
ing parameters, D(x) = ∇φ(x)g(x)R−1gT(x)∇φT(x), σ = ∇φ(f + gu), σ =
σ/(σ Tσ + 1), and m(x) = σ/(σ Tσ + 1)2. A PE condition on σ(t) is needed
to get convergence to the optimal value.

This is an adaptive control algorithm that requires full knowledge of the system
dynamics f (x), g(x), yet converges to the optimal control solution. That is, it
solves (locally approximately) the HJB equation, which is generally intractable
for general nonlinear systems. In the CT LQR case, it solves the ARE using
data measured along the trajectories (and knowledge of A,B). The importance of
this algorithm is that it can approximately solve the HJB equation for nonlinear
systems using data measured along the system trajectories in real time. The HJB
is generally impossible to solve for nonlinear systems.

The VFA tuning algorithm for W1 is based on gradient descent, while the
control action tuning algorithm is a form of backpropagation (Werbos 1989),
which is, however, also tuned by the VFA weights W1. The similarity to the
actor–critic RL structure in Figure 11.1-1 is clear. However, in contrast to IRL,
this algorithm is a CT optimal adaptive controller with two parameter estimators
tuned simultaneously, that is, synchronously and continuously in time.

Example 11.7-1. Continuous-time Synchronous Optimal Adaptive Control

In this example we show that the synchronous optimal adaptive control algorithm can
approximately solve the HJB equation for nonlinear CT systems by using data measured
along the trajectories in real time. This example was developed using the method of
Nevistic and Primbs (1996).

Consider the affine in the control input nonlinear system ẋ = f (x) + g(x)u, x =[
x1 x2

]T ∈ R2, where

f (x) =
[−x1 + x2

−x3
1 − x2 − x2

1
x2

+ 0.25x2(cos(2x1 + x3
1) + 2)2

]

g(x) =
[

0
cos(2x1 + x3

1) + 2

]
.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 515

11.7 CONTINUOUS-TIME SYSTEMS 515

We select Q = I, R = 1. Then the optimal value function that solves the HJB equation
is V ∗(x) = 1

4 x4
1 + 1

2x2
2 and the optimal control policy is u∗(x) = − 1

2 (cos(2x1 + x3
1)

+ 2)x2.
We select the critic NN vector activation function as φ(x) = [x2

1 x2
2 x4

1 x4
2

]
. The

tuning algorithms (11.7-5), (11.7-6) were run for the critic NN and control actor NN,
respectively, simultaneously in time. A probing noise was added to the control to guarantee
persistence of excitation. This noise was decayed exponentially during the simulation. The
evolution of the states is given in Figure 11.7-1. They are stable and approach zero as
the probing noise decays to zero.

Figure 11.7-2 shows the critic parameters, denoted by W1 = [Wc1 Wc2 Wc3 Wc4]T

After 80 sec the critic NN parameters converged to W1(tf) = [0.0033 0.4967 0.2405
0.0153]T, which is close to the true weights corresponding to the optimal value
V ∗(x) that solves the HJB equation. The actor NN parameters converge to W2(tf) =
[0.0033 0.4967 0.2405 0.0153]T. Thus, the control policy converges to

û2(x) = −1

2

[
0

cos(2x1 + x3
1) + 2

]T [2x1 0 4x3
1 0

0 2x2 0 4x3
2

]
Ŵ2(tf).

This is the optimal control.
Figure 11.7-3 shows the 3-D plot of the difference between the approximated value

function, by using the online synchronous adaptive algorithm, and the optimal value. The
errors are small relative to the magnitude of the optimal value. Figure 11.7-4 shows the

0
−2

−1

0

1

2

3

4

10 20 30 40 50

Times (s)

System States

60 70 80 90 100

FIGURE 11.7-1 Evolution of the states, showing that the synchronous optimal adaptive
controller ensures stability and regulates the states to zero.

Lewis c11.tex V1 - 10/19/2011 4:10pm Page 516

516 REINFORCEMENT LEARNING AND OPTIMAL ADAPTIVE CONTROL

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

Time (s)

Parameters of the critic NN

Wc1

Wc2

Wc3

Wc4

60 70 80 90 100

FIGURE 11.7-2 Convergence of critic NN parameters, showing that the optimal adap-
tive controller converges to the approximate solution of the nonlinear HJB equation.

0.4

0.2

0

−0.2

−0.4
2

1

0

−1
−2

Approximation Error of the Value function

−2
−1

0

X1
X2

V
-V

*

1
2

FIGURE 11.7-3 Error between optimal and approximated value function. This 3-D
plot of the value function error shows that the synchronous optimal adaptive controller
converges to a value function that is very close to the true solution of the HJB equation.

Lewis c11.tex V1 - 10/19/2011 4:10pm

11.7 CONTINUOUS-TIME SYSTEMS 517

1

0.5

0

−0.5

−1
2

1

0

−1
−2

Error between Optimal and Approximated control

−2
−1

0

X1
X2

u-
u*

1
2

FIGURE 11.7-4 Error between optimal and approximated control input. This 3-D plot of
the feedback control policy error shows that the synchronous optimal adaptive controller
converges very close to the true optimal control policy.

3-D plot of the difference between the approximated feedback control policy found by
using the online algorithm and the optimal control.

This example demonstrates that the synchronous optimal adaptive controller is capable
of approximately solving the HJB equation online by using data measured along the system
trajectories. The HJB equation for this example is intractable to solve analytically. �

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 518

APPENDIX A

REVIEW OF MATRIX ALGEBRA

We present here a brief review of some concepts that are assumed as background
for the text. Good references include Gantmacher (1977), Brogan (1974), and
Strang (1980).

A.1 BASIC DEFINITIONS AND FACTS

The determinant of an n × n matrix is symbolized as |A|. If A and B are both
square, then

|A| = |AT|, (A.1-1)

|AB| = |A| · |B|, (A.1-2)

where the superscript T represents transpose. If A ∈ Cm×n and B ∈ Cn×m (where
n can equal m), then

trace(AB) = trace(BA) (A.1-3)

|Im + AB| = |In + BA|. (A.1-4)

(C represents the complex numbers.)
For any matrices A and B ,

(AB)T = BTAT (A.1-5)

and if A and B are nonsingular, then

(AB)−1 = B−1A−1. (A.1-6)

518

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 519

A.2 PARTITIONED MATRICES 519

The Kronecker product of two matrices A = [aij] ∈ Cm×n and B = [bij] ∈
Cp×q is

A ⊗ B = [aijB] ∈ Cmp×nq . (A.1-7)

(It is sometimes defined as A ⊗ B = [Abij].) If A = [a1a2 · · · an], where ai

are the columns of A, the stacking operator is defined by

s(A) =

⎡
⎢⎢⎢⎣

a1

a2
...

an

⎤
⎥⎥⎥⎦ . (A.1-8)

It converts A ∈ Cm×n into a vector s(A) ∈ Cmn. An identity that is often
useful is

s(ABD) = (DT ⊗ A)s(B). (A.1-9)

If A ∈ Cm×m and B ∈ Cp×p, then

|A ⊗ B| = |A|p · |B|m. (A.1-10)

See Brewer (1978) for other results.
If λi is an eigenvalue of A with eigenvector vi , then 1/λi is an eigenvalue of

A−1 with the same eigenvector, for

Avi = λivi (A.1-11)

implies that
λ−1

i vi = A−1vi. (A.1-12)

If λi is an eigenvalue of A with eigenvector ωi , and μj is an eigenvalue of
B with eigenvector wj , then λiμj is an eigenvalue of A ⊗ B with eigenvector
vi ⊗ wj (Brewer 1978).

A.2 PARTITIONED MATRICES

If

D =
⎡
⎣A11 0 0

0 A22 0
0 0 A33

⎤
⎦ , (A.2-1)

where Aij are matrices, then we write D = diag(A11, A22, A33) and say that D is
block diagonal . If the Aii are square, then

|D| = |A11| · |A22| · |A33|, (A.2-2)

and if |D| �= 0, then
D−1 = diag(A−1

11 , A−1
22 , A−1

33). (A.2-3)

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 520

520 APPENDIX

If

D =
⎡
⎣A11 A12 A13

0 A22 A23

0 0 A33

⎤
⎦ , (A.2-4)

where Aij are matrices, then D is upper block triangular and (A.2-2) still holds.
Lower block triangular matrices have the form of the transpose of (A.2-4).

If

A =
[
A11 A12

A21 A22

]
, (A.2-5)

we define the Schur complement of A22 as

D22 = A22 − A21A
−1
11 A12 (A.2-6)

and the Schur complement of A11 as

D11 = A11 − A12A
−1
22 A21. (A.2-7)

The inverse of A can be written

A−1 =
[
A−1

11 + A−1
11 A12D

−1
22 A21A

−1
11 −A−1

11 A12D
−1
22

−D−1
22 A21A

−1
11 D−1

22

]
, (A.2-8)

A−1 =
[

D−1
11 −D−1

11 A12A
−1
22

−A−1
22 A21D

−1
11 A−1

22 + A−1
22 A21D

−1
11 A12A

−1
22

]
, (A.2-9)

or

A−1 =
[

D−1
11 −A−1

11 A12D
−1
22

−A−1
22 A21D

−1
11 D−1

22

]
, (A.2-10)

depending, of course, on whether |A11| �= 0, |A22| �= 0, or both. These can be
verified by checking that AA−1 = A−1A = I . By comparing these various forms,
we obtain the well-known matrix inversion lemma

(A−1
11 + A12A22A21)

−1 = A11 − A11A12(A21A11A12 + A−1
22)−1A21A11.

(A.2-11)

The Schur complement arises naturally in the solution of linear simultaneous
equations, for if [

A11 A12

A21 A22

] [
X

Y

]
=

[
0
Z

]
, (A.2-12)

then from the first equation

X = −A−1
11 A12Y,

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 521

A.3 QUADRATIC FORMS AND DEFINITENESS 521

and using this in the second equation yields

(A22 − A21A
−1
11 A12)Y = Z. (A.2-13)

If A is given by (A.2-5), then

|A| = |A11| · |A22 − A21A
−1
11 A12| = |A22| · |A11 − A12A

−1
22 A21|. (A.2-14)

Therefore, the determinant of A is the product of the determinant of A11 (or
A22) and the determinant of the Schur complement of A22 (or A11).

A.3 QUADRATIC FORMS AND DEFINITENESS

If x ∈ Rn is a vector, then the square of the Euclidean norm is

‖x‖2 = xTx. (A.3-1)

If S is any nonsingular transformation, the vector Sx has a norm squared of
(Sx)TSx = xTSTSx. Letting P = STS, we write

‖x‖2
P = xTPx (A.3-2)

as the norm squared of Sx . We call ||x||P the norm of x with respect to P . We
call

xTQx (A.3-3)

a quadratic form . We shall assume Q is real.
Every real square matrix Q can be decomposed into a symmetric part Qs (i.e.,

QT
s = Qs) and an antisymmetric part Qa (i.e., QT

a = −Qa):

Q = Qs + Qa, (A.3-4)
where

Qs = (Q + QT)/2, (A.3-5)

Qa = (Q − QT)/2. (A.3-6)

If the quadratic form x TAx has A antisymmetric, then it must be equal to
zero since x TAx is a scalar, so that xTAx = (xTAx)T = xTATx = −xTAx. For a
general real square Q , then

xTQx = xT(Qs + Qa)x = xTQsx. (A.3-7)

We can therefore assume without loss of generality that Q in (A.3-3) is sym-
metric. Let us do so.

We say Q is:

Positive definite (Q > 0) if xT Qx > 0 for all nonzero x.

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 522

522 APPENDIX

Positive semi-definite (Q ≥ 0) if xTQx ≥ 0 for all nonzero x.

Negative semi-definite (Q ≤ 0) if xTQx ≤ 0 for all nonzero x.

Negative definite(Q < 0) if xTQx < 0 for all nonzero x.

Indefinite if xTQx > 0 for some x, xTQx < 0 for other x.

We can test for definiteness independently of the vectors x . If λi are the
eigenvalues of Q , then

Q> 0 if all λi > 0,

Q ≥ 0 if all λi ≥ 0, (A.3-8)

Q ≤ 0 if all λi ≤ 0,

Q < 0 if all λi < 0.

Another test is provided as follows. Let Q = [qij] ∈ Rn×n. The leading minors
or Q are

m1 = q11,

m2 =
∣∣∣∣q11 q12

q21 q22

∣∣∣∣ , (A.3-9)

m3 =
∣∣∣∣∣∣
q11 q12 q13

q21 q22 q23

q31 q32 q33

∣∣∣∣∣∣ , . . . ,
mn = |Q|.

In terms of the minors, we have

Q > 0 if mi > 0, all i,

Q ≥ 0 if all principal minor not only leading minors)

are nonnegative.

Q ≤ 0 if − Q ≥ 0, (A.3-10)

Q < 0 if

{
mi < 0, all odd i

mi > 0, all even i

Any positive semidefinite matrix Q can be factored into square roots either
as

Q =
√

Q
√

Q
T

(A.3-11)
or as

Q =
√

Q
T√

Q. (A.3-12)

The (“left” and “right”) square roots in (A.3-11) and (A.3-12) are not in general
the same. Indeed, Q may have several roots since each of these factorizations is
not even unique. If Q > 0, then all square roots are nonsingular.

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 523

A.4 MATRIX CALCULUS 523

If P > 0, then (A.3-2) is a norm. If P ≥ 0, it is called a seminorm since x TPx
may be zero even if x is not.

A.4 MATRIX CALCULUS

Let x ∈ Cn = [x1 x2 · · · xn]T be a vector, s ∈ C be a scalar, and f (x) ∈ Cm be
an m-vector function of x . The differential in x is

dx =

⎡
⎢⎢⎢⎣

dx1

dx2
...

dxn

⎤
⎥⎥⎥⎦ , (A.4-1)

and the derivative of x with respect to s (which could be time) is

dx

ds
=

⎡
⎢⎢⎢⎣

dx1/ds

dx2/ds
...

dxn/ds

⎤
⎥⎥⎥⎦ . (A.4-2)

If s is a function of x . Then the gradient of s with respect to x is the column
vector

sx
�= ∂s

∂x
=

⎡
⎢⎢⎢⎣

∂s/∂x1

∂s/∂x2
...

∂s/∂xn

⎤
⎥⎥⎥⎦ . (A.4-3)

(The gradient is defined as a row vector in some references.) Then the total
differential in s is

ds =
(

∂s

∂x

)T

dx =
n∑

i=1

∂s

∂xi

dxi. (A.4-4)

If s is a function of two vectors x and y , then

ds =
(

∂s

∂x

)T

dx +
(

∂s

∂y

)T

dy. (A.4-5)

The Hessian of s with respect to x is the second derivative

sxx
�= ∂2s

∂x2
=

[
∂2s

∂xi∂xj

]
, (A.4-6)

which is a symmetric n × n matrix. In terms of the gradient and the Hessian, the
Taylor series expansion of s(x) about x0 is

s(x) = s(x0) +
(

∂s

∂x

)T

(x − x0) + 1

2
(x − x0)

T ∂2s

∂x2
(x − x0) + O(3), (A.4-7)

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 524

524 APPENDIX

where O(3) represents terms of order 3, and sx and sxx are evaluated at x0.
The Jacobian of f with respect to x is the m × n matrix

fx
�= ∂f

∂x
=

[
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]
, (A.4-8)

so that the total differential of f is

df = ∂f

∂x
dx =

n∑
i=1

∂f

∂xi

dxi . (A.4-9)

We shall use the shorthand notation

∂f T

∂x

�=
(

∂f

∂x

)T

∈ Cn×m. (A.4-10)

If y is a vector and A, B, D, Q are matrices, all with dimensions so that the
following expressions make sense, then we have the following results:

d

dt
(A−1) = −A−1ȦA−1. (A.4-11)

Some useful gradients are

∂

∂x
(yTx) = ∂

∂x
(xTy) = y, (A.4-12)

∂

∂x
(yTAx) = ∂

∂x
(xTATy) = ATy, (A.4-13)

∂

∂x
(yTf (x)) = ∂

∂x
(f T(x)y) = f T

x y, (A.4-14)

∂

∂x
(xTAx) = Ax + ATx, (A.4-15)

and if Q is symmetric, then

∂

∂x
(xTQx) = 2Qx, (A.4-16)

∂

∂x
(x − y)TQ(x − y) = 2Q(x − y). (A.4-17)

The chain rule for two vector functions becomes

∂

∂x
(f Ty) = f T

x y + yT
x f. (A.4-18)

Some useful Hessians are

∂2xTAx

∂x2
= A + AT, (A.4-19)

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 525

A.5 THE GENERALIZED EIGENVALUE PROBLEM 525

and if Q is symmetric
∂2xTQx

∂x2
= 2Q, (A.4-20)

∂2

∂x2
(x − y)TQ(x − y) = 2Q. (A.4-21)

Some useful Jacobians are
∂

∂x
(Ax) = A (A.4-22)

(contrast this with (A.4-12)), and the chain rule

∂

∂x
(sf) = ∂

∂x
(f s) = sfx + f sT

x (A.4-23)

(contrast this with (A.4-18)).
Some useful derivatives involving the trace and determinant are

∂

∂A
trace(A) = I, (A.4-24)

∂

∂A
trace(BAD) = BTDT, (A.4-25)

∂

∂A
trace(ABAT) = 2AB, if B = BT (A.4-26)

∂

∂A
|BAD| = |BAD|A−T, (A.4-27)

where A−T �=(A−1)T .

A.5 THE GENERALIZED EIGENVALUE PROBLEM

Consider the generalized eigenvalue problem

Gz = μFz, (A.5-1)
where

det(μF − G) ≡ 0. (A.5-2)

Then the finite generalized eigenvalues are the roots of det(μF − G). Let μi

be the roots of det(μF − G) and define

ηi = dimker(μiF − G). (A.5-3)

Then the rank 1 finite generalized eigenvectors are defined by

(μiF − G)z1
ij = 0, j ∈ η̂i (A.5-4)

Lewis bapp01.tex V1 - 10/19/2011 5:31pm Page 526

526 APPENDIX

(where η̂i = {1, 2, . . . , ηi}) and the rank k finite eigenvectors for k > 1 and each
i and j by

(μiF − G)zk+1
ij = −Fzk

ij , k ≥ 1. (A.5-5)

If F is nonsingular, the above equation can be used to solve recursively for the
zk
ij beginning with the highest rank eigenvector in each chain. In that case this

construction provides the eigenstructure of F−1G. In the case where F in singular,
the above equation cannot generally be used to recursively generate the zk

ij .
Furthermore, there exist eigenvalues at infinity and corresponding eigenvectors
that can be constructed as follows. Define = dim ker(F). Then the rank 1 infinite
eigenvectors are defined by

Fz1
∞j = 0, j = η̂ (A.5-6)

and the rank k infinite eigenvectors for k > 1 and each j by

Fzk+1
∞j = Gzk

∞j , k ≥ 1. (A.5-7)

By arranging the eigenvectors as the columns of two nonsingular matrices
according to

Z = [zk
ij |zk

∞j],W = [Fzk
ij |Gzk

∞j] (A.5-8)

with i, j, k incrementing in odometer order, then

W−1FV =
[
I 0
0 N

]
, W−1GV =

[
M 0
0 I

]
, (A.5-9)

where M is a Jordan form matrix containing the finite generalized eigenvalues
of (G, F) and N is a nilpotent Jordan matrix representing the infinite generalized
eigenvalues. The above canonical form is also known as the Weierstrass form .

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 527

REFERENCES

Abu-Khalaf, M., and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network HJB approach,” Automatica , 41, 779–791
(2005).

Abu-Khalaf, M., F. L. Lewis, and Jie Huang, “Policy iterations on the Hamilton-Jacobi-
Isaacs equation for H∞ state feedback control with input saturation,” IEEE Trans.
Automatic Control , 51 (12), 1989–1995 (2006).

Abu-Khalaf, M., J. Huang, and F. L. Lewis, Nonlinear H2/H-Infinity Constrained Feed-
back Control: A Practical Design Approach Using Neural Networks , Berlin: Springer-
Verlag, 2006.

Abu-Khalaf, M., F. L. Lewis, and J. Huang, “Neurodynamic programming and zero-
sum games for constrained control systems,” IEEE Trans. Neural Networks , 19 (7),
1243–1252 (2008).

Al-Tamimi, A., F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB solution
using approximate dynamic programming: convergence proof,” IEEE Trans. Systems,
Man, Cybernetics, Part B , 38 (4), 943–949 (2008).

Anderson, B. D. O., and Y. Liu, “Controller reduction: concepts and approaches,” IEEE
Trans. Automatic Control , AC-34, 802–812 (1989).

Anderson, B. D. O., and J. B. Moore, Linear Optimal Control , Englewood Cliffs, NJ:
Prentice-Hall, 1971.

Armstrong, E. S., ORACLS, A Design System for Linear Multivariable Control ,
New York: Dekker, 1980.

Åström, K. J., and B. Wittenmark, Computer Controlled Systems , Englewood Cliffs, NJ:
Prentice-Hall, 1984.

Athans, M., “A tutorial on the LQG/LTR method,” Proc. Am. Control Conf., 1289–1296
(1986).

527

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 528

528 REFERENCES

Athans, M., and P. Falb, Optimal Control , New York: McGraw-Hill, 1966.

Athans, M., P. Kapsouris, E. Kappos, and H. A. SpangIII, “Linear quadratic Gaussian
with loop-transfer recovery methodology for the F-100 engine,” J. Guid., 9, 45–52
(1986).

Baird, L., “Reinforcement learning in continuous time: advantage updating,” Proc. Inter-
national Conference on Neural Networks , Orlando, FL, June 1994.

Balakrishnan, S. N., J. Ding, and F. L. Lewis, “Issues on stability of ADP feedback
controllers for dynamical systems,” IEEE Trans. Systems, Man, Cybernetics, Part B ,
38 (4), 913–917 (2008).

Bardi, M., and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations , Boston: Birkhauser, 1997.

Bartels, R. H., and G. W. Stewart, “Solution of the matrix equation AX + XB = C ,”
Commun. ACM 15 (6), 820–826 (1984).

Barto, A. G., R. S. Sutton, and C. Anderson. “Neuron-like adaptive elements that can solve
difficult learning control problems,” IEEE Trans. Systems, Man Cybernetics , SMC-13,
834–846 (1983).

Başar, T., and G. J. Olsder, Dynamic Noncooperative Game Theory , 2nd ed., Philadelphia,
PA: SIAM, 1999.

Bell, R. F., E. W. Johnson, R. V. Whitaker, and R. V. Wilcox, “Head positioning in a
large disk drive,” Hewlett Packard J., pp. 14–20, Jan. 1984.

Bellman, R. E., Dynamic Programming , Princeton, NJ: Princeton University Press, 1957.

Bellman, R. E., and S. E. Dreyfus, Applied Dynamic Programming , Princeton, NJ, Prince-
ton University Press, 1962.

Bellman, R. E., and R. E. Kalaba, Dynamic Programming and Modern Control Therapy ,
Orlando, FL Academic Press, 1965.

Bertsekas, D. P., and J. N. Tsitsiklis, Neuro-dynamic Programming , Athena Scientific,
Cambridge, MA, 1996.

Bierman, G. J., Factorization Methods for Discrete Sequential Estimation , Orlando FL:
Academic Press, 1977.

Bittanti, S., A. J. Laub, and J. C. Willems, The Riccati Equation , New York: Springer-
Verlag, 1991.

Blakelock, J. H., Automatic Control of Aircraft and Missiles , New York: Wiley, 1965.

Bradtke, S., B. Ydstie, and A. Barto, Adaptive Linear Quadratic Control Using Policy
Iteration , report CMPSCI-94-49, University of Massachusetts, June 1994.

Brewer, J. W., “Kronecker products and matrix calculus in system theory,” IEEE Trans.
Circuits Systems , CAS-25 (9), 772–781 (1978).

Brogan, W. L., Modern Control Theory , New York: Quantum, 1974.

Broussard, J., and N. Halyo, “Active flutter control discrete optimal constrained dynamic
compensators,” Proc. Am. Control Conf., 1026–1034 (1983).

Bryson, A. E., Jr., and Y. C. Ho, Appl. Optimal Control , New York: Hemisphere, 1975.

Businger, P., and G. H. Golub, “Linear least squares solution by householder transforma-
tions,” Numer. Math., 7, 269–276 (1965).

Busoniu, L., R. Babuska, B. De Schutter, and D. Ernst, Reinforcement Learning and
Dynamic Programming Using Function Approximators , Boca Raton, FL: CRC, 2009.

Cao, X., Stochastic Learning and Optimization , Berlin: Springer-Verlag, 2007.

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 529

REFERENCES 529

Casti, J., Dynamical Systems and Their Applications: Linear Theory , Orlando, FL:
Academic Press, 1977.

Casti, J., “The linear quadratic control problem: some recent results and outstanding
problems,” SIAM Rev., 22 (4), 459–485 (1980).

Chang, S. S. L., Synthesis of Optimum Control Systems , New York: McGraw-Hill, 1961.
Chen, B. M., Z. Lin, and Y. Shamash, Linear Systems Theory: a Structural Decomposition

Approach , Boston: Birkhauser, 2004.
Clarke, D. W., and P. J. Gawthrop, “Self-tuning controller,” Proc. IEE , 122 (9), 929–934

(1975).
Darwin, C., On the Origin of Species by Means of Natural Selection , London: J. Murray,

1859.
Davison, E. J., and I. J. Ferguson, “The design of controllers for the multivariable robust

servomechanism problem using parameter optimization methods,” IEEE Trans. Auto-
matic Control , AC-26, 93–110 (1981).

Doya, K. “Reinforcement learning in continuous time and space,” Neural Computation ,
vol. 12, pp. 219–245, MIT Press, 2000.

Doya, K., H. Kimura, and M. Kawato, “Neural mechanisms for learning and control,”
IEEE Control Systems Magazine, 42–54 (2001).

Doyle, J. C., “Guaranteed margins for LQG regulators,” IEEE Trans. Automatic Control ,
AC-23, 756–757 (1978).

Doyle, J. C., and G. Stein, “Robustness with observers,” IEEE Trans. Automatic Control ,
AC-24, 607–611 (1979).

Doyle, J. C., and G. Stein, “Multivariable feedback design: concepts for a classical/modern
synthesis,” IEEE Trans. Automatic Control , AC-26, 4–16 (1981).

Doyle, J. C., K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions
to standard H 2 and H ∞ control problems,” IEEE Trans. Automatic Control , AC-34,
831–847 (1989).

Dyer, P., and S. R. McReynolds, “Extension of square root filtering to include process
noise,” J. Optimiz. Theory Applic., 3 (6), 444 (1969).

Elbert, T. F., Estimation and Control of Systems , New York: Van Nostrand Reinhold,
1984.

Francis, B. A., A Course in H ∞ Control Theory , Springer Verlag, Lecture notes in Control
and Info. Sci., 88, (1986).

Francis, B. A., and J. C. Doyle, “Linear control theory with an H ∞ optimality criterion,”
SIAM J. Control Optim., 815–844 (1987).

Francis, B. A., J. W. Helton, and G. Zames, “H ∞-optimal feedback controllers for linear
multivariable systems,” IEEE Trans. Automatic Control , AC-29, 888–900 (1984).

Franklin, G. F., and J. D. Powell, Digital Control of Dynamic Systems , Reading, MA:
Addison-Wesley, 1980.

Franklin, G. F., J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Sys-
tems , Reading, MA: Addison-Wesley, 1986.

Fulks, W., Advanced Calculus , New York: Wiley, 1967.
Gangsaas, D., K. R. Bruce, J. D. Blight, and U.-L. Ly, “Application of modern synthesis to

aircraft control: three case studies,” IEEE Trans. Automatic Control , AC-31, 995–1014
(1986).

Gantmacher, F. R., The Theory of Matrices , New York: Chelsea, 1977.

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 530

530 REFERENCES

Gawthrop, P. J., “Some interpretations of the self-tuning controller,” Proc. IEEE Control
Sci., 124 (10), 889–894 (1977).

Gelb, A., ed., Applied Optimal Estimation , Cambridge, MA: MIT Press, 1974.

Golub, G. H., S. Nash, and C. Van Loan, “A Hessenberg-Schur method for the matrix
problem AX + XB = C ,” IEEE Trans. Automatic Control , AC-24, 909–913 (1979).

Green, M., and D. Limebeer, Robust Control Theory , Englewood Cliffs, NJ: Prentice-Hall,
1993.

Grimble, M. J., and M. A. Johnson, Optimal Control and Stochastic Estimation: Theory
and Applications , vol. 1, New York: Wiley, 1988.

Hanselmann, T., L. Noakes, and A. Zaknich, “Continuous-time adaptive critics,” IEEE
Trans. Neural Networks , 18 (3), 631–647 (2007).

Harvey, C. A., and G. Stein, “Quadratic weights for asymptotic regulator properties,”
IEEE Trans. Automatic Control , AC-23, 378–387 (1978).

Hewer, G. A., “An iterative technique for the computation of steady state gains for the
discrete optimal regulator,” IEEE Trans. Automatic Control , 16 (4), 382–384 (1971).

IMSL, Library Contents Document , 8th ed., International Mathematical and Statistical
Libraries, Inc., 7500 Bellaire Blvd., Houston, Texas, 77036, 1980.

Ioannou, P., and B. Fidan, Adaptive Control Tutorial , Philadelphia: SIAM Press, 2006.

Jadbabaie, A., J. Lin, and S. Morse, “Coordination of groups of mobile autonomous agents
using nearest neighbor rules,” IEEE Trans. Automatic Control , 48 (6), 988–1001
(2003).

Kailath, T., Linear Systems , Englewood Cliffs, NJ: Prentice-Hall, 1980.

Kalman, R. E., “New methods in Wiener filtering Theory,” Proceedings of the Symposium
on Engineering Applications of Random Function Theory and Probability , New York:
Wiley, 1963.

Kalman, R. E., and R. S. Bucy, “New results in linear filtering and prediction theory,”
Trans. ASME J. Basic Eng., 83, 95–108 (1961).

Kaminski, P. G., A. E. Bryson, and S. F. Schmidt, “Discrete square root filtering: a survey
of current techniques,” IEEE Trans. Automatic Control , AC-16 (6), 727–736 (1971).

Kimura, H., Y. Lu, and R. Kawatani, “On the structure of H ∞ control systems and related
extensions,” IEEE Trans. Automatic Control , AC-36, 653–667 (1991).

Kirk, D. E., Optimal Control Theory , Englewood Cliffs, NJ: Prentice-Hall, 1970.

Kleinman, D. L., “On an iterative technique for Riccati equation computations,” IEEE
Trans. Automatic Control , AC-13 (1), 114–115. (1968).

Knobloch, H. W., A. Isidori, and D. Flokcerzi, Topics in Control Theory , Berlin: Springer-
Verlag, 1993.

Koivo, H. N., “A multivariable self-tuning controller,” Automatica , 16, 351–366 (1980).

Kreindler, E., and D. Rothschild, “Model-following in linear quadratic regulator,” AIAA
J., 14 (7), 835–842 (1976).

Kuèera, V., Discrete Linear Control, The Polynomial Equation Approach , New York:
Wiley, 1979.

Kwakernaak, H., and R. Sivan, Linear Optimal Control Systems , New York: Wiley-
Interscience, 1972.

Lancaster, P., and L. Rodman, Algebraic Riccati Equations , Oxford University Press, UK,
1995.

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 531

REFERENCES 531

Laub, A. J., “A Shur Method for Solving Algebraic Riccati Equations,” IEEE Trans.
Automatic Control , AC-24, 913–921 (1979).

Laub, A. J., “Efficient Multivariable Frequency Response Computations,” IEEE Trans.
Automatic Control , AC-26, 407–408 (1981).

Letov, A. M., “Analytical Controller Design, I, II,” Autom. Remote Control , 21, 303–306
(1960).

Levine, W. S., and M. Athans, “On the Determination of the Optimal Constant Output
Feedback Gains for Linear Multivariable Systems,” IEEE Trans. Automatic Control ,
AC-15, 44–48 (1970).

Lewis, F. L., Optimal Estimation , New York: Wiley, 1986.

Lewis, F. L., and D. Vrabie, “Reinforcement learning and adaptive dynamic programming
for feedback control,” IEEE Circuits Systems Mag., 32–38 (2009).

Lewis, F. L., L. Xie, and D. Popa, Optimal & Robust Estimation: With an Introduction
to Stochastic Control Theory}, 2nd ed., Boca Raton, FL: 2007.

Lewis, F. L., G. Lendaris, and Derong Liu, “Special issue on approximate dynamic pro-
gramming and reinforcement learning for feedback control,” IEEE Trans. Systems, Man
Cybernetics, Part B , 38 (4) (2008).

Li, Z. H., and M. Krstic, “Optimal design of adaptive tracking controllers for nonlinear
systems,” Automatica , 33 (8), 1459–1473 (1997).

Ljung, L., System Identification , Englewood Cliffs, NJ: Prentice-Hall, 1999.

Luenberger, D. G., Optimization by Vector Space Methods , New York: Wiley, 1969.

Luenberger, D. G., Introduction to Dynamic Systems , New York: Wiley, 1979.

MacFarlane, A. G. J., “Return difference and return-ratio matrices and their use in the anal-
ysis and design of multivariable feedback control systems,” Proc. IEE , 117, 2037–2049
(1970).

MacFarlane A. G. J., and B. Kouvaritakis, “A Design Technique for Linear Multivariable
Feedback Systems,” Int. J. Control , 25, 837–874 (1977).

Marion, J. B., Classical Dynamics of Particles and Systems , Orlando, FL: Academic Press,
1965.

MATLAB, The MathWorks, Inc., Cochituate Place, 24 Prime Parkway, Natick, MA 01760,
1992.

McClamroch, N. H., State Models of Dynamic Systems , New York: Springer-Verlag, 1980.

McFarlane, D., and K. Glover, “A loop shaping design procedure using H ∞ synthesis,”
IEEE Trans. Automatic Control AC-37, 759–769 (1992).

McReynolds, S. R., Ph.D. thesis, Harvard University, Cambridge, MA, 1966.

Medanic, J., “Closed-loop Stackelberg strategies in linear quadratic problems,” IEEE
Trans. Automatic Control , AC-23, 632–637 (1978).

Mehta, P., and S. Meyn, “Q-learning and Pontryagin’s minimum principle,” Proc. IEEE
Conf. Decision and Control , 3598–3605. (2009).

Mendel, J. M., and R. W. MacLaren, “Reinforcement learning control and pattern recog-
nition systems,” in Adaptive, Learning, and Pattern Recognition Systems: Theory and
Applications , ed. Mendel, J. M., and K. S. Fu, pp. 287–318, New York: Academic
Press, 1970.

Mil. Spec. 1797, Flying Qualities of Piloted Vehicles , 1987.

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 532

532 REFERENCES

Moerder, D. D., and A. J. Calise, “Convergence of a numerical algorithm for calculating
optimal output feedback gains,” IEEE Trans. Automatic Control , AC-30, 900–903
(1985).

Moore, B. C., “Principal component analysis in linear systems: controllability, observ-
ability and model reduction,” IEEE Trans. Automatic Control , AC-26, 17–32 (1982).

Moore, K. L., Iterative Learning Control for Deterministic Systems , London: Springer-
Verlag, 1993.

Morari, M., and E. Zafiriou, Robust Process Control , Englewood, NJ: Prentice-Hall, 1989.

Morf, M., and T. Kailath, “Square root algorithms for least-squares estimation,” IEEE
Trans. Automatic Control , AC-20 (4), 487–497 (1975).

Murray, J., C. Cox, R. Saeks, and G. Lendaris, “Globally convergent approximate dynamic
programming applied to an autolander,” Proc. Am. Control Conf., pp. 2901–2906,
Arlington, VA, 2001.

Nelder, J. A., and R. Mead, “A simplex method for function minimization,” Comput. J.
7, 308–313 (1964).

Nevistic, V., and J. Primbs, Constrained Nonlinear Optimal Control: A Converse HJB
Approach , Technical Report 96-021, California Institute of Technology, 1996.

O’Brien, M. J., and J. B. Broussard, “Feedforward control to track the output of a forced
model,” Proc. IEEE Conference on Decision and Control , Dec. 1978.

Olfati-Saber, R., and R. M. Murray, “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Trans. Automatic Control , 49 (9),
1520–1533 (2004).

Papavassilopoulos, G. P., and J. B. Cruz, Jr., “On the existence of solutions to coupled
matrix Riccati differential equations in linear quadratic Nash games,” IEEE Trans.
Automatic Control , AC-24, 127–129 (1979).

Papoulis, A., Probability, Random Variables, and Stochastic Processes , 2nd ed., New
York: McGraw Hill, 1984.

Pappas, T., A. J. Laub, and N. R. Sandell, “On the numerical solution of the discrete-time
algebraic Riccati equation,” IEEE Trans. Automatic Control , AC-25, 631–641 (1980).

Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The
Mathematical Theory of Optimal Processes , New York: Wiley-Interscience, 1962.

Postlethwaite, I., J. M. Edmunds, and A. G. J. MacFarlane, “Principal gains and principal
phases in the analysis of linear multivariable systems,” IEEE Trans. Automatic Control ,
AC-26, 32–46 (1981).

Powell, W. B., Approximate Dynamic Programming , Hoboken, NJ: Wiley, 2007.
Press, W. H., B. P. Flanerry, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes:

The Art of Scientific Computing , New York: Cambridge University Press, 1986.

Rosenbrock, H. H., Computer-aided Control System Design , New York: Academic Press,
1974.

Safanov, M. G., and M. Athans, “Gain and phase margin for multiloop LQG regulators,”
IEEE Trans. Automatic Control , AC-22, 173–178 (1977).

Safanov, M. G., A. J. Laub, and G. L. Hartmann, “Feedback properties of multivariable
systems: the role and use of the return difference matrix,” IEEE Trans. Automatic
Control , AC-26, 47–65 (1981).

Sandell, W. R., “Decomposition vs. decentralization in large-scale system theory,” Proc.
Conf. Dec. Control , 1043–1046 (1976).

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 533

REFERENCES 533

Schmidt, S. F., “Estimation of state with acceptable accuracy constraints,” TR 67-16,
Analytical Mechanics Assoc., Palo Alto, California, 1967.

Schmidt, S. F., “Computational techniques in Kalman filtering,” Theory and Applications
of Kalman Filtering , Chap. 3, NATO Advisory Group for Aerospace Research and
Development, AGARDograph 139, Feb. 1970.

Schultz, D. G., and J. L. Melsa, State Functions and Linear Control Systems , New York:
McGraw-Hill, 1967.

Schultz, W,. “Neural coding of basic reward terms of animal learning theory, game theory,
microeconomics and behavioral ecology,” Neurobiology , 14, 139–147 (2004).

Sewell, G., “IMSL software for differential equations in one space variable,” IMSL Tech.
Report Series, No. 8202, 1982. IMSL, Inc., 7500 Bellaire Blvd., Houston, TX 77036.

Shin, V., and C. Chen, “On the Weighting Factors of the Quadratic Criterion in Optimal
Control,” Int. J. Control , 19, 947–955 (1974).

Si, J., A. Barto, W. Powell, and D. Wunsch, Handbook of Learning and Approximate
Dynamic Programming , IEEE Press, USA, 2004.

Söderström, T., “On some algorithms for design of optimal constrained regulators,” IEEE
Trans. Automatic Control , AC-23, 1100–1101 (1978).

Southworth, R. W., and S. L. Deleeuw, Digital Computation and Numerical Methods ,
New York: McGraw-Hill, 1965.

Stein, G., and M. Athans, “The LQR/LTR procedure for multivariable feedback control
design,” IEEE Trans. Automatic Control , AC-32, 105–114 (1987).

Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation , New York: Wiley, 1992.
Strang, G., Linear Algebra and Its Applications , 2nd ed. Orlando, FL: Academic Press,

1980.

Sutton, R. S., and A. G. Barto, Reinforcement Learning—An Introduction , Cambridge,
MA: MIT Press, 1998.

Tsitsiklis, J., Problems in Decentralized Decision Making and Computation , Ph.D. dis-
sertation, Dept. Elect. Eng. and Comput. Sci., Cambridge, MA: MIT, 1984.

Vamvoudakis, K. G., and F. L. Lewis, “Online actor-critic algorithm to solve the
continuous-time infinite horizon optimal control problem,” Automatica , 46 (5),
878–888 (2010a).

Vamvoudakis, K. G., and F. L. Lewis, “Online solution of nonlinear two-player zero-sum
games using synchronous policy iteration”, Proc. IEEE Conf. Decision & Control,
3040–3047 (2010b).

Vamvoudakis, K. G., and F. L. Lewis, “Multi-player non-zero sum games: online adaptive
learning solution of coupled Hamilton-Jacobi equations,” Automatica , 47 (8), 1556–1
2011.

van der Schaft, A. J., “L2 -Gain analysis of nonlinear systems and nonlinear state feedback
H ∞ control,” IEEE Trans. Automatic. Control , 37 (6), 770–784 (1992).

Vaughan, D. R., “A nonrecursive algebraic solution to the discrete Riccati equation,” IEEE
Trans. Automatic Control , AC-15, 597–599 (1970).

Verriest, E. I., and F. L. Lewis, “On the linear quadratic minimum-time problem,” IEEE
Trans. Automatic Control , AC-36, pp. 859–863, July 1991.

Vrabie, D., and F. L. Lewis, “Neural network approach to continuous-time direct adaptive
optimal control for partially-unknown nonlinear systems,” Neural Networks , 22 (3),
237–246 (2009).

Lewis bref.tex V1 - 10/19/2011 5:31pm Page 534

534 REFERENCES

Vrabie, D., and F. L. Lewis, “Adaptive dynamic programming algorithm for finding online
the equilibrium solution of the two-player zero-sum differential game,” Proc. Int. Joint
Conf. Neural Networks , 1–8 (2010a).

Vrabie, D., and F. L. Lewis, “Integral reinforcement learning for online computation
of feedback Nash strategies of nonzero-sum differential games,” Proc. IEEE Conf.
Decision Control , 3066–3071 (2010b).

Vrabie, D., O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive optimal control for
continuous-time linear systems based on policy iteration,” Automatica , 45, 477–484
(2009).

Wang, F. Y., H. Zhang, D. Liu, “Adaptive dynamic programming: an introduction,” IEEE
Computational Intelligence Magazine, 39–47 (2009).

Watkins, C., Learning from Delayed Rewards , Ph.D. Thesis, Cambridge, UK: Cambridge
University, 1989.

Watkins, C., and P. Dayan, “Q-learning,” Machine Learning , 8, 279–292 (1992).

Werbos, P. J., “Neural networks for control and system identification,” Proc. IEEE Conf.
Decision and Control , Florida, 1989.

Werbos., P. J., “A menu of designs for reinforcement learning over time,” Neural Networks
for Control , pp. 67–95, ed. W. T. Miller, R. S. Sutton, and P. J. Werbos, Cambridge,
MA: MIT Press, 1991.

Werbos, P. J., “Approximate dynamic programming for real-time control and neural mod-
eling,” Handbook of Intelligent Control , ed. D. A. White and D. A. Sofge, New York:
Van Nostrand Reinhold, 1992.

Wheeler, R. M., and K. S. Narendra, “Decentralized learning in finite Markov chains,”
IEEE Trans. Automatic Control , 31 (6), 1986.

Wolovich, W. A., Linear Multivariable Systems , New York: Springer-Verlag, 1974.

Zames, G., “Feedback and optimal sensitivity: model reference transformations, multi-
plicative seminorms and approximate inverses,” IEEE Trans. Automatic Control , 26,
301–320 (1981).

Zhang, H., J. Huang, and F. L. Lewis, “Algorithm and stability of ATC receding horizon
control,” Proc. IEEE Symp. ADPRL, pp. 28–35, Nashville, TN, Mar. 2009.

INDEX

Abnormal function-of-final-
state-fixed regulator
problem, 185, 204

Ackermann’s formula, 91, 100,
161

Action-dependent heuristic
dynamic programming,
501

Actor–critic implementation
(of DT optimal adaptive
control), 500

Actor–critic structures, 463, 475
Adaptive control, optimal:

for discrete-time systems,
490–491

using policy iteration
algorithm, 494–495

using value iteration algorithm,
495–496

Adaptive controllers, 461–462
direct vs. indirect, 463–464

Adaptive dynamic programming,
464

Adjoint system, 313
continuous, 114
discrete, 23, 34, 194, 205

Admissible controls, 439, 491
Admissible cost, 265
Affine state-variable feedback,

179, 194
Aircraft:

longitudinal autopilot, example,
166–167, 293–295

routing, example, 261–262

Arithmetic mean, 18
Asymptotic properties of the

LQR, 307
Asynchronous value iteration,

478–479
Augmented state description, 343

Bandwidth, 356, 366
Bang-bang control, 234
Bang-off-bang control, 246–248
Bellman equation, 439–440, 446,

455, 462
and dynamic programming,

468–469
policy evaluation/improvement

by, 474
Bellman Ford algorithm, 479
Bellman’s principle of optimality,

260–261
for continuous systems,

277–278
for discrete systems, 263–264
and dynamic programming,

260–261, 467–468
Bilinear system:

continuous optimal control,
169

discrete optimal control, 102
dynamic programming,

283–284
perturbation control, 212

Bilinear tangent control law, 126
Bode magnitude plot, 357, 359
Bode multivariable plot, 361–363

Bode singular value plot,
364–365

Boundary conditions, 20, 23
Bounded L2-gain problem,

450–452
Brachistochrone problem,

220–224

Cargo loading, 285
Chain rule for differentiation, 525
Chang-Letov equation, 99–100,

165
Closed-loop, poles, 297
Closed-loop control, 41–53,

143–146, 190, 195, 307
Closed-loop Markov chain,

472–473
Closed-loop system, 90, 97, 144,

154, 179, 194, 300
adjoint, 179, 185, 194, 205
characteristic polynomial, 97,

164, 291
locus of poles, 78, 93, 167
optimal steady-state poles, 91,

100, 108, 161, 165
for polynomial regulator, 291

Closest point of approach, 16
Command-generator tracker

(CGT), 332–338
Complimentary sensitivity, see

Cosensitivity
Computer simulation, 21

bang-bang control, 243–245
bang-off-bang control, 253

535

536 INDEX

Computer simulation (continued)
digital control, 54
harmonic oscillator, 106, 152
linear quadratic regulator, 146,

149–150
linear quadratic tracker, 180
Newton’s system, 77,

243–245, 253
preliminary analysis for, 49,

61
scalar optimal control, 30–31,

149–150
scalar system, 49, 149–150
scalar tracker, 181

Conjugate gradient method, 15
Conservation of energy, 117
Constant output feedback, 316
Constraints:

on control, 232, 262,
263–264

on state, 262, 263–264
Constraint equation, 4–5
Continuous-time systems:

integral reinforcement learning
for optimal adaptive
control of, 503–505

online implementation,
507–508

using policy iteration, 506
using value iteration, 506

synchronous optimal adaptive
control for, 513–514

Control delay, 288
Controllability, see Reachability
Control-weighting matrix, 299
Convergence, conditions for,

304–305
Cooperative control systems, 481
Coriolis force, 224
Cosensitivity, 360

and sensitivity, 357–361
Costate, 23

equation, 24, 32–35, 115, 135
Coupled nonlinear matrix

equation, 302, 346–347
Critical point, 2
Cubic equation for optimal

solution, 16, 124
Curse of dimensionality, 274
Curvature matrix:

constrained, 9, 210
continuous, 145–146, 189
discrete, 46, 210
unconstrained, 2

Curve, length between two
points, 117

Cycloid, 224

Damping ratio, 158
Deadbeat control, 104
Dead-zone function, 248

Decentralized control, 343–344
linear quadratic regulator,

345–347
Definiteness of matrices,

521–523
Delay operator, 198, 288
Descriptor systems, 102
Design parameters, 305

tuning the, 305
Detectability, 70, 156
Deterministic policies, 465
Deviation system, 317–319
Deyst filter, 401
Digital control, 30–31, 50–51,

53–54, 272–274, 292
harmonic oscillator, 106
Newton’s system, example,

59–63
RC circuit, example,

55–58
Diophantine equation, 290
Discretization:

of continuous performance
index, 271–274

of continuous system, 53,
271–274

of transfer function, 292
Disturbance(s):

discrete system with,
182–183

and performance robustness,
356

Dual optimization problems,
17, 18

Dynamic(s):
augment the, 368
compensator, 314
optimization, 299–300

Dynamic programming, 462,
467–468

Eigenstructure assignment design
of steady-state regulator,
90–92, 160–161

Eigenvalues:
of inverse of a matrix, 519
of Kronecker product, 519

Eigenvectors:
of Hamiltonian matrix, 34, 81,

90, 108, 159
of Kronecker product, 519
of optimal closed-loop system,

90–91
Ergodic Markov chains, 466
Estimation error, 396
Euclidean norm, 298
Euler’s approximation, 273
Euler’s equation, 117, 131

via HJB equation, 281
Explicit model-following design,

338–343

Feedback:
output, 291
state, see State-variable

feedback
suboptimal, 65–68

Fictitious follower, 349
Fictitious output, 70, 98, 156, 164
Field of extremals, 269, 284
Filters, washout, 313
Final state:

fixed, 24, 25–28, 38–40, 46,
119–120, 138–141,
170, 201

free, 24, 28–30, 41–53,
143–146, 170, 201

on moving point, 214, 228
on surface, 215

Fixed-final-state control, 38–40,
46, 138–141

state feedback formulation,
149, 171, 183–185,
194–195

Free-final-state control, 44,
120–121

Frequency domain design of
linear quadratic regulator,
164–167

Frequency-domain techniques,
355

Functional equation of dynamic
programming, 264

Gain(s):
optimal, 375
scheduling, 311–313

Game theory, 344, 438–439.
See also Zero-sum games

Generalized state-space systems,
discrete optimal control,
102

Geometric mean, 18
Gradient, 1

based solution, 321
minimization algorithm, 321
numerical methods, 15
vector, 523

Gramian, see Observability
gramian; Reachability
gramian

H∞ control, application of
zero-sum games to,
450–453

H∞ design, 357, 430–435
Hamiltonian, 348
Hamiltonian function, 6, 22, 32,

113, 135, 278
Hamiltonian matrix:

continuous, 136, 159
discrete, 34, 80, 90, 101

INDEX 537

eigenvectors, 34, 81, 90, 108,
159, 175

Hamiltonian system:
continuous, 131, 136,

158–159, 172, 178
discrete, 34, 80, 90, 192

Hamilton-Jacobi-Bellman
equation, 277–279,
440–441, 443, 449,
468–469

Hamilton’s equations of motion,
117

Hamilton’s principle, 116–117
Harmonic oscillator:

digital control of, 106
eigenstructure design, 92–95,

161–163
linear quadratic regulator,

150–153
minimum-fuel control, 259
minimum-time control, 259
root-locus design, 99
steady-state regulator, 99
zero input cost, 172

Helicopter longitudinal autopilot,
293–295

Hessian matrix, 1, 523
Hewer’s algorithm, 482–483

Indirect adaptive controllers, 462,
463

Infinite horizon optimal control
problem, 75, 93, 157, 180,
196

Integral reinforcement learning
for optimal adaptive
control of continuous-time
systems, 503–505

online implementation,
507–508

using policy iteration, 506
using value iteration, 506

Intercept problem, 122, 127–128,
215–216, 235–239

Interpolation for discrete dynamic
programming, 274–276

Inverse of partitioned matrix, 520
Iterative learning control, 488

Jacobian, 5, 524

Kalman filter, 391–404
Kalman gain:

continuous dynamic, 144
discrete dynamic, 43, 105, 193,

203
static, 17
steady-state, 69, 74, 90, 161,

174
Kernel matrix, 36, 46, 137
Kronecker product, 103, 172, 519

Lagrange multiplier, 6–7, 22,
113, 200, 301, 399

Lagrange’s equations of motion,
116–117

Lagrangian for a dynamical
system, 116

Leading minors of matrix, 522
Learning:

Monte Carlo, 488
reinforcement, 462–464,

503–505
temporal difference, 489–490

Leibniz’s rule, 111
Linearized plant model, 355
Linear minimum-energy problem,

254–257
Linear minimum-fuel problem,

246–248
Linear minimum-time problem,

213–214, 228–230
Linear quadratic

Gaussian/loop-transfer
recovery (LQG/LTR), 357

Linear quadratic multiplayer
games, 459–460

Linear quadratic problem:
continuous dynamic systems,

135–157
discrete dynamic systems, 32
static, example, 11

Linear quadratic regulator,
443–444

continuous state-costate
formulation, 135

continuous state feedback
formulation, 144–145

derivation by dynamic
programming, 270–271

derivation via HJB equation,
281–283

discrete state-costate
formulation, 32, 99

discrete state feedback
formulation, 96

eigenstructure design, 108,
160–161

frequency domain design,
96–100, 165–166

with function of final state
fixed, 185, 204–205

perturbation, 188, 206–209
for polynomial systems, 290
root-locus design, 99, 108, 165
steady-state, 90, 96–97, 156
suboptimal, 65–66, 154
with weighting of state-input

inner product, 52–53,
104, 153–154

Linear quadratic tracker:
continuous affine feedback

formulation, 179

continuous state-costate
formulation, 178–179

derivation via HJB equation,
286

discrete affine feedback
formulation, 194

discrete state-costate
formulation, 192

formulated as regulator, 183,
198–199

for polynomial systems, 288
suboptimal, 180, 195–196
time-invariant, 196

Linear quadratic zero-sum games,
452–453

Linear tangent control law, 217
Loop gain, 97, 164, 356

singular value, 357
Loop transfer recovery (LTR),

408–430
Low frequency specifications,

367
LQ solution algorithm, 304–305
LQ tracker with output feedback,

322
Lyapunov equation, 184, 300,

347, 350
algebraic, 37, 103, 136
closed-loop, 66, 74, 154
continuous observability, 136,

175
continuous reachability, 140,

175
discrete observability, 36, 46
discrete reachability, 36
online solution, 496
scalar, 48
solution, 36, 40, 46, 136, 137,

140
and value iteration, 483
as vector equation, 103, 172

Markov chain, closed-loop,
472–473

Markov decision processes,
464–473

Matrix design equation, 297
Matrix inversion lemma, 360, 520
Maximum, 2
Microprocessors, 53
Minimum, see Necessary

conditions for minimum;
Sufficient conditions for
minimum

Minimum-energy problem, 21,
25, 38–39, 139

constrained, 254–257
Minimum-fuel problem, 261–262

linear, 246–248
normal, 248

538 INDEX

Minimum-time problem,
213–214, 228–230

with control weighting,
257–258

linear, 234
normal, 238

Model-following control, 289,
296

Model-following regulator,
340–343

Modelling errors, 355
Model reduction, 373–378
Monte Carlo learning, 488
Multi-Input Multi-Output

(MIMO) systems, 297, 356
Multiplayer games, linear

quadratic, 459–460
Multiplayer non-zero-sum games,

453
Multiplicative uncertainties, 372
Multivariable Bode plot,

361–363

Nash equilibrium, 454, 456
Nash game, 347–348
Natural frequency, 158
Necessary conditions for

minimum, 185
continuous linear quadratic

regulator, 144–145,
185

continuous linear quadratic
tracker, 179

discrete linear quadratic
regulator, 34, 205

discrete linear quadratic
tracker, 194

general continuous systems,
115

general discrete systems, 23
static, 2, 6, 8

Negative definite, 522
Neighboring optimal solutions,

14, 187, 208
Neural networks, 497–498
Neuro-dynamic programming,

493
Newton’s system, examples:

bang-bang control, 239–245
bang-off-bang control,

239–245
constrained minimum-energy

control, 248–253
digital control, 59–63
limiting control, 77–80
open-loop control, 141–143
optimal control, problem, 171
optimal control via HJB

equation, 286
optimal steady-state poles, 157,

173

steady-state control, 78, 157,
173

suboptimal control, 78, 174
tracker, 196–197, 211
zero-input cost, 172

Nominal trajectory, 209
Nonlinear matrix equations,

coupled, 302
Nonlinear non-zero-sum games,

453–458
Nonlinear systems:

discretization of, 271–274
function-of-final-state-fixed

regulator, 199–201
optimal control, 24, 102, 115,

131–132, 439–441
optimal control by

approximation,
168–169

optimal control using dynamic
programming,
264–274, 276

perturbation control, 186–187,
206–209

tracking problem, 177–178,
190–191

Non-zero-sum games, 453
cooperative/competitive

aspects of, 459
Norm, 521
Normal function-of-final-state-

fixed regulator problem,
185, 204

Normal minimum-fuel problem,
248

Normal minimum-time problem,
238–239

Normal system, 238
Numerical solution methods:

gradient, 15
steepest descent, 15

Observability, 37, 70, 156,
305–306

canonical, 32, 341, 342
time-varying plant, 96,

163–164, 175
Observability gramian:

continuous, 137
discrete, 37
time-varying plant, 96,

163–164
Observer(s):

design, 384–387
filter, ARE, 387
the Kalman filter, 383–408
output-input, 386

Observer, state, 291
Open-loop control:

continuous, 136–137, 143
discrete, 40

with function of final state
fixed, 172

scalar system, example, 27,
40–41, 135

Operator gain, 366–367
Optimal adaptive control

(continuous-time systems):
hybrid controller, 507–508
integral reinforcement learning

for, 503–505
Optimal adaptive control

(discrete-time systems),
490–491

actor–critic implementation,
500

Q learning, 501–503
Optimal control problem:

constrained minimum-energy,
254–257

continuous, 112
continuous linear quadratic,

135–136
discrete, 19
discrete linear quadratic, 32
infinite horizon, 75, 93, 157,

180
linear minimum-fuel, 246–248
linear minimum-time, 234,

257–258
nonlinear systems, 19, 112,

439–441
solution via HJB equation,

279–280
Optimal feedback gain, 305, 321
Optimal gains, 311–313
Optimal output feedback solution

algorithm, 304
Optimal policy, 467
Optimal quality function,

484–485
Optimal value, 467
Optimization:

constrained, 301
dual problem, 17
by scalar manipulations, 4

Orbit injection, minimum-time,
example, 224–226

Output feedback, 298
in decentralized control,

343–344
design, 302, 351–352
dynamic, 291
gain, 302
in game theory, 343–344
LQR with, 302–303
problem, 305
step-response shaping, 313
theory, 356

Output injection, 70
Output stabilization, 340

INDEX 539

Parameters, design, 305
PBH rank test, 72
Performance index, 319–320,

344–345
for continuous dynamic

systems, 112, 131,
135–157

cubic, 104
for discrete dynamic systems,

20, 32
discretization of, 271–274
infinite horizon, 75, 93, 157
linear, 104
minimum fuel, 21
minimum-time, 20, 213–214
minimum-time with control

weighting, 257–258
model-following, 289
optimal value of, 45, 140, 145,

220, 223
for polynomial systems, 288
quadratic, 21, 32, 131, 135
robustness, disturbances and,

356
specification, 365, 367

high frequency, 370–373
low frequency, 367

suboptimal, 66, 154
for tracking problem, 179, 194
for unconstrained

optimization, 1
with zero input, 35–37,

136–137
Perturbation control, 186–187,

206–209
of bilinear system, 212

Perturbation state equation, 186,
207

Phase margin, 356, 357
Phase plane, 242, 250
Plant parameter variations, 355
Policy evaluation, 474
Policy improvement, 474
Policy iteration:

algorithm, 475–476
generalized, 484
implementation models, 488
integral reinforcement learning

for optimal adaptive
control using, 506

optimal adaptive control using,
494–495

temporal difference learning
using, 492

using Q function, 487
Polynomials:

continuous decomposition, 176
discrete decomposition, 108
mirror image, 108
reciprocal, 108

Polynomial regulator:
continuous, 295–296
discrete, 291

Polynomial techniques, 430–431
Pontryagin’s minimum principle,

232, 260, 281, 440
Positive definite, 521
Precompression, 368

balancing, 370
zero steady-state, 370

Predictive formulation of
polynomial system, 290

Preliminary analysis for computer
simulation, 49, 61

Proportional navigation, 125

Q function, 484–485
defined, 484
policy iteration using, 487
value iteration using, 487

Q learning, for optimal adaptive
control, 501–503

Quadratic equation for optimal
final time, 130

Quadratic form, 521–523
Quadratic performance index,

298–299
Quadratic surfaces, example, 2,

9–10
Quantization for discrete dynamic

programming, 274–276

Reachability, 40, 70, 139, 146,
238

time-varying plant, 96,
163–164, 175

Reachability gramian:
continuous, 139
discrete, 39–40, 46, 205
time-varying plant, 96,

163–164
Reachability matrix, 39–40, 72,

91, 238
Reachable canonical form, 292
Rectangle:

inside ellipse, 18
of maximum area, 17

Reference-input tracking,
313–314

Regulator redesign, 328–329
model-following regulator,

340–343
Reinforcement learning, 462–464

integral, for optimal adaptive
control of continuous-
time systems, 503–505

Rendezvous problem, 60, 122
Return difference, 97, 164
Riccati equation, 434–435

algebraic, 69, 97, 155, 174,
175

analytic solution, 80–84,
107–108, 155,
158–160

continuous, 144, 283
destabilizing solution, 175
discrete, 43, 194, 202
information formulation, 105
Joseph formulation, 44, 66,

103, 144, 154, 172, 271
limiting behavior, 70–71, 96,

153, 155–156
online solution, 483–484, 496,

508–509
solution from Hamiltonian

system solutions, 172
square-root formulations, 105
stabilizing solution, 175
as vector equation, 173

Robust design, 313, 356–357,
380–383

Rollout algorithms, 479
Root locus, 78, 94, 99, 108, 165
Runge-Kutta integrator, 40

Saddle point, 2
Satellite, 113
Saturated control, 236
Saturation function, 257
Scalar system, examples:

constrained minimum-energy
control, 59

digital control, 55–58
dynamic programming,

264–270, 274–276
linear quadratic regulator, 47
minimum-fuel control, 59
minimum-time control,

258–259
open-loop control, 40–41, 141
optimal control, 25, 148–151
optimal control via HJB

equation, 279–280
steady-state control, 75–77,

174
steady-state tracker, 181–182
suboptimal control, 66–67,

173–174
tracker, example, 180–182
uncontrolled, 138

Schur complement, 6, 520
Seminorm, 523
Sensitivity:

and cosensitivity, 357–361
function, 356

Sensitivity matrix for initial
costate, 132

Separation of variables, 148, 280
Separation principle, 404–408
Sequential decision problems,

465–467
Servo compensator, 334–335

540 INDEX

Shortest distance:
from point to line, 16,

226–228
between two points, 16, 117

Shortest path problems, 479
Signum function, 237
Singular control interval, 238,

248
Singular point, 3
Singular value:

maximum, 362
minimum, 363

Solution, gradient-based, 321
Square root of matrix, 522
Stability augmentation systems

(SAS), 297
Stability robustness, 355, 356,

371
Stabilizability, 70, 156
Stabilization of multi-input plant,

74, 157
Stackelberg games, 348–351
Stacking operator, 103, 172, 519
Stage cost, 465
Standard-feedback configuration,

358
State observer, 291
State trajectories, temporal

difference learning along,
489–490

State transition matrix, 54, 95,
163

of adjoint closed-loop system,
184, 205

State-variable feedback, 43–44,
70, 278

affine, 179, 194
for bang-bang control,

247–245
graphical, 219, 223, 261, 268
implicit, 219, 223
nonlinear, 219, 223, 258

Stationarity condition, 7, 12, 23,
33, 115, 136, 281

Stationary point, 2
Steady-state control, 75–77, 90,

99, 155, 165–166, 180
Steady-state cost, 37, 137, 149
Steepest descent algorithm, 15
Stochastic strategies or policies,

465

Suboptimal control, 66, 78, 180,
195–196

Suboptimal cost, 7
Suboptimal feedback gain,

65–66, 154
Sufficient conditions for

minimum:
continuous systems, 187–190
discrete systems, 208
static, 2, 9

Sweep method:
continuous, 143, 179, 184
discrete, 42, 192, 202

Switching:
curve, 242
function, 237
time, 240–241

Symmetric part:
of matrix, 521
of polynomial, 108, 176

Symplectic matrix, 81
Synchronous optimal adaptive

(continuous-time systems),
513–514

Target set of final states, 215, 227
Taylor series, 1, 8, 186, 206, 278,

523
Temperature control, example,

118–121
Temporal difference error, 482,

489
Temporal difference learning,

489–490
policy iteration using, 492
value iteration using, 492–493

Thrust angle programming, 126
in gravitational field, 257

Time-varying systems:
limiting control of, 95–96,

163–164
observability, 95–96, 163–164
reachability, 95–96, 163–164

Total differential, 524
Tracker problem, 316–317
Tracking:

with disturbance rejection, 337
reference-input, 313–314
a unit step, 329–330

Tracking error, 183, 198,
319–320

Transversality condition,
214–215, 239

Two-degrees-of-freedom
regulator, 291

Two-player zero-sum games,
444–449

Two-point boundary-value
problem:

continuous, 114
discrete, 23
unit solution method, 170

Unit solution method, 170–171
Unmodelled dynamics, 355
Utility, 466

Value (of a policy), 466
optimal, 467

Value function (of a policy), 466
Value function approximation,

493
Value iteration:

algorithm, 477–479
asynchronous, 478–479
implementation models, 488
integral reinforcement learning

for optimal adaptive
control using, 506

optimal adaptive control using,
495–496

temporal difference learning
using, 492–493

using Q function, 487
Variation in function, 111

Washout filters, 313
White noise, 395

Zermelo’s problem, 216–220,
258

Zero-input cost:
continuous, 136–137
discrete, 35–37
scalar system, example, 137

Zero-order hold, 53
Zero-sum games:

application to H∞ control,
450–453

Bellman equation, 446
defined, 445
linear quadratic, 452–453
two-player, 444–449

