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PREFACE

This book is intended for use in a second graduate course in modern control
theory. A background in the state-variable representation of systems is assumed.
Matrix manipulations are the basic mathematical vehicle and, for those whose
memory needs refreshing, Appendix A provides a short review.

The book is also intended as a reference. Numerous tables make it easy to find
the equations needed to implement optimal controllers for practical applications.

Our interactions with nature can be divided into two categories: observation
and action. While observing, we process data from an essentially uncooperative
universe to obtain knowledge. Based on this knowledge, we act to achieve our
goals. This book emphasizes the control of systems assuming perfect and com-
plete knowledge. The dual problem of estimating the state of our surroundings is
briefly studied in Chapter 9. A rigorous course in optimal estimation is required
to conscientiously complete the picture begun in this text.

Our intention is to present optimal control theory in a clear and direct fashion.
This goal naturally obscures the more subtle points and unanswered questions
scattered throughout the field of modern system theory. What appears here as
a completed picture is in actuality a growing body of knowledge that can be
interpreted from several points of view and that takes on different personalities
as new research is completed.

We have tried to show with many examples that computer simulations of
optimal controllers are easy to implement and are an essential part of gaining
an intuitive feel for the equations. Students should be able to write simple pro-
grams as they progress through the book, to convince themselves that they have
confidence in the theory and understand its practical implications.

Relationships to classical control theory have been pointed out, and a root-
locus approach to steady-state controller design is included. Chapter 9 presents

xi

&
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some multivariable classical design techniques. A chapter on optimal control of
polynomial systems is included to provide a background for further study in
the field of adaptive control. A chapter on robust control is also included to
expose the reader to this important area. A chapter on differential games shows
how to extend the optimality concepts in the book to multiplayer optimization in
interacting teams.

Optimal control relies on solving the matrix design equations developed in the
book. These equations can be complicated, and exact solution of the Hamilton-
Jacobi equations for nonlinear systems may not be possible. The last chapter,
on optimal adaptive control, gives practical methods for solving these matrix
design equations. Algorithms are given for finding approximate solutions online
in real-time using adaptive learning techniques based on data measured along the
system trajectories.

The first author wants to thank his teachers: J. B. Pearson, who gave him the
initial excitement and passion for the field; E. W. Kamen, who tried to teach him
persistence and attention to detail; B. L. Stevens, who forced him to consider
applications to real situations; R. W. Newcomb, who gave him self-confidence;
and A. H. Haddad, who showed him the big picture and the humor behind it all.
We owe our main thanks to our students, who force us daily to take the work
seriously and become a part of it.

Acknowledgments

This work was supported by NSF grant ECCS-0801330, ARO grant W91NF-05-
1-0314, and AFOSR grant FA9550-09-1-0278.
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1

STATIC OPTIMIZATION

In this chapter we discuss optimization when time is not a parameter. The discus-
sion is preparatory to dealing with time-varying systems in subsequent chapters.
A reference that provides an excellent treatment of this material is Bryson and
Ho (1975), and we shall sometimes follow their point of view.

Appendix A should be reviewed, particularly the section that discusses matrix
calculus.

1.1 OPTIMIZATION WITHOUT CONSTRAINTS

A scalar performance index L(u) is given that is a function of a control or
decision vector u € R™. It is desired to determine the value of u that results in
a minimum value of L(u).

We proceed to solving this optimization problem by writing the Taylor series
expansion for an increment in L as

1
dL =L} du+ EduTLW du+ 0(3), (1.1-1)

where O (3) represents terms of order three. The gradient of L with respect to u
is the column vector

oL
L, 222, (1.1-2)
Ju
and the Hessian matrix is
9%L
Luu = W (11-3)
1
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2 STATIC OPTIMIZATION

L,, is called the curvature matrix. For more discussion on these quantities, see
Appendix A.

Note. The gradient is defined throughout the book as a column vector, which
is at variance with some authors, who define it as a row vector.

A critical or stationary point is characterized by a zero increment dL to first
order for all increments du in the control. Hence,

L,=0 (1.1-4)

for a critical point.
Suppose that we are at a critical point, so L, = 0 in (1.1-1). For the critical
point to be a local minimum, it is required that

1
dL = 3 du" Ly, du+ 03) (1.1-5)

is positive for all increments du. This is guaranteed if the curvature matrix L,
is positive definite,
L > 0. (1.1-6)

If L,, is negative definite, the critical point is a local maximum; and if L, is
indefinite, the critical point is a saddle point. If L,, is semidefinite, then higher
terms of the expansion (1.1-1) must be examined to determine the type of critical
point.

The following example provides a tangible meaning to our initial mathematical
developments.

Example 1.1-1. Quadratic Surfaces

Let u € R? and

1
L _ _, T|491 412 1
() U [qlz . u+[sy s2lu (D
1
2 5uTQu + 5. )

The critical point is given by

L,=Qu+S=0 3)
and the optimizing control is
u*=-07's. @))
By examining the Hessian
Lu=Q ®)

one determines the type of the critical point.

&
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OPTIMIZATION WITHOUT CONSTRAINTS 3

The point u* is a minimum if L,, >0 and it is a maximum if L,, < 0. If |Q] <O,
then u* is a saddle point. If |Q| = 0, then u* is a singular point and in this case L,
does not provide sufficient information for characterizing the nature of the critical point.

By substituting (4) into (2) we find the extremal value of the performance index to be

L*éL(u*) — %STQ—lQQ—lS _ STQ—lS

is a minimum, since L, > 0. Using (6), we see that the minimum value of L is L* = —

2

=—-STo!s. (6)
1
2} (410 1w ™

-] v

/

FIGURE 1.1-1 Contours and the gradient vector.
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The contours of the L(x) in (7) are drawn in Fig. 1.1-1, where u = [u; u5]T. The
arrows represent the gradient

Uy +us
L,=Q0u+S = . ©)]
up +2uy + 1

Note that the gradient is always perpendicular to the contours and pointing in the direction
of increasing L(u).

We shall use an asterisk to denote optimal values of # and L when we want to be
explicit. Usually, however, the asterisk will be omitted. ]

Example 1.1-2. Optimization by Scalar Manipulations

We have discussed optimization in terms of vectors and the gradient. As an alternative
approach, we could deal entirely in terms of scalar quantities. To demonstrate, let

1
L(ui,u) = EM%+u1M2+u§+uz, (D

where u and u, are scalars. A critical point is present where the derivatives of L with
respect to all arguments are equal to zero:

oL

_— = =O,
o U+ u

aL

auz

Solving this system of equations yields
u1=l, M2=—l; (3)

thus, the critical point is (1, —1). Note that (1) is an expanded version of (7) in
Example 1.1-1, so we have just derived the same answer by another means.

Vector notation is a tool that simplifies the bookkeeping involved in dealing with
multidimensional quantities, and for that reason it is very attractive for our purposes. W

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS

Now let the scalar performance index be L(x, u), a function of the control vector
u € R™ and an auxiliary (state) vector x € R". The optimization problem is
to determine the control vector u that minimizes L(x, 1) and at the same time
satisfies the constraint equation

fx,u)=0. (1.2-1)
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1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 5

The auxiliary vector x is determined for a given u by the relation (1.2-1). For a
given u, (1.2-1) defines a set of n scalar equations.

To find necessary and sufficient conditions for a local minimum that also
satisfies f(x,u) = 0, we proceed exactly as we did in the previous section, first
expanding dL in a Taylor series and then examining the first- and second-order
terms. Let us first gain some insight into the problem, however, by considering
it from three points of view (Bryson and Ho 1975, Athans and Falb 1966).

Lagrange Multipliers and the Hamiltonian

Necessary Conditions At a stationary point, dL is equal to zero in the first-order
approximation with respect to increments du when df is zero. Thus, at a critical
point the following equations are satisfied:

dL=LYdu+ LTdx=0 (1.2-2)
and
df = f,du+ f,dx=0. (1.2-3)

Since (1.2-1) determines x for a given u, the increment dx is determined
by (1.2-3) for a given control increment du. Thus, the Jacobian matrix f, is
nonsingular and one can write

dx = —f;lfu du. (L.2-4)
Substituting this into (1.2-2) yields
dL= (L, — L} f;'f.)du. (1.2-5)
The derivative of L with respect to u holding f constant is therefore given by

oL

=L - LT ) = Lu— £T £ L (1.2-6)
u

df=0

where £ T means (f;!)T. Note that

oL
ou

=1L, (1.2-7)
dx=0

Thus, for dL to be zero in the first-order approximation with respect to arbitrary
increments du when df = 0, we must have

L,— fIf7TL, =0. (1.2-8)
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6 STATIC OPTIMIZATION

This is a necessary condition for a minimum. Before we derive a sufficient
condition, let us develop some more insight by examining two more ways to
obtain (1.2-8). Write (1.2-2) and (1.2-3) as

dL] TLY LI [dx —o 129
[df]_[fx fu][du]" (29

This set of linear equations defines a stationary point, and it must have a solution
[dxTduT]". The critical point is obtained only if the (n + 1) x (n + m) coefficient
matrix has rank less than n + 1. That is, its rows must be linearly dependent so
there exists an n vector A such that

1 27 [LI LE} =0. (1.2-10)
foo fu
Then
LT +27f =0, (1.2-11)
LT +3Tf, =0. (1.2-12)

Solving (1.2-11) for A gives
AT =—LTr (1.2-13)

and substituting in (1.2-12) again yields the condition (1.2-8) for a critical point.
Note. The left-hand side of (1.2-8) is the transpose of the Schur complement
of L} in the coefficient matrix of (1.2-9) (see Appendix A for more details).
The vector A € R" is called a Lagrange multiplier, and it will turn out to be
an extremely useful tool for us. To give it some additional meaning now, let
du = 01in (1.2-2), (1.2-3) and eliminate dx to get

dL =LY {71 df. (1.2-14)

Therefore,
oL

af du=0

so that —\ is the partial of L with respect to the constraint holding the control
u constant. It shows the effect on the performance index of holding the control
constant when the constraints are changed.

As a third method of obtaining (1.2-8), let us develop the approach we shall use
for our analysis in subsequent chapters. Include the constraints in the performance
index to define the Hamiltonian function

= (LT =, (1.2-15)

H(x,u,») = L(x,u) + AT f(x, u), (1.2-16)
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1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 7

where A € R" is an as yet undetermined Lagrange multiplier. To determine x, u,
and A, which result in a critical point, we proceed as follows.
Increments in H depend on increments in x, u, and A according to

dH = HYdx+ H} du+ Hld)x. (1.2-17)
Note that
OH
Hy= oo =), (1.2-18)

so suppose we choose some value of # and demand that
H, =0. (1.2-19)

Then x is determined for the given u by f(x, u) = 0, which is the constraint
relation. In this situation the Hamiltonian equals the performance index:

Hlj—o=L. (1.2-20)

Recall that if f = 0, then dx is given in terms of du by (1.2-4). We should rather
not take into account this coupling between du and dx, so it is convenient to
choose A so that

H, = 0. (1.2-21)

Then, by (1.2-17), increments dx do not contribute to dH . Note that this yields
a value for A given by

oH
- =L+ fIr=0 (1.2-22)
X

or (1.2-13).
If (1.2-19) and (1.2-21) hold, then

dL = dH = H du, (1.2-23)

since H = L in this situation. To achieve a stationary point, we must therefore
finally impose the stationarity condition

H, = 0. (1.2-24)

&
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8 STATIC OPTIMIZATION

In summary, necessary conditions for a minimum point of L(x, u) that also
satisfies the constraint f(x, u) = 0 are

OH

—=f=0, 1.2-25

o f ( a)

OH T

oL+ =0, (1.2-25b)

ox

oH

o = L.+ fIr=0, (1.2-25c¢)
u

with H (x, u, 1) defined by (1.2-16). The way we shall often use them, these three
equations serve to determine x, A , and u in that respective order. The last two of
these equations are (1.2-11) and (1.2-12). In most applications determining the
value of A is not of interest, but this value is required, since it is an intermediate
variable that allows us to determine the quantities of interest, u, x, and the
minimum value of L.

The usefulness of the Lagrange-multiplier approach can be summarized as
follows. In reality dx and du are not independent increments, because of (1.2-4).
By introducing an undetermined multiplier A, however, we obtain an extra degree
of freedom, and A can be selected to make dx and du behave as if they were
independent increments. Therefore, setting independently to zero the gradients
of H with respect to all arguments as in (1.2-25) yields a critical point. By
introducing Lagrange multipliers, the problem of minimizing L(x, u) subject
to the constraint f(x, u) = 0 is replaced with the problem of minimizing the
Hamiltonian H (x, u, \) without constraints.

Sufficient Conditions Conditions (1.2-25) determine a stationary (critical)
point. We are now ready to derive a test that guarantees that this point is a
minimum. We proceed as we did in Section 1.1.

Write Taylor series expansions for increments in L and f* as

d 1 L Ly][d
dL=[L} L[] [ di}JrE[de du™) [Lux LW] [dﬂ+0(3), (1.2-26)

_ dx 1 T T fxx fxu dx
df=1fc ful [du] +5 [dx"  du ][fm fw] [du] +0@3), (1.2-27)
where
fu 2
T du dx

and so on. (What are the dimensions of fy,?) To introduce the Hamiltonian, use
these equations to see that

a2 B U 5 I | Hexr  Hew| [dx
[ xﬂﬂqu,HAbJ+2wx “]Lm mjbj*ow'
(1.2-28)
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1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 9

A critical point requires that f = 0, and also that dL is zero in the first-order
approximation for all increments dx, du. Since f is held equal to zero, df is also
zero. Thus, these conditions require H, = 0 and H, = 0 exactly as in (1.2-25).

To find sufficient conditions for a minimum, let us examine the second-order
term. First, it is necessary to include in (1.2-28) the dependence of dx on du.
Hence, let us suppose we are at a critical point so that H, = 0, H, = 0, and
df = 0. Then by (1.2-27)

dx = —f fudu+ 0(2). (1.2-29)
Substituting this relation into (1.2-28) yields

Hxx qu] |:_fx_1fu

[ ; ]du—i— 0@3). (1.2-30)

1 -
dL:EduT[—fffxT 1][

To ensure a minimum, dL in (1.2-30) should be positive for all increments du.
This is guaranteed if the curvature matrix with constant f equal to zero

Hxx qu] |:_fx_lfuj|

A T 0T
Lz{uzl‘uulf:[_fu 1 I] |:H H I
ux uu

= Hu — £ f7 " Hew — Huof o+ £ Hoo £ fa (1.2-31)

is positive definite. Note that if the constraint f(x, u#) is identically zero for all
x and u, then (1.2-31) reduces to L, in (1.1-6). If (1.2-31) is negative definite
(indefinite), then the stationary point is a constrained maximum (saddle point).

Examples

To gain a feel for the theory we have just developed, let us consider some
examples. The first example is a geometric problem that allows easy visualization,
while the second involves a quadratic performance index and linear constraint.
The second example is representative of the case that is used extensively in
controller design for linear systems.

Example 1.2-1. Quadratic Surface with Linear Constraint

Suppose the performance index is as given in Example 1.1-1:

1
Lixow) = Slx u][i ﬂ mﬂo 1]m, (1)

where we have simply renamed the old scalar components u1, uy as x, u, respectively.
Let the constraint be
fx,u)=x—-3=0. 2
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The Hamiltonian is
T 1, 2
H=L+Ax fzzx + xu+u”+u+ rx —3), 3)

where A is a scalar. The conditions for a stationary point are (1.2-25), or

H,\:x—3:O, (4)
H =x+4+u+xr=0, ()
H,=x+2u+1=0. (6)

Solving in the order (4), (6), (5) yields x = 3, u = —2, and A = —1. The stationary point
is therefore
(x,u)* = (3,-2). 7

To verify that (7) is a minimum, find the constrained curvature matrix (1.2-31):

L, =2. ®)
u t=0
/
/
S / /
~
AN — /
~ 0 \\\ /
} \ \\l"\ 7 x
< 3
N /
N \.
N - .
/ — N N7
~ L
2 / ’\.\\ ~ N \ \}__.. u
/ \‘\.__,_/ n\
/ N
/ N
AN
//

FIGURE 1.2-1 Contours of L(x, u), and the constraint f(x, u).
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1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 11

This is positive, so (7) is a minimum. The contours of L(x, u) and the constraint (2) are
shown in Fig. 1.2-1.
It is worthwhile to make an important point. The gradient of f(x, u) in the (x, u)

plane is
(A1 _[1
— N 9
7" o ©
as shown in Fig. 1.2-1. The gradient of L(x, u) in the plane is
L, [ x+4u
|:Lu_ Lx 4+ 2u + 1] (10)

(cf. (9) in Example 1.1-1). At the constrained minimum (3, —2), this has a value of

L, 1
)=o)

Note that the gradients of f and L are parallel at the stationary point. This means that the
constrained minimum occurs where the constraint (2) is tangent to an elliptical contour
of L. Moving in either direction along the line f = 0 will then increase the value of L. The
value of L at the constrained minimum is found by substituting x = 3, u = —2 into (1)
to be L* = 0.5. Since A = —1, holding u constant at —2 and changing the constraint by
df (i.e., moving the line in Fig. 1.2-1 to the right by df) will result in an increase in the
value of L(x, u) of dL = —X\ df = df (see (1.2-15)). |

Example 1.2-2. Quadratic Performance Index with Linear Constraint

Consider the quadratic performance index
[ 1 ¢
L(x,u) = =x"0Ox+ —u Ru (1)
2 2
with linear constraint
f(x,u)=x+Bu+c=0, 2)

where x € R", u € R",f € R", > € R", Q, R, and B are matrices, and ¢ is an n vector.

We assume Q > 0 and R > 0 (with both symmetric). This static linear quadratic (LQ)

problem will be further generalized in Chapters 2 and 3 to apply to time-varying systems.
The contours of L(x, u) are hyperellipsoids, and f(x, u) = O defines a hyperplane

intersecting them. The stationary point occurs where the gradients of f and L are parallel.
The Hamiltonian is

[ 1 ¢ T
HZEX Qx—{—Eu Ru+ A" (x +Bu+c) 3)

and the conditions for a stationary point are

H, =x+Bu+c=0, C))
He=Qx+5%=0, )
H, = Ru+ B™x =0. (6)
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To solve these, first use the stationarity condition (6) to find an expression for u in terms
of A,
u=—R""'BTL. (7

According to (5)
A= —0x, ®)

and taking into account (4) results in
X = QBu+ Qc. ©))
Using this in (7) yields
u=—R"BT(QBu+ Qc) (10)

or
(I + R7'BTOB)u = —R7'B"Qc,

(R+ B"OB)u = —B"Qc. (11)
Since R > 0 and BTQOB > 0, we can invert R + BTOB and so the optimal control is

u=—(R+BTOB)"'BTQc. (12)
Using (12) in (4) and (9) gives the optimal-state and multiplier values of

x=—(—B(R+ BT0B)"'BTQ)c, (13)
A= (Q—0OBRR+ BTQB)'BTQ)c. (14)
By the matrix inversion lemma (see Appendix A)
A= '"+BR'BT ¢ (15)
if |Q] #0.
To verify that control (12) results in a minimum, use (1.2-31) to determine that the
constrained curvature matrix is

L/, =R+ B"0B, (16)

which is positive definite by our restrictions on R and Q. Using (12) and (13) in (1) yields
the optimal value

1
L* = ECT [0 —0B(R+B"0B)'B"Q]e, (17)

1
L* = ECTX’ (18)

so that
aL*

e A (19)
¢ (]



‘G}» Lewis cOltex VI - 10/18/2011 3:39pm Page 13

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS 13

Effect of Changes in Constraints

Equation (1.2-28) expresses the increment dL in terms of df, dx, and du. In the
discussion following that equation we let df = 0, found dx in terms of du,
and expressed dL in terms of du. That gave us conditions for a stationary point
(H, = 0 and H, = 0) and led to the second-order coefficient matrix L{:,, in
(1.2-31), which provided a test for the stationary point to be a constrained
minimum.

In this subsection we are interested in dL as a function of an increment df in
the constraint. We want to see how the performance index L changes in response
to changes in the constraint f if we remain at a stationary point. We are therefore
trying to find stationary points near a given stationary point. See Fig. 1.2-2,
which shows how the stationary point moves with changes in f.

At the stationary point (u#, x)* defined by f(x, u) = 0, the conditions
H, =0, H = 0, and H, = 0 are satisfied. If the constraint changes by an
increment so that f(x, u) = df, then the stationary point moves to (¥ + du,
x + dx). The partials in (1.2-25) change by

dH;, = df = fydx + f, du, (1.2-32a)

dH, = H,, dx + Hy, du+ fldx, (1.2-32b)

dH, = Hy dx+ Hy, du+ fldx. (1.2-32¢)
f=0 f = df

o X

(u,x)'

/)
v/

\ locus ot
O

stationary points

FIGURE 1.2-2 Locus of stationary points as the constraint varies.
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In order that we remain at a stationary point, the increments dH, and dH,
should be zero. This requirement imposes certain relations between the changes
dx, du, and df, which we shall use in (1.2-28) to determine dL as a function
of df .

To find dx and du as functions of df with the requirement that we remain at
an optimal solution, use (1.2-32a) to find

dx = fVdf — f71 f du, (1.2-33)
and set (1.2-32b) to zero to find
dr = —f VN (Hyy dx + Hy, du). (1.2-34)
Now use these relations in (1.2-32¢) to obtain
Aty = (Huo = Ho S fu = S fT Hea + £ FT e f 1) du
+ (Hue = f 7 Hex) £ df =0
so that
du=— (L) (Hu— 17T He) £7 A2 —Cdf (1.2-35)

Using (1.2-35) in (1.2-33) yields

dx =1+ 17 (1) (Hue— S5 He) | 70
=7+ £.0) df. (1.2-36)

Equations (1.2-35) and (1.2-36) are the required expressions for the increments
in the stationary values of control and state as functions of df . If |L{:u| # 0, then
dx and du can be determined in terms of df, and the existence of neighboring
optimal solutions as f varies is guaranteed.

To determine the increment dL in the optimal performance index as a function
of df, substitute (1.2-35) and (1.2-36) into (1.2-28), using H, = 0, dH, = 0,
since we began at a stationary point (u, x)*. The result is found after some work
to be

X

dL = —\Vdf + % dff (f7THe f' = CTLL,C) df + 0(3). (1.2-37)

From this we see that the first and second partial derivatives of L*(x, u) with
respect to f(x, u) under the restrictions dH, = 0, dH,, = 0 are

aL*

= —A, (1.2-38)
of Hy,Hy
oL -T -1 Ty f
— =f. Hof, —CL;.C. (1.2-39)
af H., Hy,
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Equation (1.2-38) allows a further interpretation of the Lagrange multiplier; it
indicates the rate of change of the optimal value of the performance index with
respect to the constraint.

1.3 NUMERICAL SOLUTION METHODS

Analytic solutions for the stationary point (x, x)* and minimal value L* of
the performance index cannot be found except for simple functions L(x, u) and
f(x, u). In most practical cases, numerical optimization methods must be used.
Many methods exist, but steepest descent or gradient (Luenberger 1969, Bryson
and Ho 1975) methods are probably the simplest.

The steps in constrained minimization by the method of steepest descent are
(Bryson and Ho 1975)

1. Select an initial value for u.

2. Determine x from f(x, u) = 0.

3. Determine A from A = — f " TL,.

4. Determine the gradient vector H, = L, + fMT A

5. Update the control vector by Au = —aH,, where K is a positive scalar

constant (to find a maximum use Au = o H,).

6. Determine the predicted change in the value of L, AL = HI Au =
—ocHuT H,. If AL is sufficiently small, stop. Otherwise, go to step 2.

There are many variations to this procedure. If the step-size constant K is too
large, then the algorithm may overshoot the stationary point (#, x)* and con-
vergence may not occur. The step size should usually be reduced as (u, x)*
is approached, and several of the existing variations differ in the approach to
adapting K.

Many software routines are available for unconstrained optimization. The
numerical solution of the constrained optimization problem of minimizing
L(x, u) subject to f(x, u) = O can be obtained using the MATLAB function
constr.m available under the Optimization Toolbox. This function takes in the
user-defined subroutine funct.m, which computes the value of the function, the
constraints, and the initial conditions.

PROBLEMS
Section 1.1

1.1-1. Find the critical points u* (classify them) and the value of L(u*) in
Example 1.1-1 if

a.Q:[_l1 _12} sT=10 1].
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b.Q:[_ll ﬂ sT=10 1].

Sketch the contours of L and find the gradient L,.

1.1-2. Find the minimum value of
L(xy, x2) =x12—x1x2+x§+3x1. (1)

Find the curvature matrix at the minimum. Sketch the contours, showing the
gradient at several points.

1.1-3. Failure of test for minimality. The function f(x,y) = x>+ y* has a
minimum at the origin.

a. Verify that the origin is a critical point.

b. Show that the curvature matrix is singular at the origin.

c. Prove that the critical point is indeed a minimum.

Section 1.2

1.2-1. Ship closest point of approach. A ship is moving at 10 miles per hour
on a course of 30° (measured clockwise from north, which is 0°). Find its closest
point of approach to an island that at time ¢ = 0 is 20 miles east and 30 miles
north of it. Find the distance to the island at this point. Find the time of closest
approach.

1.2-2. Shortest distance between two points. Let P; = (x;, y;) and P, =
(x2, y2) be two given points. Find the third point P3 = (x3, y3) such that
d, = d, is minimized, where d; is the distance from P53 to P; and d, is the
distance from P3 to P,.

1.2-3. Meteor closest point of approach. A meteor is in a hyperbolic orbit
described with respect to the earth at the origin by

S
®‘|‘<
SIS

1. (1)

8, #
[\e)

Find its closest point of approach to a satellite that is in such an orbit that it has
a constant position of (x, y). Verify that the solution indeed yields a minimum.

1.2-4. Shortest distance between a parabola and a point. A meteor is moving
along the path
y =x%>+3x —6. (1)

A space station is at the point (x, y) = (2, 2).
a. Use Lagrange multipliers to find a cubic equation for x at the closest point of
approach.
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b. Find the closest point of approach (x, y), and the distance from this point
to (2, 2).

1.2-5. Rectangles with maximum area, minimum perimeter
a. Find the rectangle of maximum area with perimeter p. That is, maximize

L(x,y)=xy (D

subject to
f,y)=2x+2y —p=0. @)

b. Find the rectangle of minimum perimeter with area a”. That is, minimize
L(x,y) =2x+42y 3)

subject to
f@,y)=xy—a*=0. 4)

c. In each case, sketch the contours of L(x, y) and the constraint. Optimization
problems related like these two are said to be dual.

1.2-6. Linear quadratic case. Minimize

_lTl 0 I r]2 1
L_Ex [0 2]x+§u |:1 1i|u
(2 2
X = 3 = 1 0 u.

1.2-7. Linear quadratic case. In the LQ problem define the Kalman gain

Find x*, u*, A%, L*.

K2(B"0B+ R)"'BTQ (1)

a. Express u*, A*, x*, and L* in terms of K.
b. Let N
So=Q—OB(B'QB+R)"'B"Q )

so that Lx = c¢TSyc/2. Show that
So = QI — BK) = (I — BK)TQ(I — BK) + K'RK. 3)

Hence, factor L* as a perfect square. (Let /O and +/R be the square roots
of Q and R.)



&
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c. Show that

So = (0 '+ BR'BT)L 4

1.2-8. Geometric mean less than or equal to arithmetic mean

a. Show that the minimum value of x?y?z? on the sphere x> + y> + z> =r
(r2/3)3.

b. Show that the maximum value of x> 4+ y?> + z? on the sphere x%y?z? =
(r2/3) is r2.

c. Generalize part a or b and so deduce that, for a; > 0,

2 s

(@ay---an)'’" < (a1 +ay+---+ay)/n.
Note: The problems in parts a and b are dual (Fulks 1967).

1.2-9. Find the point nearest the origin on the line 3x + 2y + z = 1,
x +2y —3z =4.
1.2-10. Rectangle inside Ellipse

a. Find the rectangle of maximum perimeter that can be inscribed inside an
ellipse. That is, maximize 4(x + y) subject to constraint x*/a®> + y?/b> = 1.

b. Find the rectangle of maximum area 4xy that can be inscribed inside an ellipse.

3:39pm  Page 18]
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2

OPTIMAL CONTROL
OF DISCRETE-TIME SYSTEMS

We are now ready to extend the methods of Chapter 1 to the optimization of
a performance index associated with a system developing dynamically through
time. It is important to realize that we shall be making a fairly subtle change of
emphasis. In Chapter 1, the focus of our attention was initially on the performance
index, and we introduced the notion of constraints as the discussion proceeded. In
this and subsequent chapters we are forced to begin with the constraint equations,
since these represent the dynamics of the system. These constraint relations are
fixed by the physics of the problem. The performance index is selected by the
engineer as it represents the desired behavior of the dynamical system.

In Section 2.1 we derive the general solution of the optimization problem for
discrete-time systems. In Section 2.2 we discuss the very important special case
of linear systems with a quadratic performance index. We first discuss the case of
fixed final state, which yields an open-loop control, followed by the situation of
free final state, which yields a closed-loop control. In Section 2.3 we show how
to apply these results to the digital control of continuous-time systems.

Some connections with classical root-locus design are given in Section 2.5.

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME
OPTIMIZATION PROBLEM
Problem Formulation

Let the plant be described by the very general nonlinear discrete-time dynamical
equation
Xepr = (e ) 2.1-1)

19

&
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with initial condition x¢. The superscript on function f indicates that, in general,
the system, and thus its model, can have time-varying dynamics. Let the state x;
be a vector of size n and the control input u; be a vector of size m. Equation
(2.1-1) represents the constraint, since it determines the state at time k + 1 given
the control and state at time k. Clearly, f is a vector of n functions.

Let an associated scalar performance index, specified by the engineer, be given

in the general form
N-1

Ji=¢(N, xy)+ > LM, w), (2.1-2)
k=i

where [i, N] is the time interval, on a discrete time scale with a fixed sample
step, over which we are interested in the behavior of the system. ¢ (N, xy) is a
function of the final time N and the state at the final time, and L*(xg, uy) is a
generally time-varying function of the state and control input at each intermediate
time k in [i, N].

The optimal control problem is to find the control u} on the interval [i, N]
(i.e., uf, Yk € [i, N]) that drives the system (2.1-1) along a trajectory x; such
that the value of the performance index (2.1-2) is optimized.

Here we note that relative to the meaning that it is attached to the performance
index, the optimization problem can be either a minimization or a maximization
problem. For the case that the performance index represents the costs accrued
during the operation of the system over the time interval [i, N], the optimal
control input is determined to minimize the performance index, while in the
situation related to accumulation of value over the time interval [i, N], the optimal
control input is determined to minimize the performance index (2.1-2). As in most
industrial applications the optimal control problem deals with minimization of
control errors as well as of control effort, without reducing the generality of the
formulation, herein we will treat the optimal control problem as a minimization
problem.

Example 2.1-1. Some Useful Performance Indices

To clarify the problem formulation, it is worthwhile to discuss some common performance
indices that we can select for the given system (2.1-1).

a. Minimum-time Problems

Suppose we want to find the control u; to drive the system from the given initial state x¢
to a desired final state x € R” in minimum time. Then we could select the performance
index

N-1
J=N=)"1 (1)
k=0
and specify the boundary condition
XN = X. 2)

In this case one can consider either ¢ = N and L = 0, or equivalently ¢ =0 and L = 1.
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b. Minimum-fuel Problems

To find the scalar control u; to drive the system from x( to a desired final state x at a
fixed time N using minimum fuel, we could use

N—

—_

[kl 3)
k=0

since the fuel burned is proportional to the magnitude of the control vector. Then ¢ =0
and Lj = |ug|. The boundary condition xy = x would again apply.

c. Minimum-energy Problems

Suppose we want to find u; to minimize the energy of the final state and all intermediate
states, and also that of the control used to achieve this. Let the final time N again be
fixed. Then we could use

N-1
1 1
J = stxN + - Z (qxixe + rugu), 4)
k:O
where ¢, r, and s are scalar weighting factors. Then ¢ = 2sx},xN and L = (quTxk +

ruy uk) are quadratic functions.

Minimizing the energy corresponds in some sense to keeping the state and the control
close to zero. If it is more important to us that the intermediate state be small, then we
should choose g large to weight it heavily in J, which we are trying to minimize. If it is
more important that the control energy be small, then we should select a large value of r.
If we are more interested in a small final state, then s should be large.

For more generality, we could select weighting matrices Q, R, S instead of scalars.
The performance index can in this case be represented as

N-1
J = lxNSxN 41 Z xp Qxp + uj Ruy). (5)

2%
|

At this point, several things should be clearly understood. First, the system
dynamics (2.1-1) are given by the physics of the problem, while the performance
index (2.1-2) is what we choose to achieve the desired system response. Second,
to achieve different control objectives, different types of performance indices J
are selected. Finally, the optimal control problem is characterized by compro-
mises and trade-offs, with different weighting factors in J resulting in different
balances between conformability with performance objectives and magnitude of
the required optimal controls.

In practice, it is usually necessary to do a control design with a trial per-
formance index J, compute the optimal control uj, and then run a computer
simulation to see how the system responds to this u}. If the response is not
acceptable, the entire process is repeated using another J with different state and
control weightings. After several repetitions have been done to find an acceptable
uy, this final version of uj is applied to the actual system.

&
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Problem Solution

Let us now solve the optimal control problem for the general nonlinear sys-
tem (2.1-1) with associated performance index (2.1-2). To determine the optimal
control sequence u}, u;} IRTREREE u_, minimizing J, we proceed basically as we
did in Chapter 1, using the powerful Lagrange-multiplier approach. Since there is
a constraint function f kg, ug) specified at each time & in the interval of interest
[i, N], we also require a Lagrange multiplier at each time. Each constraint has
an associated Lagrange multiplier.

Thus, let A, € R", and append the constraint (2.1-1) to the performance index
(2.1-2) to define an augmented performance index J’ by

N—1
T =¢(N.xy)+ Y [L¥e ) + My (FF ) = xig1)]- - (21-3)
k=i

Note that we have associated with f* the multiplier Az, not A;. This is done
with the benefit of hindsight, as it makes the solution neater.
Defining the Hamiltonian function as

H* (e, ug) = LFQop, ug) + apyy 5 o, ug), (2.1-4)
we can write
N—-1
=¢(N.xy) —Ayxy + H (ou) + Y [H Goow) — ], (2.1-5)
k=i+1

where some minor manipulations with indices have been performed. Note that
the Hamiltonian is defined slightly differently than in Chapter 1, since we did
not include x;y; in H k Furthermore, a Hamiltonian is defined at each time k.

We now want to examine the increment in J’ due to increments in all the
variables xi, Ay, and u;. We assume the final time N is fixed. According to the
Lagrange-multiplier theory, at a constrained minimum this increment dJ’ should
be zero. Therefore, write

' = (o — An) Ty + (HL) dn + (HL) duy

N
+ Z [(HE = a) dve + (HE) "dwe] + Y (HE' = xi) dae, (2.1-6)
k=i+1 k=i+1
where
¢ o 0H
M 8xk

and so on. Necessary conditions for a constrained minimum are thus given by

dHkK ,
X1 = = k=i, N1, (2.1-7a)
Ok
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dH* ,

M=——, k=1i,...,N—1, (2.1-7b)
axk
dH* ,

0= , k=i, ...,N—1, (2.1-7¢)
8uk

which arise from the terms inside the summations and the coefficient of du;, and

9 T
(—¢ — AN) de = 0, (21‘83)
BxN
oH\'
( ) dx; = 0. (2.1-8b)
Bx,-

Examining (2.1-3) and (2.1-4) one can see that A; does not appear in J'. We
have defined it in such a manner that the lower index in (2.1-7b) can be taken
as i, instead of i 4 1, solely as a matter of neatness.

These conditions are certainly not intuitively obvious, so we should discuss
them a little to see what they mean. First, compare (2.1-7) with the conditions for
a static minimum (1.2-25). They are very similar, except that our new conditions
must hold at each time k in the interval of interest [i, N — 1], since xi, uy, and
Ax are now sequences. Equation (2.1-7c) is called the stationarity condition.

Writing (2.1-7) explicitly in terms of L* and f* using (2.1-4) yields the formu-
lation in Table 2.1-1. Equality (2.1-9a) is just the constraint, or system, equation.
It is a recursion for the state x; that develops forward in time. Evidently, (2.1-9b)
is a recursion for A that develops backward in time! The (fictitious) Lagrange
multiplier is thus a variable that is determined by its own dynamical equation. It
is called the costate of the system, and (2.1-9b) is called the adjoint system. The
system (2.1-9a) and the adjoint system (2.1-9b) are coupled difference equations.
They define a two-point boundary-value problem, since the boundary conditions
required for solution are the initial state x; and the final costate Ay. These prob-
lems are, in general, extremely difficult to solve. We consider some examples
later.

The stationarity condition (2.1-9c) allows the optimal control u; to be
expressed in terms of the costate. We therefore have a rather curious situation:
we do not really care what X is, but this method of solution requires us to find
A as an intermediate step in finding the optimal control.

We have not yet discussed (2.1-8). The first of these equations holds only
at final time k = N, whereas the second holds only at initial time k = i. They
are not dynamical recursions like (2.1-7a) and (2.1-7b). These two equations
specify the split boundary conditions needed to solve the recursions (2.1-9). Two
possibilities exist for each of these equations.

If the initial state x; is fixed, then dx; = 0, so that (2.1-8b) holds regardless
of the value of H;i. In the case of free initial state, dx; is not zero, so (2.1-8b)
demands that .

oH'

8x,~

0. (2.1-10)
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TABLE 2.1-1 Discrete Nonlinear Optimal Controller

System model: . )
Xk+1 :f (xk,uk), k>i

Performance index: N
Ji=¢(N.xn) + Y L, ug)
k=i

Hamiltonian:
k k T k
HY =L+ . f

Optimal controller

State equation:
IH*

T = g = IR, ug) (2.1-9a)
+
Costate equation: (T .
JdH, a aL
o= = Ci A1 + — (2.1-9b)
8xk axk Bxk
Stationarity condition: -
aH* ark Lk
0= =|—) A1+ — (2.1-9¢)
duy du duy

Boundary conditions:

. T T
aL' af!
— + |7 ) Aiv1) di =0
ax,- ax,-

In our applications the system starts at a known initial state x;. Thus, the first
case holds, dx; = 0, and there is no constraint on the value of H fc, We therefore
ignore (2.1-8b) and use as the initial condition the given value of x;.

We do need to deal with two possibilities for the final state x. In the case of a
fixed final state we use the desired value of xy as the terminal condition. Then xy
is not free to be varied in determining the optimal solution and dxy = 0, so that
(2.1-8a) holds. On the other hand, if we are not interested in a particular value for
the final state, then xy can be varied in determining the optimal solution. In this
case dxy is not zero. For this free-final-state situation, (2.1-8a) demands that

AN = % (2.1-1D)
BxN
Then, the terminal condition is the value (2.1-11) of the final costate Ay .
In summary, the initial condition for the two-point boundary-value problem
(2.1-9) is the known value of x;. The final condition is either a desired value
of xy or the value (2.1-11) of Ay. These comments will become clearer as we

proceed.
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An Example

To develop some feel for the theory we have just derived, let us consider an
example. We shall see that the solution of the optimal control problem is not
straightforward even in the simplest cases, because of the two-point nature of
the state and costate equations, but that once the solution is obtained it imparts
a great deal of intuition about the control of the system.

We also show how to run software simulations to test our optimal control
designs.

Example 2.1-2. Optimal Control for a Scalar Linear System

Consider the simple linear dynamical system
Xkl = axg + bug, (D)

where lowercase a and b are used to emphasize that we are dealing with the scalar case.
Let the given initial condition be x¢. Suppose the interval of interest is [0, N] and that
we are concerned with minimizing control energy so that

h=5Yu} @)

for some scalar weighting factor r.
Let us discuss two cases, corresponding to two ways in which we might want the
system to behave.

a. Fixed Final State

First, suppose we want to make the system end up at time k = N in exactly the particular
(reference) state ry:

XN =TN. (3)

To find the optimal control sequence ug, u1, ..., ux—1 (note that xy does not depend on
uy) that drives (1) from the given x¢ to the desired xy = ry while minimizing (2), we
can use Table 2.1-1. First, let us compute (2.1-9). The Hamiltonian is

.
H =LF+ 3, = Eu,% + A1 (@xy + buy), )

so the conditions (2.1-9) are

0H! +b 5)
X = =ax U,
k+1 a)hk+1 k k
dH*
A = —— = ariq1, (6)
Bxk
aH*
0= —— =rug +brg+1. (7)
auk
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Solving the stationarity condition (7) for uy in terms of the costate yields

b
ue = =i, ®)

If we can find the optimal X;, we can therefore use (8) to find the optimal control. To find
Ak, eliminate uy in (5) using (8). Then

b2
X+l = axg — T)Lk+l = axg — Yrit1s 9
where b
A
v== (10)

is the ratio of “control effect” to control weighting.
Equation (6) is a simple homogeneous difference equation, with solution given by

)‘-k :aN_kAN. (11)

This is all well and good, but we do not know Ay. To find it, proceed as follows. Use
(11) in (9) to get

Xk41 = axy — yaka*l)»N. (12)
This can be viewed as a difference equation with a forcing function of —y A vaV 1 5o
the solution in terms of xq is
k—1
X = akxo _ Zakﬂfl(y)\NaNﬂfl)
i=0
k—1
= a*xo — yryaTE? Za‘z'. (13)
i=0

Using the formula for the sum of a geometric series we have

1— a—2k
X = akxo _ y)»NaN+k_27
1—a2
1— aZk
= aFxo — yANaN_k—. (14)
1 —a?

The state at time k is thus a linear combination of the known initial state and the as
yet unknown final costate. To find Ay, we need to make use of the boundary conditions
(2.1-8).

Since x¢ is fixed, dxop =0 and (2.1-8b) is satisfied. Since we are also demanding
the fixed final state (3), we have dxy = 0 so that (2.1-8a) is satisfied. In words, the
algorithm cannot vary either xo or xy in determining the constrained minimum for this
problem.

According to (14), the final state is expressed in terms of the unknown Ay as

N y(1—a’)

XN =a XxXog— 1 —a2 )‘-N :[ZNXO_A)\.N, (15)
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where
ayd—a®™y  bp(1—-a’)

A = .
1—a? r(l —a?)

(16)

(Defining auxiliary variables is a good trick for making our results look neater than they
actually are!) Solving for Ay in terms of the given x¢ and the known desired xy = ry
yields

A 1( Nxo) a7
=——(ry —a" xp).
N AN 0

Note that a" xq is the final state of the plant (1) in the case of zero input. The final costate
Ay is thus proportional to the desired final state ry minus the final state a” xo, which the
system would reach by itself with no control; it makes sense that the control required to
drive xg to xy = ry should depend on this difference!

At this point, we can determine the costate to be, using (11),

A = —%(rN — aNxo)aka (18)

and the optimal control to be, using (8),

b
* N N—k—1
= — — . 19
uy A (rN a xo)a (19)
This is the solution to our problem, and uj, for k =0,1,..., N —1 will drive xo to
xy = ry while minimizing the control energy (2).
It is worthwhile to examine u; a little bit. Note that (19) can be written

1 —a?

N N—k—1
b1 a7y v T o) (20)

up =
so that in the case of fixed final state the optimal control is independent of the control
weighting r. It should also be stressed that u} given by (19) is an open-loop control. It
depends on the initial and final states, but not on intermediate values x; of the state. This
is discussed further in Section 2.2.
For completeness, let us determine the optimal state trajectory x; and performance
index J;j under the influence of u}. Substituting (20) in (1) yields

1—a’ N N—k—1
Xpg =ax;+ m(m\] —a xo)a . 21
The first observation worthy of note is that the optimal state trajectory x; is independent
of both r and b!
Equation (21) is a dynamical system with forcing function given by the second term,
so its solution is

k—1
1—a? . )
k N k—i—1 N—i—1
Xi=a x0+71_a2N(rN_a xo) E a“t e T (22)
i=0

Using the formula for the sum of a geometric series and simplifying yields

2k

l1—a
X;: = akxo “+ (}’N — aNxo)maka (23)
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or
(1— az(N_k))akxo + (1 — a2k)aN_krN

X = o . 24)

Note that x;j = xo and xy, = ry as required. In fact, x;’ is a time-varying linear combination
of xo and ry containing proportionately less of xo and more of ry as k increases from
OtoN.

The optimal performance index is found by using (20) in (2):

ro(1—a?? =
%7 — N2 2(N—k—1)
=3 gy v — a0 ;a : (25)

Using the formula for the sum of a geometric series and simplifying results in

1
Ji = TR axp)?. (26)
Thus, the farther the plant zero-input response axg is from the desired final state ry, the
larger the cost Jj.

b. Free Final State

Suppose that we still desire the system to end up in state ry at time xy, but we decide to
choose quite a different method for ensuring this. We do not need xy to be exactly equal
to ry, we only need xy to be close to ry. Let us, therefore, make the difference xy — ry
small by including it in the performance index, so that (2) becomes

N—-1
1 2 T 2
Jo = E(XN—rN) +EkE:0 Up. 27

Now the optimal control will attempt to make |xy — ry| small while also using low
control energy. (As we shall see, this will not guarantee that xy will exactly equal ry.)
In this case

¢ =Ly —ry), (28)

but f; and L are not changed. The Hamiltonian is still given by (4), and conditions (2.1-9)
are still (5)—(7). This means that all of our work in part a up through (15) is unchanged by
adding to J the final-state weighting term. The only change is in the boundary conditions
(2.1-8).
Since xy is not constrained to take on an exact value, it can be varied in determining
the optimal control. Hence, dxy # 0, and so according to (2.1-8a) we must have
0
=2 . (29)
3)61\/
The final costate is now related to the final state xy and the desired final state ry by (29);
this is our new terminal condition for the solution of (6) and (9). The initial condition is
still the given value of x;.
Returning to part a and picking up at equation (15), we must now use (29) (instead of
(3)) to see that at the final time

xv=avxo— Ay —ry). (30)
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Solving for xy gives
_ Ary + aVxo

= , 31
XN A (3D
which should be compared to (17). Thus, fixing xy by (3) allowed us to solve for the
final costate in part a, while here the terminal relation (29) has allowed us to solve for
the final state in terms of x( and the desired ry.

According to (29) and (31),

=y —a"x)

v = 1+ A ’ ©2)
so the costate is given by (11) as
= e (33)
(cf. (18)), and the optimal control is given by (8) as
* b N N—k—1
“E ST (rv —a™xo)a . (34)

This is the optimal control that solves our free-final-state problem. Note that, unlike (19),
the control (34) does depend on r.

In the limit as » — 0, we are concerned less and less about the control energy we use
since u,% is weighted less and less heavily in Jy. In this case the free-final-state control
(34) tends to the fixed-final-state control (19) (which is independent of r). Therefore, the
less we are concerned about control energy (i.e., the smaller we make r in (27)), the closer
the final state xy comes to the desired ry. This illustrates quite nicely the characteristic
trade-off of optimal control that we discussed earlier.

As we let r go to infinity, meaning that we are expressing more concern about the
control energy by weighting it more heavily in Jp, the optimal control goes to zero. For
completeness, let us determine the optimal state trajectory and performance index under
the influence of (34). Substitute (34) into (1) to get

Xp = ax; + (ry — aVxp)a¥ kL, (35)

by
r(l14+A)
Solving and manipulating yields

_ A =a)/y + 1 —a®™ Nakxg + (1 —a*Ha"Hry

(1 —ad/y + (1 _a) (50)

X
Note that x; = xo, but

[(1 = a®)/ylaxo + (1 = a®)ry
(I—ad)/y + (I —a?)

X = (37)

As r — 0, we have y — o0, so that x3 approaches the desired ry. In fact, if y — oo,
then the entire optimal state trajectory (36) approaches (24).



Q
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To find the optimal value of the performance index, use (34) in (2) and simplify to
obtain

LT:——JL——@N—aNmV. (38)
2(1+ A)?

As r — 0, we have A — 00, so that this approaches the fixed-final-state cost (26).

c. Computer Simulation

In practical situations, the optimal control should be simulated to ensure that it results
in acceptable system behavior before it is applied to the physical system. This is easy to
do. Figure 2.1-1 shows a computer program in MATLAB to simulate the plant (1) with
fixed-final-state optimal control (19). We are using an initial state of xop = 0 and a desired
final state of ry = 10. Figure 2.1-2 shows a computer program in MATLAB to simulate
the plant (1) with free-final-state optimal control (19). Figure 2.1-3 shows the optimal
state trajectory x; for the fixed-final-state (i.e., » = 0) and for the free final state control
with several values of weighting r, system parameters a = .99, b = .1, and N = 100.
Figure 2.1-4 shows the corresponding optimal control sequences uj. As expected, xy
approaches ry and the control energy increases as r becomes small.

function [x, u] =scoptco fixed (a, b, r, N, x0, rN)
% Simulation of Optimal Control for Scalar Systems
% Fixed Final State Case

X (1) =x0;

alam= (1-a” (2*N)) / (1-a”2); alam=alam*b”2;

u(1) =b*(rN-x(1)*a”"N)*a"N/ (alam);

u(tl) =u(t) / a;

for k=1:N

% Update the Plant State

X (k+1)=a*x(k) +b*u(k);

% Update the Optimal Control Input

u(k+1) =u(k) /a;

end

FIGURE 2.1-1 MATLAB simulation of fixed-final-state optimal control.

function [x, u]l=scoptco_free (a, b, r, N, x0, rN)
% Simulation of Optimal Control for Scalar Systems
% Free Final State Case

X (1) =x0;

alam=(1—-a” (2*N)) / (1—a” 2); alam=alam*b”2/r;
u(1) =b*(rN—x(1)*a"N)*a "N/ (r*(alam+1));

u(t) =u(l) /a;

for k=1:N

% Update the Plant State

X (k+1) =a*x(k) +b*u(k);

% Update the Optimal Control Input

u(k+1) =u(k) /a;

end

A

FIGURE 2.1-2 MATLAB simulation of free-final-state optimal control.



*G}» Lewis c02.tex VI - 10/19/2011 3:38pm Page 31

2.1 SOLUTION OF THE GENERAL DISCRETE-TIME OPTIMIZATION PROBLEM 31

10 T T T T
—r=0
O | ovvees r=0.1 i
8t 1 = 0.5 A
r= .
7Fl===sr=10 4

optimal state trajectory x*
[6)]
1

0 20 40 60 80 100
iteration number k

FIGURE 2.1-3 State trajectories for the fixed-final-state problem (r = 0) and for the
free-final-state problem for several values of r.
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FIGURE 2.1-4 Optimal control functions corresponding to Fig. 2.1-3.
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Using these simulation results, we can select r and the corresponding control u} to
yield an acceptable state trajectory and control energy for our particular application. This
control is then used on the actual system. ]

2.2 DISCRETE-TIME LINEAR QUADRATIC REGULATOR

Table 2.1-1 provides the solution to the optimal control problem for nonlinear
systems with very general performance indices, but explicit expressions for the
optimal control are difficult to deduce. In this section we consider the extremely
important special case of linear systems with quadratic performance indices.
These performance indices can be considered as (n + m)-dimensional quadratic
surfaces, where n and m are the dimensions of the state and control vectors.
The linear system is a hyperplane that intersects the quadratic surface and moves
through the space as a function of time. This section is therefore the culmination
of the natural progression begun by Examples 1.2-1 and 1.2-2.

We shall discover that very refined solutions can be given in two instances:
the fixed-final-state situation, which leads to an open-loop control strategy, and
the free-final-state situation, which leads to a closed-loop strategy.

The State and Costate Equations

Let the plant to be controlled be described by the linear equation
X1 = Agxg + Byuyg, (2.2-1)

with x; € R" and u; € R™. The associated performance index is the quadratic

function
N-1

1 1
Ji = SaNSwan + 5 ) (5 Quve + ug Reaw), (22-2)
k=i

defined over the time interval of interest [i, N]. Note that both the plant and the
cost-weighting matrices can, in general, be time-varying. The initial plant state is
given as x;. We assume that Qy, Ry, and Sy are symmetric positive semidefinite
matrices and that |Ry| # O for all k.

The objective is to find the control sequence u;, u; 11, ..., uy—; that minimizes
Ji. To solve this linear quadratic (LQ) regulator problem, we begin with the
Hamiltonian function

H* = $(xf Qrxi + uf Reur) + AT, (Agxi + Brug). (2.2-3)

Then Table 2.2-1 presents the state and costate equations

0 Hy,
Xkl = = Apxy + Bruy (2.2-4)
OAk+1
0 Hj
Moo= — = QX + Al Ay (2.2-5)
axk
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TABLE 2.2-1 Discrete Linear Quadratic Regulator (Final State Free)

System model:
Xk+1 = Agxg + Bruy, k>i

Performance index:
N-1

1 1
Ji = Ex;SNxN + E ;(x,;erxk + u{Rkuk)
Assumptions:
Sy >0, 0r=>0, R;>0, and all three are symmetric

Optimal feedback control:

Sk = Ag[Sk1 — Skt Be(BY Syt Bi + Ri)™ "B Sk Ak + Qi
k < N, Sy given
Ki = (B Stt1Br + Ro) ' Bl Si1Ar, k< N
uy = —Kixp, k<N

* 1, Tg .
J = 3x; Sixi

and the stationarity condition

dH
0= "% = Reug + Bf 1. (2.2-6)
8uk
According to (2.2-6),
up = =R B hgy, (2.2-7)

so the optimal control sequence is determined if we can find the costate sequence.
A block diagram of the optimal controller appears in Fig. 2.2-1. We see, however,
that it cannot be implemented in this form, since it is not causal.

I
Lz |

FIGURE 2.2-1 State—costate formulation of the discrete linear quadratic optimal con-
troller.
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Using (2.2-7) to eliminate u; in (2.2-4) gives
Xp41 = Apxy — Blele/;r)»k+1. (2.2-8)

At this point we drop the subscripts on the plant and weighting matrices to
simplify the notation.
The coupled state and costate equations can be written as the single unforced

system 1
Xk+1 A —BR'BT Xk
= . 2.2-9
]=lo L @29

Relative to the coefficient matrix describing (2.2-9) we must make an important
observation. For this we introduce the following definition. A 2n x 2n matrix H
is said to be of Hamiltonian type if it satisfies

JHJ] = HT

0 -1,
L, 0]

It can be easily verified that the coefficient matrix in (2.2-9) is of Hamiltonian
type and we shall refer to it as the discrete Hamiltonian matrix. The unforced
system (2.2-9) will be known as the discrete Hamiltonian system. This system is
difficult to solve since part of it develops forward and part backward in time.

If |A| # O (which is the case whenever it is obtained by sampling a continuous
system), then we can write (2.2-8) as the backward recursion

where J =

xr = A" + ATIBRTIBT A (2.2-10)

Using this in (2.2-5) allows us to write (2.2-9) in the modified form

Xk Al A"'BR'BT Xk+1
H=[ L g ABREBY T][ ] @211)
k QA Al 4+ QA BR'B Akl
This equation develops purely backward in time, so if we can determine xy and
Ay, then we can find x; and A; and hence the optimal control. Unfortunately,
we are given xg, not Ay.

Although we do not use equation (2.2-11) here, we discuss it again in
Section 2.4, where we see that, in the time-invariant case, optimal controls can
be computed from the eigenvectors of its coefficient matrix!

The costate equation (2.2-5) is an adjoint system for the plant (2.2-4). Let us
discuss this notion to develop some more intuition on the relation between the
state and the costate.

First suppose that u; = 0 and Q; = 0, and for simplicity let i = 0. Then the
state and costate equations are

Xp+1 = Axg

M= ATh i,
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with solutions
x; = Afxo, (2.2-12)

o= (AT oy (2.2-13)

Therefore,
M = AN (AN F AR xg = 2% AN x,.

According to (2.2-12) and (2.2-13) this means that for all k € [0, N]
AMxp = Adxo = ANxn, (2.2-14)

so that in the case of zero intermediate-state weighting (Q; = 0) and zero input
uy, the inner product of the state and the costate is invariant with time. Consid-
ering x; and A; as vectors in n space, we have

Axe = |Ae] - x| - cos by, (2.2-15)

where | - | represents magnitude and 6; is the angle between the vectors. As the
state x; develops through time, the magnitude and angle of the costate vary so
that (2.2-15) is constant for all k.

To solve the optimal control problem, we need to solve for the costate A, and
then use (2.2-7). To do this, we must use the boundary conditions (2.1-8). We
know the initial state. We shall consider two special cases for the final condition
(2.1-8a).

Before we do so, it is quite instructive to determine the value of the cost J;
when the control input uy is zero.

Zero-input Cost and the Lyapunov Equation

Let the input uy to the plant (2.2-1) be zero. We want to determine the value of
the cost J; in this uncontrolled situation.

Up to this point we have taken the initial time i as fixed, and k has been the
variable time index, but it is now necessary to make a subtle shift of emphasis.
In this subsection we want to find J; as a function of i when u; = 0 over [i, N].
To do this, we first let i equal the final time N and determine Jy. Then we
increment i backward and find Jy_1, Jy—», and so on. This amounts to taking
i as our variable time index, considering successively longer time intervals with
the final time N as the fixed quantity. The following discussion will make it clear
why we wrote J; and Sy in (2.2-2) as explicit functions of i and N, respectively.

To begin, note that

Iy = 3xpSyxN. (2.2-16)

Now, leti = N — 1, u;, = 0 and write

In-1 = SxpSnxn + x5 On-1XN—1. (2.2-17)
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Use the plant dynamics (2.2-1) to see that
In-1 =3x8 (AN SNAn—1 4+ On—1Dxn-1. (2.2-18)

To make this look like (2.2-16), define a new intermediate variable (an n X n
matrix) by

Sy_1 =A% SvAx_1+ On-1. (2.2-19)

Then
In-1 = %x;{/_lsN—lxN—l- (2.2-20)
It is clear that we can repeat this procedure fori = N —2, N — 3, ... because

(2.2-16) and (2.2-20) have the same form. The result is that we define an entirely
new intermediate sequence of n x n matrices by the backward recursion

St = A} Sk11Ax + O, k<N, (2.2-21)

with boundary condition Sy given as the final-state weighting matrix in (2.2-2).
(Note that we have shifted from dummy index i to k.) This is a discrete Lyapunov
equation for S, also known as the observability Lyapunov equation.
In terms of the new quantities S, the zero-input performance index over the
interval [k, N] is equal to
Jx = 3x{ Sexy. (2.2-22)

We call S; the performance index kernel sequence.

The result (2.2-22) is quite interesting. The kernel S; can be computed offline,
before we know the system state trajectory, since it depends only on the plant
and cost-weighting matrices. According to (2.2-22), then, we can calculate the
zero-input cost over the interval [k, N] by knowing the precomputed S; and only
the initial state x;! If we know where we start out, then we know what the ride
will cost. Note that we can interpret 2.J; as the squared seminorm of x; with
respect to Si, since Si > 0. If Qf > 0, then S is positive definite for all k, and
2Jx becomes a squared norm of xy.

In the time-invariant case, we know that the solution of the Lyapunov equation
(2.2-21) is

N—1
Sp = (ADNESyANTE £ Y S (AN gAN T (2.2-23)
i=k

By the Lyapunov stability theory, as (N — k) — oo this converges to the steady-

state value
o0

Soo = Z(AT)"QA" (2.2-24)

i=0

if the plant is asymptotically stable. Figure 2.2-2 shows the limiting behavior of
Sk for a scalar plant for the stable and unstable cases.

&
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Cost kernel

——|al|>1
|a|<1

SN o

S infinity

FIGURE 2.2-2 Zero-input cost kernel for a stable and an unstable plant.

If the plant is stable, the cost over the interval [—oo, N], or equivalently
[0, o], is given by the steady-state cost

Joo = 3] SocX0. (2.2-25)

It should be clearly understood that if A is stable, the uncontrolled cost over an
infinite interval is finite. This is true because the state goes to zero with time.
If A is not stable, the zero-input steady-state cost can be infinite (depending

on Q) since the norm of x; is unbounded. In the steady-state case, S 2 Sk = Sk+1
for large k, so that (2.2-21) becomes the algebraic Lyapunov equation

S=ATSA+ Q. (2.2-26)

By the Lyapunov theory, this equation has a positive semidefinite solution Sy if
A is stable, and this solution is given by (2.2-24).

If +/Q is defined by :
0=.,0 0, (2.2-27)

then S, is the unique positive definite solution if A is stable and (A, /Q) is
observable. This latter condition means that Q was selected so that the plant state
is “observable by the performance index,” so that variations in any direction of the
state have an effect on J . If (A, +/Q) is not observable, then the unobservable state
components can tend to infinity with k, but the performance index may still be
finite since these components have no effect on J. On the other hand, if (A, v 0)
is observable and A is unstable, then J; will grow without bound as k — —oo0.

We shall see later that these results generalize to the case of nonzero input
and provide a means for computing the optimal control sequence.

Fixed-final-state and Open-loop Control

Here we return to the problem of determining the optimal control for the plant
(2.2-1) with the cost (2.2-2). The state and costate equations are given, once

&
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uy has been expressed in terms of Axyy, by (2.2-8) and (2.2-5). (For ease of
notation, assume the time-invariant case; the results generalize to the time-varying
situation.) To solve these, we need to determine the terminal conditions.

For simplicity, let the initial time be i = 0. The initial state x¢ is given. In this
subsection our terminal objective will be to make xy match exactly the desired
final reference state ry. The final condition is thus

Xy =7y (2.2-28)

Since in this fixed-final-state case dxy = 0, condition (2.1-8a) is automatically
satisfied.

Since we are demanding that x be equal to a known desired ry, the final-state
contribution to Jy in (2.2-2) always has a fixed value of %r}, Syry. It is therefore
redundant to include a final-state weighting term in Jy. Accordingly, we may as
well set Sy = 0.

Let the cost function be
1 N-1

Jo=3 ; up Rug, (2.2-29)

and so we are asking for a control that drives xy exactly to xy = ry using
minimum control energy. The state and costate equations are now

Xis1 = Axg — BRT' BT, (2.2-30)
e = AThiqr (2.2-31)
Since Q = 0, the costate equation is decoupled from the state equation, and the

problem has an easy solution. To find it, write the solution of (2.2-31) in terms
of the, as yet unknown, final costate as

e = (ADHN Ry, (2.2-32)
Use this to eliminate Ag4; in (2.2-30) to get
X1 = Axg — BRT'BT(AT)N "y (2.2-33)

Considering this as a first-order difference equation with the second term as the

input, we get
k—1

xp = Afxg — Z AFI=IBRTIBT(ATYN =15 . (2.2-34)
i=0
To find Ay, evaluate (2.2-34) at k = N,

N-1
xy=ANxg— Y ANTTIBRTIBT(ATN Ty
i=0
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Therefore, the final costate, with xy = ry, is

Ay = =Gy y(ry — AVx0), (2.2-35)
where
N-1
GO,N — Z AN*I*lBRleT(AT)Nflfl. (22'36)
i=0

Using (2.2-32) the costate is
he = —(ADVEGE L (ry — AVx), (2.2-37)
and so by (2.2-7) the optimal control sequence is
up = R7'BTADN G (v — AV x0). (2.2-38)

This is the minimum-control-energy solution to the fixed-final-state LQ regulator
problem; the problem is solved.

We can easily demonstrate that u} is a control that drives xo to xy = ry. The
solution to state equation (2.2-1) is

k—1
xi = Afxg+ > A By, (2.2-39)
i=0

Evaluating the state at k = N and using u; = u as given by (2.2-38) yields

N-1
xy=AVxo+ Y ANTTIBRTBT(ANHN TG (ry — ANxo),
i=0

but G, }V(rN — AVx¢) does not depend on i, and the remaining portion of the
sum is just Go y. This means that

xy = AVxg + GonGy y(ry — AVx0) = ry (2.2-40)

as desired!

To gain an understanding of our optimal control result, let us discuss it a
little. First, note that in the absence of an input, the solution to the state equation
(2.2-1) is

x; = Akx, (2.2-41)

so that xy = AVx is the final state with zero input. Thus, ry — AV xq is the
difference between the desired and undriven final states; it makes sense that u;}
should depend on this quantity.

Now we examine Go y. This is the weighted reachability gramian of the
system. In terms of the system reachability matrix Uy = [B AB --- AF!B],

&
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it can be written as
R~! 0
Goy = Uy Uy. (2.2-42)
0 R!

If R=1,then Gy y = Uy U;,. The optimal control exists if and only if |Go | #
0. Since we assumed |R| # 0, this is equivalent to Uy having full rank n, where
n is the state dimension. Therefore, we can drive any given x( to any desired
xy = ry for some N if and only if the system is reachable! Since reachability
implies that U, ; has full rank for all j > 0, if the system is reachable, we
can guarantee the existence of a control to drive xo to xy = ry for any ry by
selecting N > n.

The following point should be clearly understood. The optimal control (2.2-38)
is an open-loop control. It can be precomputed knowing only the given x( and the
desired ry, and it is independent of intermediate values of x; within the interval
[0, N]. This means that if we apply u} as calculated by (2.2-38) to the actual
system, all is well as long as (2.2-1) is an exact description of the dynamics and
nothing occurs to cause x; to deviate from the optimal state trajectory. In practice,
however, nature is seldom cooperative. Modeling uncertainties and noise cause
errors in x, and the control (2.2-38) does not take these errors into account.
Open-loop control schemes are not robust in most actual applications.

To compute the reachability gramian, there is an attractive alternative to
(2.2-36) or (2.2-42). The solution to the Lyapunov equation

Pir1 = APLAT +BR7'BT, k>0 (2.2-43)
is
k—1
P = A*Py(AT + ) AR BRI BT(ATY (2.2-44)
i=0

so if we solve this equation with Py = 0, then Go = Py for each k. First this
recursion is solved to obtain Gg n for the final time of interest N, and then
(2.2-38) is used to compute the optimal control u} for each k in [0, N]. This
reachability Lyapunov equation should be compared with the observability Lya-
punov equation (2.2-21).

The next example illustrates the use of these results.

Example 2.2-1. Open-loop Control of a Scalar System

Consider the scalar plant

X1 = axg + bug (D
with cost
N
2
Jo=5 g ul. )
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The system is reachable since
U =b#0. 3)

The reachability gramian (2.2-36) is

i, b* 1 —a®N

b? .
Go v = o pwv=i-n 27 7
o.N ; r r 1—a?

“

which is exactly A from Example 2.1-2.
To drive any given x¢ to a desired ry for any N > n = 1, we should use the optimal
control sequence u; for k € [0, N — 1] given by (2.2-38), so that

aV*1p (1= a?)
r b2(1 — a?N)
1—a?

= m(’w —aNxg)a )

(ry —axo)

ko
U, =

This is exactly the result obtained by solving the state and costate equations in Example
2.1-2a.
Note that the optimal control at times k£ and k + 1 are related by

ug, =ug/a, (6)

which makes the control sequence easy to calculate. See Fig. 2.1-1. |

Free-final-state and Closed-loop Control

We have just found the minimum-energy optimal control for system (2.2-1) in the
case where xy is required to have a fixed given value. It is now desired to find
the optimal control sequence that drives the system (2.2-1) along the trajectory,
beginning at a given x;, resulting in a minimum value of (2.2-2). We shall make
here no restriction on the value of the final state x . This free-final-state problem
will result in a radically different sort of control.

The state and costate equations with the input u; eliminated are (2.2-8) and
(2.2-5), which are reproduced here:

Xir1 = Apxx — By Ry B 1, (2.2-45)
M= QX + Af At (2.2-46)

The control is given as (2.2-7) or
ug = — R B i1 (2.2-47)

The initial condition is given as x;, and the final state xy is free. This means
that xy can be varied in determining the constrained minimum. Hence, dxy # 0.

&
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According to (2.1-8), then, it is required that

_ 99

AN = . (2.2-48)
BxN
The final state weighting function is ¢ = %xlf,SNxN, so that
)\.N = SN)CN. (22-49)

This relation between the final costate and state is the new terminal condition;
in the fixed-final-state problem the terminal condition was (2.2-28).

To solve this two-point boundary-value problem, we shall use the sweep
method (Bryson and Ho 1975). Thus, assume that a linear relation like (2.2-49)
holds for all times k < N:

)\k = Skxk (2.2-50)

for some intermediate sequence of n x n matrices Si. If we can find a consistent
formula for these postulated S, then evidently (2.2-50) is a valid assumption. To
do this, use (2.2-50) in (2.2-45) to get

X1 = Axxe — Br Ry "B Siqixiq.
Solving for x4 yields

Xip1 = (I + BeR B Sie) ™" A (2.2-51)

which is a forward recursion for the state.
Now substitute (2.2-50) into costate equation (2.2-46) to see that

Sixk = Quxp + Af Skt 1 X415
or by (2.2-51)
Sexi = Qi + Ap Skt (I + BeR ' BY Sein) ™" Agx.

Since x; is generally nonzero, and this equation holds for all state sequences
given any x;, evidently

Sk = AT Sk (I + ByR: B Siv1) " A + Ok, (2.2-52)

or, using the matrix inversion lemma (Appendix A)
Sk = Af[Sk+1 — Sk41Be(B{ See1 B + Ro) 7' BY See1]Ax + O (2.2-53)
This is a backward recursion for the postulated Si, which completely specifies it

in terms of Syy; and the known system and weighting matrices. The boundary
condition is known: it is just the final-state weighting matrix Sy. Therefore,

&
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we have been able to discover an intermediate sequence such that the relation
(2.2-50) holds.

The matrix quadratic equation (2.2-53) is called a Riccati equation in honor of
the Italian mathematician Count Jacopo Riccati, who investigated a scalar version
of its differential counterpart in 1724. If |Si| # 0 for all k, then we can use the
matrix inversion lemma to rewrite the Riccati equation as

Sk = AL(Si + BkR ' BH T A + Oy (2.2-54)

The intermediate sequence S; can be computed offline knowing only the plant
and parameters of the performance index. Then (2.2-51), with the given initial
state x;, yields the optimal state trajectory. We do not yet know, however, the
control required to move the plant along that trajectory! To determine the optimal
control write

Up = —R;lBE)»k+1 = —RI:IBESk+1xk+1. (2.2-55)

At first glance it appears that the problem is now solved, since the Riccati
equation gives sequence the Si, (2.2-51) gives sequence xi, and we can use this
to find sequence u;. This is, however, quite inconvenient. Let us manipulate
(2.2-55) to find a more satisfactory expression for the optimal control. To this
end, use the plant equation x;41 = Agx; + Bruy in (2.2-55) to get

up = — Ry "B Sp1 (Acxi + Brug)

or
I+ Rk_lBkTSk-HBk)Mk = —Rk_lBkTSkHAka.

Premultiply by R and then solve for the control to obtain
ug = — (B 1B + Ri) ™' B Siq1 Aixi. (2.2-56)
Defining the Kalman gain sequence
Ki = (B{ S41Bx + R) ™' B{ Sty1 Ar, (2.2-57)

the control takes the form
Uup = _kak- (2.2-58)

Note that in these equations we could use the notation uj, since they give the
optimal control.

The form of (2.2-58) makes it particularly clear what we now have on our
hands. The Kalman gain is given in terms of the Riccati equation solution Sy
and the system and weighting matrices. It can therefore be computed and stored
in computer memory before the control is ever applied to the plant. It does not
depend on the state trajectory. Therefore, (2.2-58) is a time-varying state-variable

&
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on-—
line

Sy = Ac [Sks1 = Sks1Bi (B Sis1Bi+ RO BT SarlAc+ Qk ;?ff -
ine
Ky = (B Sis1Bi+ R Bi” Spe1Ax

FIGURE 2.2-3 Free-final-state LQ regulator optimal control scheme.

feedback, which expresses the current required control in terms of the current
state. In the free-final-state linear quadratic (LQ) regulator, the optimal control is
thus given by a closed-loop control law . Closed-loop control is inherently more
robust than open-loop control, because any deviations from the optimal state
trajectory x;/, which is given by (2.2-51), are automatically accounted for.

The problem is solved. To determine the optimal control, we need only solve
the Riccati equation for S; and (2.2-57) for K}, both of which can be done
offline, and then use the feedback (2.2-58). These equations are summarized in
Table 2.2-1, and a block diagram of the control scheme appears in Fig. 2.2-3.

The closed-loop system with the optimal feedback (2.2-58) is

Xkr1 = (Ag — BrKp)xy, (2.2-59)

which provides an alternative to (2.2-51) for computing the optimal state trajec-
tory. It is worth noting that an alternative more efficient way of computing Sy
and K} is to use the recursion

Ki = (B{ St1Br + Ro) ™' B Sii1 Ar, (2.2-60)
Sk = Ay Sis1(Ax — BiKp) + Q. (2.2-61)

It is not difficult to show (see the problems) that equation (2.2-61) is equivalent
to the Joseph stabilized version of the Riccati equation

St = (Ax — BiK) "Spi1 (A — BeKy) + K Ry K + Q. (2.2-62)

This equation has better numerical properties when it comes to computation and
will soon be useful to us.

If the system and weighting matrices A, B, Q, R are all time invariant, then
the feedback gain Kj is still a function of time, since, in general, the Riccati-
equation solution Sy is time varying. Thus, even for time-invariant systems, the
optimal control is a time-varying state feedback. This means that the optimal

&
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closed-loop system (A — BK}) is time varying, and, of course, accounts for the
fact that it cannot be found by classical frequency-domain methods.

For completeness, let us determine the optimal value of the performance index
under the influence of the optimal control (2.2-58). First, observe that

N-1

— 1
(X1 Skt X1 — X Skxe) = Ex;,SNxN — ExiT Six;. (2.2-63)
k=i

N =

We can therefore add zero, in the form of the left-hand side of (2.2-63) minus
its right-hand side, to the performance index (2.2-2). The result is

N-1

1 1
J = 5x,.TS,-x,- +3 D b Sea X + X7 (Qk — Soxe + ug Reur]. (2.2-64)
k=i

If we take into account the state equation (2.2-1), this is equivalent to

N—1
1 1

Ji= =x}Six; + = X (AT Sii1Ar + Ok — Sk)x

P = 5 S+ k§=;[ (A Sier ) (2.2-65)

+ ) Ay Skt Bk + ug B Si1 Agxy + ul (B Sis1 B + Rijur].
According to the Riccati equation (2.2-53), this is

N—1

1 1 1
Ji = EX;TS:'X; +3 Z [x¢ Af St Bi (B Skt B + R) ™ By Sga Axx
k=i

+ xF AT Sy 1 Brug + up B Spi1 Agxy + ) (Bi Sy By + Rk)uk]-
(2.2-66)

The summand can be written as the perfect square of a norm with respect to
(Bl Ski1Br + Ry) (McReynolds 1966):

1
Ji = Exl-TSix,-

1 _ 2
T Z H (BY Si+1Bx + Ry) "B Si1 Awxe + MkH(
k=i

. (2.2-67)
B];rSk+lBk+Rk)

If we now select the optimal control (2.2-56), then the optimal value of the
performance index is seen to be

JF = xS (2.2-68)

This result deserves some discussion. The sequence S can be computed offline
before the optimal control is applied, so that S; is known a priori. Given any
initial state x;, then, we can use (2.2-68) to compute the optimal cost of applying
the control before we ever apply it! In general, we can treat any time k in [i, N]

&
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as the initial time of a subinterval, so that
JE = 2xl Sex. (2.2-69)

What this means is that given the current state x; we can compute the cost to go
(i.e., remaining cost) of applying the optimal control from times k through N.

Because of (2.2-69), we call S; the performance index kernel matrix. The
optimal value of the performance index Ji is simply one-half of the semi-norm
squared of the current state x; with respect to Si. (If |Sx| # O, the semi-norm
becomes a norm.)

It is worth noting that, according to (2.2-67), BkTSk+1Bk + Ry is equal to
32J;/ aui, the second derivative of J; with respect to the kth input under the
constraint (2.2-1). Compare this with the constrained curvature matrix Lgu in
Example 1.2-3. Evidently, B,;FSH] B 4+ Ry is a time-varying curvature matrix.

To contribute to the development of an intuitive grasp of the Riccati-equation-
based control law, let us point out a few links with our previous work. First,
use the matrix inversion lemma to write the optimal state trajectory recursion
(2.2-51) as

Xji1 = [I — Be(B{ Skt B + Ro) ™' B St | Arx (2.2-70)

(which is, in fact, the same as (2.2-59)). It is now clear that this equation and
(2.2-69) (with Sy given by (2.2-53)) are simply generalizations to the case where
time is a parameter of our static results in Example 1.2-3.

We can also link our present results to the zero-input cost discussion, for if
control matrix By is zero, then the (quadratic) Riccati equation reduces to the
(linear) Lyapunov equation (2.2-21)! The control-dependent term in the Riccati
equation makes the value of Sy smaller than AszHAk + QO at each step, and
expresses the decrease in the value of the performance index that results if we
are allowed to control the plant.

There is a second way to reduce a Riccati equation to a Lyapunov equation,
and it provides the connection between the fixed-final-state and free-final-state
control laws. Suppose Qi = 0, so that there is no intermediate-state weighting.
For simplicity, assume time-invariant plant and cost-weighting matrices. Suppose
also that |A| # 0. Under these circumstances, (2.2-54) can be written

S '=A"8 ) AT+ AT'BRT'BTATT, (2.2-71)

which is a backward-developing Lyapunov recursion for S, L

Now, if we want to ensure that x,y approaches exactly a desired final value of
ry = 0, in the performance index we can let the final-state weighting matrix Sy
go to infinity. This tells the optimal control to make xy = 0 in order to keep J;
finite. In this limit, S;l = 0, which provides the terminal condition for (2.2-71).
It is easy to show (by writing out explicitly the first few steps in the recursion
and then using induction) that the solution to (2.2-71) with S;l =0 is just

Syl = A G (AN, (2.2-72)
where Gy is the weighted reachability gramian (2.2-36).

&
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It takes a few more steps to prove it, but it is fairly evident at this point
that if Q = 0 and Sy — oo, then the free-final-state closed-loop control (2.2-56)
reduces to the fixed-final-state open-loop control (2.2-38) in the case ry = 0!
See the related discussion in Example 2.1-2. (Note that Sy — oo is equivalent
toR—>0if 0=0.)

As a final connection, examine part b of Example 2.1-2. It can be demon-
strated that the control law given in equation (34) of that example is just an
alternative formulation of (2.2-56). In practical applications the latter closed-loop
formulation would be used.

As a final comment on the closed-loop LQ regulator, we make the following
very important point. In the fixed-final-state problem, reachability of the system
was required to be able to solve for the optimal control to drive any given initial
state to any desired final state. In our discussion of the free-final-state problem,
however, reachability never came up. In fact, it is not necessary for the system to
be reachable for the control in Table 2.2-1 to exist. If the system is not reachable,
the control will still do its best to minimize J;. Clearly, if the system is, in fact,
reachable, the control will do a better job of minimizing J;, since then all vectors
in R" are candidates for the optimal xy.

We shall see later that reachability does become important in the steady-state
control problem, where N tends to infinity. Let us now work through an example.

Example 2.2-3. Optimal Feedback Control of a Scalar System

The plant to be controlled is the time-invariant scalar system

Xky1 = axg + buy (D
with performance index
1 | V-l
2 2 2
Ji = FSvay+ 2 E (gxi + rug). ()

k=i
In Example 2.1-2 we considered a special case (¢ = 0) of this problem, and we found
the optimal controls for two different terminal conditions by direct solution of the state and
costate equations. Here we shall find the optimal control in the state feedback formulation
using the results we have just derived.
In this scalar case the Riccati equation is

2722
2 asbvsiy,
- _ 3
Sk = a"Sk+1 Psems +7 3)
. a’rsig )
Sk= 55—
g b2ses1 +r
The Kalman gain is b b
absi a/
Ki=—5—— = . ©)
bspp1+r L +71/b%spq
and the optimal control is
ur = —Kpxy. (6)

&
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The optimal value of the performance index is
Tk = sexi. @)

The optimal closed-loop system (2.2-59) is

a

T+ @/ ™ v

X1 = (@ — bKp)xy =

Even in this simple case a closed-form solution to (3) is hard to find. Let us therefore

consider three special cases. Then we shall demonstrate that even if we cannot solve (3)

analytically, for particular values of a, b, g, r, sy, it is very easy to compute the optimal
control sequence u; and to simulate applying it to the plant on a digital computer.

a. No Control Weighting

Let r = 0, meaning that we do not care how much control is used (i.e., u, is not weighted
in J; so that the optimal solution will make no attempt to keep it small). Then (4) is

Sk =4, 9

the feedback gain (5) is Ky = a/b, and the optimal control becomes

uy = —%xk. (10)

Under the influence of this control, the performance index is
Je = 5qx7, (11)

and the closed-loop system (8) is xx4+; = 0!

We can understand this as follows. If we have a given value x; for the state at time &,
then a naive approach to minimizing the magnitude of the state vector (which is all we
require since r = 0) is to solve the state equation (1) for the u; required to make xj4
equal to zero, so that O = x4+ = axy + buy. This yields the control (10).

b. Very Large Control Weighting

If we are very concerned not to use too much control energy, we can let r — oco. Then
(4) becomes
Sk = a’sis1 4. (12)

The solution to this (Lyapunov) difference equation is

N-1 [ — g2=h
— ¢ (13)

_ 2(N—k) 2N—i—1) _ 2(N—k)
Sk = Snya + a = sya +
k N igk q N < 1— a2

The Kalman gain is K; = 0, and so the optimal control is u; = 0. The closed-loop system
IS X1 = axg.

If we are very concerned about using too much control, the best policy is to use none
at all!
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c¢. No Intermediate-state Weighting

Let us set ¢ = 0. Then we are concerned only about making x]%, small without using too
much control energy. It is easier in this case to deal with the inverse of the cost kernel,
s,jl, so use (2.2-71) to rewrite (4) as

—1 >
s b
—1 k+1
s, = — + —. 14
k ar = a*r (14
The solution to this (Lyapunov) difference equation is
N-1 b2
—1 _ —2(N—k) 1 —2(N—i—1)
s, =a sy + —a s 15
‘ D Dn (15)
i=k
or, changing variables,
N—k—1
b? : B2 1 —q2N-b
-1 _ _—2(N-k) 1 Y —2i _ ~1_—2(N—k)
sp =a syt o5 ZO ad =sya t o o2 (16)
=
After a few lines of work we get
2(N—k)
sya
5t o (17)

T sy @/l — @@ ) /A =)

This is the Riccati-equation solution for ¢ = 0.

d. Implementation of Optimal Control

To actually compute and implement the control described by (4)—(6), none of the analysis
subsequent to equation (6) is needed. The implementation of optimal controls has two
phases: computing the control sequence and applying it to the plant. We show here how
to compute u} and then simulate its application using a digital computer.

function [x, u, K, S]=scaopt (a, b, g, r, s, x0, N)
% Program to Compute and Simulate Optimal Feedback Control
% Compute and Store Optimal Feedback Sequence

% (Backward Iteration)

S(N+1) =s;

for k=N:-—1:1

K(k)=(a*b*s)/(r+s*b"2);

s=q+(r*s*a”2)/(r+s*b"2);

S(k)=s;

end

% Apply Optimal Control to Plant (Forward Iteration)
X(1)=x0;

for k=1:N

% Compute Optimal Control

u(k)==K(k)*x(k);

% Update the Plant State

X (k+1)=a*x(k)+b*u(k);

end

FIGURE 2.2-4 MATLAB code to compute and simulate optimal feedback control.
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A routine implementing (4) and (5), for a =1.05, b =0.01, g =r =1, x9 = 10,
sy =5, and N = 100, is shown in Fig. 2.2-4. This must solve the Riccati equation
backward on the desired interval [0, N ], using as a starting value sy. The optimal feedback
gains Kj are also computed for all k € [0, N], and they are stored in memory. (The s;
need not be stored. They are stored in this example only so they can be plotted for
illustrative purposes. In an application the storage of s; can be avoided.) This completes

the computation of the control law.

1500

1000

500

10

10

Sequence Sy

20 40 60 80 100
lteration number k
(a)
—— Control gain Kkl_
20 40 60 80 100
lteration number k
(b)
20 40 60 80 100

Iteration number k

(©)

FIGURE 2.2-5 Optimal control simulations for sy = 5. (a) Cost kernel s;. (b) Optimal
feedback gains K. (c) Optimal trajectory x;.
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1200 T T : :

1000 1
800 h
600 h

Sequence Sy
400 T 1 1 1
0 20 40 60 80 100
Iteration number k
(a)
10 T T T T
9 - -
8 - .
7 - -
6 L . 4
—— Control gain Ky
5 1 1 1 1
0 20 40 60 80 100
Iteration number k
(b)
10 T T T T
of
6 L m
4 - .
2 - -
0 1 1 1 1
0 20 40 60 80 100

Iteration number k

(©

FIGURE 2.2-6 Optimal control simulations for sy = 500. (a) Cost kernel s¢. (b) Opti-
mal feedback gains K. (c) Optimal trajectory x;.

A MATLAB routine simulating the application of the feedback control to the plant (1)
is also shown in Fig. 2.2-4. Beginning at the given xo, it steps forward in time using (1)
and (6), with precomputed stored values of Ky, to calculate the resulting trajectory x;.
The backward-computed kernel and gain sequences s; and K; and the forward-computed
state sequence x;; are plotted in Fig. 2.2-5. Note that if sy is finite, xy will not be
exactly equal to zero, but that as sy — oo, the final state xy approaches zero more
closely. The value of sy for Fig. 2.2-5 was 5. Figure 2.2-6 is the simulation using
sy = 500. |
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Software for the efficient solution of the Riccati equation is included in Bier-
man (1977). However, this example has made the point that a little preliminary
analysis can result in simplified algorithms (i.e., we used (4) in the example, not
(3), for implementation). This is especially true in the case where the number of
states n is greater than one and the matrices are sparse.

To see why, note that the Riccati equation is symmetric (the transpose of
the right-hand side is equal to itself if Sg;; is symmetric). Therefore, Sy is
symmetric for all k if SE, = Sy, which we have assumed. This means that S; has
n? elements, only n(n + 1)/2 of which are distinct. Some preliminary analysis
can yield n(n + 1)/2 scalar recursions for the components of S, which are
easier to use than one n x n matrix recursion. We shall see examples of this in
Section 2.3.

Exercise 2.2-4. LQ Regulator with Weighting of State—input Inner Product

Let the plant be given by
X1 = Apxi + Brug, (1

but consider the modified performance index

b= s+ 1 a[% P @
P = =X X — X 5
QNONANTT S po ko 7Y R Lux

where the block coefficient matrix in the sum is positive definite. This index allows us to
weight products of state and input components to keep them small.

a. Show that the Hamiltonian system is

oy —1 pT
|:xk+1:| _ Ay —BiR, B, |: Xi ] 3
)"k A 57T A ’
Qk Ak k+1
where .
Ay = Ay — B R'T, 4
0 = Ok — TuR'T. (5)

b. Show that the optimal control is given by
up = — (B Sks1By + Rk)_l(BkTSkHAk + T, (6)
where sequence Sy is give by the Riccati equation
Sk = Ag[See1 — Ser1Be(B Ses1 Be + RO Bl S [A, + 0, k<N (D)

with boundary condition of Sy.
c. Show that (7) can alternatively be written

Sk = A} Ser1Ax — KL (BE Si1 B + R Ky + Qg )]



‘G}» Lewis c02.tex VI - 10/19/2011 3:38pm Page 53

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS 53

where the Kalman gain is
Ky = (B{ Str1Bi + R) ™ (BY St Ac + T)D. ©)

d. Show that the optimum cost to go on the subinterval [k, N] is given in terms of the
state x; as
Je = 3x1 Sex. (10)

e. Show that the Riccati equation (2.2-53) can be written as (8) with K} given by
(2.2-57). Hence, the only changes introduced by the off-diagonal weighting term T
are that the Kalman gain must be modified as in (9) and that the Riccati equation

formulation (8) should be used.
|

2.3 DIGITAL CONTROL OF CONTINUOUS-TIME SYSTEMS

With the increasing sophistication of microprocessors, more and more control
schemes are being implemented digitally. In these schemes, the control input is
switched to new values at discrete time steps, with a zero-order hold usually used
between switchings so that the control is constant during these intervals. Such
controls must be designed using a discretized version of the continuous plant.

Design of Digital Controls

The design of digital control laws is very straightforward. If the continuous
time-invariant plant is given by

x(t) = Ax(t) + Bu(t), (2.3-1)
then the discretized version of the plant, using a sampling period of 7', is

X1 = A’x + Blug, (2.3-2)
where the sampled plant and control matrices are

AS = AT, (2.3-3a)
T

B = / "B dr. (2.3-3b)
0

This discretization process assumes that the control input u(¢) to the continuous
plant is switched only at times k7', and that it is held constant (with a zero-
order hold) between switchings so that u(t) = uy, for kT <t < (k+ 1)T. This
is within our power to guarantee, since we select the control input. If we do
manufacture u(t) from u; in this fashion, then the continuous state is related to
the discrete state according to x(kT) = x.

To guarantee that the samples of the state, x; = x(kT'), and the control, u; =
u(kT), display a desired behavior, it is necessary only to apply our optimal

&
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control law computation methods to the sampled system (2.3-2) to compute the
optimal sequence uj. The actual continuous input that is sent to the plant is then
manufactured from u}.

The values of x(¢) between sampling instants k7' cannot be specified using a
control law design based on (2.3-2), but they can be determined in a very easy
manner, for between the sampling instants k7" and (k + 1)7 the state propagates
according to the plant dynamics with a constant input:

x(t) = Ax(t) + Buy, kT <t < (k+1T. (2.3-4)

The solution to this equation is
T
x(1) = eACKDx, 4+ / AOBdrug, kT <t < (k+ DT. (2.3-5)
kT

If the continuous plant is time varying, then the discretization process yields
a time-varying discrete plant

AS = ¢((k + DT, kT), (2.3-62)
(k+1)T
B} =/ ¢ ((k + )T, 1)B(7) dx, (2.3-6b)
kT

where ¢ (2, tp), is the state transition matrix of the time invariant plant described
by (2.3-1). The optimal control approach just described still applies.

Simulation of Digital Controls

Once the optimal control sequence uj has been designed based on (2.3-2), we
should like to simulate the application of the resulting digital control to the plant
(2.3-1) to verify that it has a satisfactory behavior. For completeness, we should
like to observe the behavior of the state between sampling instants as well as at
the sampling instants.

To do this, we can use the simulation scheme shown in Fig. 2.3-1. The con-
tinuous state equation (2.3-1) is represented in the figure as

F(t, X, X) (2.3-7)

and is integrated using the MATLAB routine Isim.m. The control input u(t) is
updated at each time k7 and then held until time (k + 1)7'. It is important to
realize that two sampling time intervals are involved, the plant sampling interval
T and the simulation sampling interval 7. The states are evaluated by the routine
at the sampling interval and hence we choose 7T to be a divisor of 7.

Note that we are using discrete system (2.3-2) to design the control law, but
that, to find x(z) at all values of 7, we are using the continuous plant (2.3-1) to
simulate the control law.
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No run Yes
complete? » STOP

Not

A 4

MATLAB routine
Isim with continuous
plant dynamics
F(t, X, X)

Yes | Update control

for some integer k ? u(t) = uy

FIGURE 2.3-1 Digital control simulation scheme.

Some Examples

Let us demonstrate how easy this procedure is by considering some examples.
The examples also illustrate how to simplify the coding for the computation of
optimal control u; by doing some preliminary analysis; by tailoring the Riccati
equation to each problem, no matrix manipulations are used.

Example 2.3-1. Digital Control of an RC Circuit

The electric circuit in Fig. 2.3-2 provides a scalar example that nicely illustrates our
approach. The continuous state equation is

. —1 1
f=—x+—u, (D
T T
with time constant !
T=—. 2
RC (@)
R
AN
+ +
u(t) ::C x(t)

FIGURE 2.3-2 RC circuit.

Let T =5, so that
x = —0.2x + 0.2u. 3)

It is desired to control the capacitor voltage x(f) by a scheme in which input u(r)
is switched only at discrete instants k7" by a microprocessor. The microprocessor also
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samples x(¢) at each sampling period 7. Let T = 0.5 sec. (For good control, we should
select T < t/10.)

a. Design of Digital Control Law for Free Final State
The discretized system is
T 1
Xkpl = e Tty +/ e T Zdn - uy
0 t “)
=e x4+ —e My,
or

Xp1 = axy + buy, (%)

with a = 0.9048 and b = 0.0952. Suppose that we want the control and state samples uy
and x; to be small over a 5-sec interval for any initial voltage x(0). Then N =5/T = 10.
To express these control objectives mathematically, select the performance index

N-1
1 1
J = Esle%,—l— 3 ;(ax,% + ru,%). (6)

This is the same system and cost we examined in Example 2.2-3, so the optimal control
is just given by the Riccati equation as

absk 1

Kp=—F—"—. (7)
bsgy1 +1
2

a-rsit1
=S ———+q, 8
= gt T4 ®)
up = Kpxy. )

By making sy large, we can force the final state xy = x(5) to be small.

b. Simulation of Digital Control Law for Free Final State

It is quite simple to simulate the digital control law being applied to the continuous plant
(3). First notice that equations (7), (8), and (9) can be computed by using the scaopt.m
function. The overall driver program for the implementation of the digital control law is
given in Fig. 2.3-3, where a, = —0.2, b, = 0.2, a4 = 0.9048, b; = 0.0952, g =r =1,
s = 100, N = 10, and x¢ = 10.

Results of the simulation run are shown in Fig. 2.3-4, where the state x(#) with no
control is shown along with the state resulting on application of our digital control. Also
shown in Fig. 2.3-5 is u(t), the digital control manufactured from uy in (9).

c. Design of Control Law for Fixed Final State

To achieve a fixed final value of x(5) = 0, we can use a very large value of sy in parts a
and b. To achieve a nonzero value ry for x(5), however, we must use the open-loop control
of (2.2-38). (When we discuss the function of final-state-fixed problem in Section 4.5, we
shall see how to achieve a nonzero fixed final state using a Riccati-equation-based design.)
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function ex2 3 1b(a ¢, b c, a d, b d, q, r, s, x0, N)

% Compute Optimal Control Input

[x, u, K, S] =scaopt(a_d, b_d, q, r, s, x0, N);

% Define the time interval T

T=0:0.05:5;

% Expand the input u to the specified interval T

U=kron(u, ones(1, 10));

U=[U u(length(u))];

% Simulate the plant dynamics

system=ss(a_c,b c,1,0);

figure(1)

[Y,T,X]=1sim(system, U, T, x0); plot(T,Y); hold;

%Simulate the plant dynamics with zero input

[Y,T,X]=1sim(system, [O kron(u, zeros(1, 10))], T, x0); plot(T,Y);

legend('x(t) with zero control input','x(t) with control');
xlabel('Time [s]');

% Plot the input u(t)

figure(2)

T=0:0.05:5;

plot(T, U); legend('Control input'); xlabel('Time [s]');

end

FIGURE 2.3-3 Driver program to compute u; and simulate the resulting digital control
scheme.

10 T T T T
Ne. - —=-x(t) with zero control input
9 N e x(t) with control 1

Time [s]

FIGURE 2.3-4 Simulation of continuous plant dynamics comparing zero-input response
to controlled response.
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-3.6 T T T

—— Control input

-3.81 1

Time [s]

FIGURE 2.3-5 The control input obtained from .

Thus, suppose we want to drive the capacitor voltage from x(0) = xo = 10 V exactly
to x(5) = ry =20 V while minimizing the energy

,
N (10)

of the control samples. The design of the control to make the sampled system (5) achieve
this objective is exactly the problem we solved in Example 2.2-1, so the optimal discrete
control sequence is

(1 -a)?

= m(?[\/ —aNxo)aN_k_l. (11)

Uk

d. Simulation of Digital Control for Fixed Final State

In this open loop scheme, the simulation is as easy as before. We just use the driver
program as before with the exception that in this case we cannot use scaopt.m to compute
uy; instead, we wrote a simple script to implement (11). The driver program is shown in
Fig. 2.3-6.

The simulation results are shown in Fig. 2.3-7. Note that —u(¢) (not u(t)) is plotted
there.

While the open-loop control is easier to implement, it is not as robust as the closed-
loop control. If at a time of 2 sec, for example, a noise source drives the state off the
optimal trajectory shown in Fig. 2.3-7, the final state x(5) will no longer be 20V.
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function ex2_3 1d (a_c, b c, a d, b_d, q, r, s, rN, x0, N)
% Compute Optimal Control Input

for k=1:N

u(k)=((1—a_d"2)/(b_d*(1—a_d" (2*N))))*(rN—x0*a_d"N)*a_d"~ N—k);
end

% Define the time interval T

T=0.05:0.05:5;

% Expand the input u to the specified interval T
=kron(u,ones(1,10));

% Simulate the plant dynamics

lsim(a_c, b_c, 1, 0, U, T, x0); hold

%Simulate the plant dynamics with zero input

1sim (a_c, b_c, 1, 0, kron (u, zeros (1, 10)), T, x0);

% Plot the input —u(t)

plot (T, U);

c

FIGURE 2.3-6 Driver program for on-line computation of open-loop control.

40 T T T T

------- x(t) with zero control input
35 | = === x(t) with control
—— Control input u(t)

30

25

20

15

10

Time [s]

FIGURE 2.3-7 Simulation of continuous plant dynamics comparing zero-input response
to controlled response. -

Example 2.3-2. Digital Control of Systems Obeying Newton’s Laws

Newton’s laws md = F can be expressed in state-variable form as

S
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where x 2 [d v]T, with d(t) and v(f) representing position and velocity. Input u(¢) is
an acceleration; to find the input in units of force, we can multiply u(z) by m, the mass
of the body.

The optimal control law we shall derive applies to any system obeying (1). To lend
more interest to our example, however, let us formulate a particular problem to solve.

a. The Rendezvous Problem

See Fig. 2.3-8. A target aircraft A, is moving in the y; direction with a constant velocity
of V;. Its initial y; coordinate is Y,. Our aircraft A is moving in the y; direction with a
constant velocity of V > V;. Our initial y; coordinate is 0. Thus, our velocity relative to
A; is (V — V;). Clearly, at time

Y,
=v_v,

I (@)

the two aircraft A and A, will be abreast of each other (i.e., have the same y; coordinate).

The y; velocities V and V; are fixed throughout the problem, and hence the final time #¢
is known.

|

v(t)

d(t) oV

0 Y, v, vy —
FIGURE 2.3-8 Rendezvous problem geometry.

The optimal control problem is as follows. The y, position and velocity of aircraft
A relative to A, are d(¢) and v(¢), and the y, dynamics of A are described by (1). It
is required to determine the control acceleration u(f) needed in the y, direction so that
aircraft A will rendezvous with the target A; at time #;. This means that we must determine
u(t) so that d(ty) and v(t) are both zero.

b. Design of Digital Control Law

To find such a control u(t), discretize the y, dynamics (1) to get (note that eAT = I +

ATsince A% = 0.): )
1 T T-/2
X1 = [0 1i|xk + [ T/ ]Mk 3)

for some sampling period 7. Suppose that # = 5 sec. Then 7' = 0.5 sec is reasonable.
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Associate with (3) the performance index
N—1
I v]sa O 1 {92 O 2
Jo==xy - . 4
=35 e s R (] e g

Select control weighting r = 1, position weighting g; = 1, and velocity weighting g, = 1.
To ensure that the final y, position dy and velocity Vy are very small, select the final-state
component weights as s; = 100, s, = 100. The number of iterations is

N =t/T = 10. (5)

Now the optimal control is given by (2.2-58), (2.2-60), and (2.2-61). Let us do some
preliminary analysis on these equations, defining a few intermediate variables to simplify

things.
Since we know that Sy is symmetric for all k, let
Alst 82
Sk = [52 S3] . (6)

(We shall not require time subscripts on the cost kernel components s; since they will be
updated at each k by MATLAB replacement.) Then the feedback gain is updated by

8§ =B S B+r

S1T4 3 2
=r+= - + 573 + 5372, 7
Ky =BTS;,1A/8
1 51T2+ Ts1T3+352T2+ - ®
= — Ky S .
5| 2 ) 2 3
Letting
A
Ki =1k ksl 9
we can write
SlT2
k1:<_2 +SZT> /8, (10a)
. T3 3 T2
ky = (“2 + ”2 +S3T> /8. (10b)

The closed-loop plant matrix is

A8 4 g — 1 —kT?)2 T —kT?)2 an
k T okt 1 — kT
Defining the components of A{ as
ACI A a‘l:ll a(l:12 12
L | c |’ (12)
a1 4y
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we have the four scalar updates:

at =1 -kT?)2, (13a)
ah =T —kaT?)2, (13b)
& =~k T, (13c)
ash =1—kaT. (13d)
The updated cost kernel is
Sc=ATSi A + 0
s1af) + 205 + 4 siafy + 52a5)
- |:(S1T +s2)af} + (2T +s3)asy (1T + s2)ash + (52T + s3)ash + %i| -9
which yields the scalar updates:
51 = slafll + szagll + 44, (15a)
§y = slaflz + szaglz, (15b)
s3=(s1T + sz)a‘flz + (52T + S3)a§l2 + q. (15¢)
Note that (15b) and
52 = (51T + s2)a$} + (52T + s3)a5) (16)

are evidently equivalent since Sy is symmetric. (Prove this.) For numerical stability in the
face of computer roundoff error, we could use the average of (15b) and (16) for s,.

The optimal feedback gains are therefore found by iterating (7), (10), (13), and (15)
for time index k=N —1, N —2,...,0. Software for this is contained in subroutine
ex2_3_2c in Fig. 2.3-10.

c¢. Simulation of Digital Control

Suppose that the initial y, position and velocity of aircraft A are d(0) = 10, v(0) = 10.
By using subroutine [sim to simulate the dynamics (1) and driving with a zero input as
follows

T=0:0.05:5;

U=zeros(1,101);

A=[0 1;0 0]; b=[0;1]; c=eye(2); d=zeros(2, 1);
system=ss(A,b,c,d);

ic=[10 10];

[Y,T,X]=1lsim(system, U, T, ic);

plot(T,Y)

axis ([0 5 0 60]);

legend('d(t)','v(t)'); xlabel('Time [s]');

the uncontrolled state plot in Fig. 2.3-9 was obtained.
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s ee e d(t) K

50 | Vet . -

40 : -

T
.

30' . N

20 . T

10}

Time [s]

FIGURE 2.3-9 Uncontrolled response of plant.

This plot represents the zero input solution
d(t) =d0) +v(0)t,
v(t) = v(0).

Clearly, this behavior is not exactly what we had in mind!
Let us examine the behavior of (1) manufactured under the influence of a digital control
law manufactured from the optimal discrete control found in part b according to

u(t) =ur, kT <t < (k+1)T.

To do this, we can use the driver program shown in Fig. 2.3-10.

Since we computed the digital control law, we can use Isim for simulating the dynamics
of the continuous plant. The resulting state trajectory is shown in Fig. 2.3-11. The first
thing the control input does is go negative to —20 in order to decrease the y, velocity v(t)
to zero by a time of 0.5 sec. Then velocity v(¢) becomes negative so that our aircraft A
begins to approach the target (i.e., d(¢) begins to decrease). Velocity v(¢) is then gradually
returned to zero to achieve a rendezvous at #r =5 sec.

Apparently, our choice of final weighting s; = 100 and s, = 100 was satisfactory.
The simulation shows that at + =5 sec, d(¢) and v(¢) are indeed very close to zero as
required.

Preliminary simplification of the Riccati equation can lead to some nice, simple imple-
mentations, as this example shows. For greater than n = 2 states, however, it can be more
trouble than it is worth. It should be clearly realized that preliminary analysis is only for
convenience; it is never actually required, since the software in Bierman (1977) can be
used to solve the Riccati equation in the general case.
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function u = ex2_3 2c(A_d, b_d, q, r, s, N, T, x0)
% Backward iteration for Cost Kernel and FB Gains
k=N;

K=zeros(N,2);

while k>0,

T2=T"2;

div=r+(s(1)*T2°2)/4 + s(2)*T*T2 + s(3)*T2;

% Feedback Gains

(ky, 1) = (s(1)*T2/2+s(2)*T)/div;

(k, 2) = (s(1)*T2*T/2 +3*s(2)*T2/2 + s(3)*T)/div;
% Closed-loop Plant matrix

Acl=[ 1-K(k,1)*T2/2 T-K(k,2)*T2/2; -K(k,1)*T 1-K(k,2)*T]
% Cost Kernel Update

s(3)=(s(1)*T+s(2))*Acl(1, 2) + (s(2)*T+s(3))*Acl(2, 2)+q(2);
temp=s(2);

s(2)=s(1)*Acl(1,2)+temp*Acl(2,2);
s(1)=s(1)*Acl(1,1)+temp*Acl(2,1)+q(1);

k=k-1;

end

% Apply Optimal Control (Forward Iteration)
X(:,1)=x0;

for k=1:N

% Compute Optimal Control Law

u(k)=-K(k,:)*x(:,k);

% Update the Plant State
X(:,k+1)=A_d*x(:,k)+b_d*u(k);

end

end

K
K

FIGURE 2.3-10 Driver program to compute u; and simulate the resulting control
scheme.

Time [s]

FIGURE 2.3-11 Optimal state and control trajectories for rendezvous problem.
u

&
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2.4 STEADY-STATE CLOSED-LOOP CONTROL
AND SUBOPTIMAL FEEDBACK

We have seen that the solution to the LQ optimal control problem is a state
feedback of the form
up = —Kpxg, (2.4-1)

with gain sequence K given in terms of the solution sequence Sy to the Riccati
equation as

Sk = AT[Sks1 — Sk+1 BB S B+ R) ' BTSi11A + 0, (2.4-2)
Ky = (BTSi;1B+ R)'BTS; 1 A. (2.4-3)

In most of this section we assume the time-invariant case. Even in this situation,
the closed-loop system
Xp+1 = (A — BKp)xi (2.4-4)

is time varying since the optimal feedback gains Kj are time varying.

This time-varying feedback is not always convenient to implement; it requires
the storage of an entire sequence of m x n matrices. We might be interested in
using instead a suboptimal feedback gain that does not actually minimize the
performance index but is a constant so that

up = —ka. (2-4'5)

Such a feedback is certainly easier to implement than (2.4-1).

As one candidate for a constant feedback gain, we might consider the limit of
the optimal K as the final time N goes to infinity (or equivalently as k — —o0).
We shall see that when this limit exists, it provides a constant feedback that is
often satisfactory.

Let us first consider the effect of using an arbitrary feedback to control the
plant.

Suboptimal Feedback Gains

The plant, which we shall assume time invariant in this subsection only for
notational simplicity, is
Xitr1 = Axy + Buy. (2.4-6)

Let us use as a control the state feedback (2.4-1) for some arbitrary given matrix
sequence K. We are not yet concerned about how to select Ky; all we want to
know is the resulting value of the performance index

N—-1

1 1
Jo = sxySyan+ 5 Y (o Oxi + uj Ruy). (2.4-7)
2 2 =
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We can find this value by using a derivation like the one leading to (2.2-66).
Thus, add the left-hand side minus the right-hand side of (2.2-63) (i.e., add zero)
to (2.4-7) and use (2.4-1) to get

N-1

1 1
Ji = 55 Sixi 5 30 [0 Seexie + (@ = Se+ K{RKOx]. (24-8)
k=i

The sequence Sy is at this point undefined. Taking into account the state equation
(2.4-6) with the control (2.4-1) yields

N-1
J; = %xiTSix,- + % Z x¢[(A — BK) " Ski1 (A — BKy) + Q + K RKy — Sk ]x.
k=i
(2.4-9)
Now suppose the sequence Sy satisfies the matrix equation (2.2-62). The sum is
then zero, so that finally J; = %xiTS,-xi.

We can summarize this result as follows. Let the feedback (2.4-1) for any
given K be applied to the plant. Then the resulting cost on [k, N] is given for
each time k by

Je =3x8 Sex, (2.4-10)

where the kernel is the solution to
Sk = (A — BKp) " Si1(A — BKy) + K[ RK; + Q (2.4-11)

with boundary condition Sy.

We should be sure we know exactly what is going on here. Equation (2.4-11) is
not the Joseph-stabilized Riccati equation! It becomes the Joseph-Riccati equation
only if the optimal gain sequence (2.4-3) is used. If Ky is an arbitrary given gain
sequence, then (2.4-11) is simply a (linear) Lyapunov equation in terms of the
known closed-loop plant matrix (A — BKy).

Note in particular that K; can be a constant feedback matrix K, as in (2.4-5).
If K is not the optimal gain, then J; given by (2.4-10) and (2.4-11) is, in general,
greater than the optimal cost J;".

The next example illustrates the use of these new results.

Example 2.4-1. Suboptimal Feedback Control of a Scalar System

Let us reconsider the system of Example 2.2-3. The plant is

Xga+1 = axy + buy (D
with performance index
1 1=
2 2
Jo = Esij%, +5 g(qu + rud). )
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The optimal control is a time-varying state feedback
up = —Kpxy, (3)

with gain determined by the Riccati equation as

2
a“rsiiy

= = s 4

= e 4y +4q “
absit1

Ky=—-—". 5

¢ b2spy1 +r ©)

For parameters of a =1.05, b =0.01, ¢ =r = sy =5, with final time N = 100,

a simulation was run to obtain the Kalman gain sequence shown in Fig. 2.2-5b. For

N — k =100, a steady-state value of K éKo = 9.808 has been reached. The corre-

sponding Riccati-equation solution s; is shown in Fig. 2.4-1a. If we apply the feedback

(3) to the plant with xo = 10, the optimal state trajectory x; in Fig. 2.4-1b results. The
optimal cost

TP = Lspx? (6)

along this trajectory is shown in Fig. 2.4-1c.

Now, let us suppose we want a simpler feedback control than (3) with K; as in
Fig. 2.2-5b. Suppose we try to use the constant state feedback

up = —Kooxk = —9.808xk. (7)

Then the cost is given by
Jk = %skx,%, (8)

where s; is the solution to the Lyapunov equation (2.4-11), which becomes

sk =sir1(a —bKoo) +rK2 44, (C)
with boundary condition sy. This suboptimal kernel sequence is shown in Fig. 2.4-1a.
Note that it is an upper bound for the optimal sequence s;. Thus, for any state x; at any

time k, the cost to go J; using feedback (7) satisfies

* 1 %2
Ji SExp <

=3 skx,% = Jk. (10)

D=

Simulating the plant (1) with the input (7) yields the suboptimal state trajectory x; shown
in Fig. 2.4-1b. The associated suboptimal cost J; is shown in Fig. 2.4-1c. It is greater
than J;*. The suboptimal trajectory x; has less energy than x;, but Ji is larger than J;
because of the larger control energy required to achieve xj.

Note that initially, at times well removed from the final time N, x; and x; are about
the same. As k approaches N, K| deviates more from K., and the trajectories differ
markedly.

Using the constant gain K, the closed-loop system is

Xk+1 = (@ — bKoo)xx = 0.952xy, (11
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4000 | 1
2000 | e Optimal sequence S, E
Suboptimal sequence Sy T
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Iteration number k
(a)
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8 _“ ....... Optimal x, |
6 Suboptimal x,
4t i
2F e e b
0 1 1 1 i
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Iteration number k
(b)
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4 b\ Suboptimal cost J |
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Iteration number k
(c)

FIGURE 2.4-1 Optimal and suboptimal closed-loop behavior. (a) Cost kernels. (b) State
trajectories. (c) Costs.

so the suboptimal trajectory is simply given by
x; = 0.952%x9 = 10(0.952)*. (12)

By examining these graphs, we can determine whether the behavior under the influence of
the simplified gain (7) is satisfactory and whether we are willing to use the extra control
energy required. If so, we can go ahead and use this simplified feedback on the actual
physical plant. |
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The Algebraic Riccati Equation

The comments in this subsection apply only for time-invariant plant and cost
matrices. Equation (2.4-2) is solved backward in time beginning at time N. As
k — —oo, the sequence Sy can have several types of behavior, as symbolized
in Fig. 2.4-2. Tt can converge to a steady-state matrix S, which may be zero,
positive semi-definite, or positive definite. It can also fail to converge to a finite
matrix.

If Si does converge, then for large negative k, evidently S 2 Sk = Sk+1- Thus,
in the limit, (2.4-2) becomes the algebraic Riccati equation (ARE)

S = AT[S — SB(BTSB+ R)"'BTS]A + 0, (2.4-12)

which has no time dependence. The limiting solution S, to (2.4-2) is clearly a
solution of (2.4-12).

Note that if Sy is symmetric and positive semidefinite, then the solution Sy to
(2.4-2) is also symmetric and positive semidefinite for all k£ (transpose both sides
of the equation). The algebraic equation (2.4-12), on the other hand, can have
nonpositive semidefinite, nonsymmetric, and even complex solutions. Thus, all
solutions to the algebraic Riccati equation are not also limiting solutions to the
(time-varying) Riccati equation for some Sy .

If the limiting solution to (2.4-2) exists and is denoted by S, then the corre-
sponding steady-state Kalman gain is

Koo = (BTSooB + R) 'BTS A. (2.4-13)

This is a constant feedback gain. Under some circumstances it may be acceptable
to use the time-invariant feedback law

up = —KooXi (2.4-14)

instead of the optimal control (2.4-1)—(2.4-3). The cost associated with such a
control strategy is given by (2.4-10), where Sy satisfies (2.4-11) with K; = K.

Sk

SN

So=0

N

FIGURE 2.4-2 Limiting behavior of Riccati-equation solution.
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To examine the consequences of using this steady-state feedback, let us discuss
the limiting behavior of the closed-loop system (2.4-4) using the optimal time-
varying feedback (2.4-1)—(2.4-3).

Limiting Behavior of the Riccati-equation Solution

This subsection applies only for time-invariant plant and cost matrices. We are
interested in answering three questions here:

1. When does there exist a bounded limiting solution S, to the Riccati
equation for all choices of Sy?

2. In general, the limiting solution S, depends on the boundary condition
Sy. When is S, the same for all choices of Sy?

3. When is the closed-loop plant (2.4-4) asymptotically stable?

Question 3 is particularly important. We have designed the feedback Kj to
minimize a performance index, but as k — —oo (or equivalently, as final time
N — o0), we should certainly like for the closed-loop system to be stable! In
some circumstances this can be guaranteed.

We can answer these questions in terms of the dynamical properties of the
original system (2.4-6) with associated performance index (2.4-7). Recall that
(A, B) is reachable if the eigenvalues of (A — BK) can be arbitrarily assigned by
appropriate choice of the feedback matrix K. (A, B) is stabilizable if there exists
a matrix K such that (A — BK) is asymptotically stable. This is equivalent to the
reachability of all the unstable modes of A. Recall also that (A, C) is observable
if the eigenvalues of (A — LC) can be arbitrarily assigned by appropriate choice
of the output injection matrix L. (A, C) is detectable if (A — LC) can be made
asymptotically stable by some matrix L. This is equivalent to the observability
of the unstable modes of A.

Up to this point, we have been interested only in the state equation and not
in an output, because our performance index was expressed in terms of the state
and the input. Let us now define a fictitious output for our system. Let C and
D denote the square roots of Q and R, such that Q = CTC and R = DTD. In
addition, let Sy = C IT\, Cy. Then define a fictitious output by the output equations

_|¢ + 0 k=0 N -1
Yk— 0 xk D uk7 - EEREA ) ’

(2.4-15)
yn = Cnxn.
In terms of this “output,” the performance index can be written
1. e .
Ji= SN+ 5 ) e (2.4-16)

k=i
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We shall see that the answers to our three questions can be given in terms
of the stabilizability of (A, B) and the observability of (A, C). The following
theorem tells us when there is a finite limiting cost kernel Su.

Theorem 2.4-1. Let (4, B) be stabilizable. Then for every choice of Sy, there

is a bounded limiting solution Sy to (2.4-2). Furthermore, S, is a positive

semidefinite solution to the algebraic Riccati equation (2.4-12).

Proof: Since (A, B) is stabilizable, there exists a constant feedback L so that
Uy = —ka

and
X1 = (A — BL)xy

is asymptotically stable. Thus, x4 is bounded and goes to zero as k — oo. There-
fore, the associated cost

N1
1 1
Ji = EX;SNXN + 5 ;(kaka + ug Ruy)
=i

is finite as i — oo. It is given by (2.4-10) with k =i, where S; satisfies the
Lyapunov equation (2.4-11) (with index k replaced by i) with K; there equal to
L, and using Sy as boundary condition.
The optimal cost, however, is given for all i by
Ji= %xiTSi*xi,

where S is the solution to (2.4-2) with Sy as boundary condition. Since J;* < J;
for all initial states x;, S; provides an upper bound for S¥ for all i (S} < S; means
(S; — S7) = 0). Hence, the solution sequence to (2.4-2) is bounded above by a
finite sequence.

It can be shown that the solution S} to (2.4-2) is smooth, so that if it is bounded
above by a finite S;, then it converges to a constant limit So. For details, see
Casti (1977) or Kwakernaak and Sivan (1972).

Since equation (2.4-2) is symmetric, then so is S; for all i if Sy is symmetric,
which we have assumed. The structure of the equation and the assumptions on
Q and R also imply positive semidefiniteness.

Clearly, S is a solution to the limiting equation (2.4-12). |

An important point should be noted here. In presenting the solution in
Table 2.2-1 to the free-final-state LQ regulator and in the subsequent examples
we discussed, we did not make any controllability assumptions on the plant.
Regardless of the controllability properties of the plant, the optimal control will
do the best it can to minimize the performance index. We have just shown that
if the plant is, in fact, stabilizable, then there is a finite limiting solution Sy, to

&



‘G}» Lewis c02.tex VI - 107192011 3:38pm  Page 72

72 OPTIMAL CONTROL OF DISCRETE-TIME SYSTEMS

the Riccati equation. This means that as the time interval [i, N] goes to infinity,
the optimal cost J* stays bounded. Since R > 0, this in turn guarantees that the
optimal control uj itself does not go to infinity.

We can often show the stronger condition of reachability, which implies sta-
bilizability, and for which there is a simple test based on the full rank of the
reachability matrix

U,=[B AB --- A" 'B], (2.4-17)

where x € R".

Theorem 2.4-1 is based on system stabilizability, and it makes intuitive sense
because we are dealing with the optimal control problem. The next result initially
seems very strange; it provides answers to our second and third questions in terms
of the observability of the plant through the fictitious output!

Theorem 2.4-2. Let C be a square root of the intermediate-state weighting
matrix, so that Q = C TC >0, and suppose R > 0. Suppose that (A, C) is observ-
able; then (A, B) is stabilizable if and only if:

a. There is a unique positive definite limiting solution So, to the Riccati
equation (2.4-2). Furthermore, S is the unique positive definite solution
to the algebraic Riccati equation (2.4-12).

b. The closed-loop plant
X1 = (A — BKoo)xy

is asymptotically stable, where K, is given by (2.4-13).

Proof:

Necessity

Define D by R = DTD. Then |D| # 0, so that B = MD for some M. One,
therefore, has

zI — A I 0 M zI — A zI — (A — BK)
rank C =rank [0 I O C = rank C
DK 0o 0 I DK DK

M

If (A, C) is observable, then by the PBH (Popov—Belevitch—Hautus) rank test

(Kailath 1980),

zI — A
C

(w-on 5]

rank |: i| =n for every z, 2)

so that by (1)

is observable for any K.
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Now, stabilizability implies the existence of a feedback control uy = —Lxy,
so that
X1 = (A — BL)xy 3)

is asymptotically stable. The cost of such a control on [i, oo] is
Ji = 1x]Sx; 4)

with S the limiting solution to (2.4-11) with K; = L. The optimal closed-loop
system (2.4-2)—(2.4-4) has an associated cost on [i, o] of

oo

1
Z (kaka + uERuk) = ExiTS *x; < J;. @)
k=i

1
with S$* the limiting solution to (2.4-2). Therefore, Cx; — 0 and, since |R| # 0,

up — 0. Select an N so that Cx; and u; are negligible for k > N. Then for
k>N,

ka C
C.Xk+1 CA
0= ) = ) X, (6)
ka—Hz—l CAn_l

and so observability of (A, C) requires x; — 0. Hence, the optimal closed-loop
system (2.4-4) is asymptotically stable.
Write (2.4-12) as

T
S = (A — BK+o)"S(A — BKxo) + [D,C%J [DICQJ ™)

with K, the optimal feedback. (Prove that this can be done.) Then (7) is a
Lyapunov equation with
C
<(A — BK), [DKOOD

observable and (A — BK,) stable. Therefore, there is a unique positive definite
solution S* to (2.4-12).

Sufficiency

If xx+1 = (A — BKy)x; is asymptotically stable, then (A, B) is certainly stabi-
lizable. |

The structure of this result should be examined. All it is, is a restatement of
Theorem 2.4-1 under the observability hypothesis. The observability condition
has made our previous theorem quite a bit stronger!

Let us discuss two aspects of this theorem: what it does for us, and how we
can guarantee that it holds in a particular problem. Part a of the theorem says

&
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that if interval [i, N] is a large enough, then the optimal cost of control is

JF = dxlSaoxi, (2.4-18)
which is both finite and independent of the value we selected for the final-state
weighting Sy. Thus, whether we weight the final state heavily or lightly in J;,
the cost of optimal control over [i, N] is the same. Since R > 0, the finiteness of
J; means that the optimal control is also finite; all our objectives can be achieved
with finite control energy.

The theorem also guarantees the existence of a steady-state gain Ko, that
stabilizes the plant. This means two things. First, at the beginning of a control run,
far from the final time N, the closed-loop plant (A — BKj}) is nearly (A — BK),
so it starts out stable. Second, if we should decide to use the constant suboptimal
gain uy = —Kyox; for all k instead of the harder to implement optimal time-
varying feedback, we are guaranteed at least closed-loop stability.

These properties are all quite desirable. To guarantee that they hold, we need
only to ensure that the plant is stabilizable and to be judicious in our choice of
the state weighting matrix Q. We should select Q = CTC for some C such that
(A, C) is observable. Note that this is always the case if Q is selected to be
positive definite, for (A, C) is observable for any C of rank n.

Intuitively, all of this means the following. If the plant is observable through
the fictitious output, then motions in all of the directions of the state space R"
have an influence on the performance index. If any state component begins to
increase, then so does the cost J;. Hence, if J; is small, necessarily the state is
also. Any control that makes J; small will also make small the excursions of the
state from the origin.

On the other hand, if (A, C) is unobservable, then if the state tends to infinity
in an unobservable direction of R”", this motion will not be sensed in Ji. Thus,
the boundedness of J; does not in this case guarantee the boundedness of the
state trajectory.

We have made the hypothesis of Theorem 2.4-2 unnecessarily strong. All we
really require for the theorem to hold is the detectability of (A, C). Thus, only the
unstable modes need be observable through the performance index. In this case,
however, the unique limiting solution to the Riccati equation can be guaranteed
only to be positive semidefinite.

One result of these theorems is that we now have a way of stabilizing any
multi-input plant. If QO and R are any positive definite matrices of appropriate
dimension, then the state feedback u; = —K.x; based on the steady-state gain
(2.4-13) determined from the unique positive definite solution S, to the algebraic
Riccati equation (2.4-12) will result in a stable closed-loop system. Different
matrices Q and R will result in different closed-loop poles for A — BK, but
these poles will always be inside the unit circle.

It would be quite useful to be able to select Q and R to yield a desired set
of closed-loop poles. We present an example demonstrating the relation between
0O, R, and the closed-loop poles for a simple system (Example 2.4-3), and then

&
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in Section 2.5 we discuss a technique similar to root locus for selecting Q and
R to yield desired closed-loop poles.

One more result on the limiting, or infinite-horizon optimal control problem
((N — k) — o0) should be mentioned. Let (4, B) be stabilizable and (A, \/Q)
observable. Then the steady-state feedback u; = —Kox; is the optimal control
for a particular problem, for it is the control that minimizes the cost over the
infinite time interval [0, oo]. That is, it minimizes

1 o0
Jo=3 ;(x,fgxk + u} Ruy). (2.4-19)

This follows from our discussion.
The next examples illustrate these results.

Example 2.4-2. Steady-state Control of a Scalar System
Let the plant be

Xkl = axg + bug, (D)
with performance index
1 [e¢]
h=3 ;(qx,% +rud). )

The optimal control minimizing Jy is the constant feedback

up = —kooXg, (3)
where the gain (2.4-13) is
e — absso @
T by + 1

and the steady-state kernel is the unique positive (definite) root of the algebraic Riccati
equation
a’b’s?

- . 5
o 5)

S=02S

Under the influence of the control (3), the closed-loop system is

cl a
4 —bkog = ——— 6
@ = e = T e ©

The ARE can be written

b*s* + (1 —a®)r — bzq]s —qr=0. 7
If we define the auxiliary variable )
b~q
A= ——7F—, 8
(1 —a?r ®)
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this becomes A
P4+ (1 =A)s— —= =0, )
q

which has two solutions, given by

s= e fa_aps Gy (10)
2A 1—a2) '

We must now consider two cases.

a. Original System Stable

If |a| < 1, then (1 —a?) >0 and A > 0. In this case the unique non-negative solution to

(7) is
o= L Ja—aps -2 - (11)
T 2A (1—a?) ’

and the steady-state gain is given by (4).

In the scalar case, observability of (a, /g) is equivalent to ¢ # 0, and plant reachability
is equivalent to b # 0. Therefore, the observability and reachability conditions imply
A >0 and hence s, > 0. Then, according to (6)

|ad| < lal, (12)

so that the closed-loop system is stable.

Since |a| < 1, if ¢ = 0, the system is still detectable (the unobservable mode is stable).
If ¢ =0, then A =0, but according to (6) a! = a is still stable. Note that in this case,
Seo = 0 (i.e., positive semidefinite).

b. Original System Unstable

If la| > 1, then (1 —a®) <0 and A < 0. Then the unique non-negative solution to the
ARE is
—q 4A
= — 1 —A)? 1—-A)]. 13
o0 2A[\/( P+ o )} (13)

Again, reachability and observability imply that A is strictly negative, so that according
to (13), so0 > 0.

According to (6), if A < 0, we still have |aCl| < |al, but it is not easy to prove that
|a°1| < 1]. Note, however, that

acl

; (14)

1 —a?

a
1 4A
-5 | Ja-ar+ +(1=A)

so that if |a| > 1, then A >~ 0 and |
a“ ~ —. (15)
a
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This is certainly stable. Note that a°! does not depend on b, ¢, and r individually, but
only on the quantity h2g/r. (This is also true if a is stable.) If |a| > 1, then detectability
of (a, \/q) is equivalent to g # 0, which is necessary for (14) to be stable.

c. a® as a Function of a

Figure 2.4-3 shows a plot of the closed-loop plant matrix ¢ as a function of the original

plant matrix a for b%q/r = 1. Note that a®' is stable for all values of a.

0.5 T T T T T

1 1
-20 -10 -101 10 20

-0.5 !
a

FIGURE 2.4-3 Closed-loop plant matrix as a function of an open-loop plant matrix.

|
Example 2.4-3. Limiting Control Behavior for Systems Obeying Newton’s Laws
Let us reconsider the discretized Newton’s system of Example 2.3-2,
D 722 0
Yetl =1 1 | T |k

where x; = [dk, ve]T, with d and vg the kth samples of position and velocity. The sam-
pling period is T = 0.5 sec for this example, so that

1 05 0.125
Xk+1 = [O 1 ]xk + |: 0.5 ]Mk. (2)
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Let Q = I, so that the cost is

N-1

1 1
Ji = Ex,ESNxN +5 kz_;(d,f + 02 +ud). 3)

Using the solution to the optimal control problem given in Example 2.3-2 and the associ-
ated software, we can determine the optimal cost kernel S, feedback gain Ky, closed-loop
plant matrix A¢!, and the optimal control u* and state trajectory x*. By adding a polynomial
root finder we can determine the poles of A;‘ for each time k.

First, let us use final-state weighting of Sy = 100/. This is the simulation run in
Example 2.3-2, and the optimal state trajectory and control are shown in Fig. 2.3-11. This
behavior is quite satisfactory, and a good rendezvous is achieved. The Kalman gain K}
is shown in Fig. 2.4-4a. Note that it is defined only at integer values of k. In the graph
its values are connected by lines to distinguish more easily between the two components
of K, which are denoted by K ,g and K ,f

The poles of the closed-loop system Ail are a function of time index k, since Ail is
a time-varying system. They are illustrated in Fig. 2.4-4b. When k = N, the system is
marginally stable with poles at z =0 and z = 1. As k decreases, the closed-loop poles
become complex and move as shown.

For N —i = 10, corresponding to a run time of 5 sec, the Riccati-equation solution
has reached a steady-state value that is given by Sp. It is equal to

A [4.035  2.0616
2| | @

* 7 2.0616 4.1438

The corresponding steady-state gain is

o 0.6514 )
131427

which agrees with Fig. 2.4-4a. The steady-state closed-loop plant matrix is

AY — (A BKw) = 0.9185 0.3357 ©)
> <71 -0.3257 03429’
which has poles at
7 =10.6307 £ j0.1628. @)
These steady-state closed-loop poles agree with Fig. 2.4-4b.
We might now be interested in trying to use the suboptimal feedback
up = —Kooxy (®

with Ko, given by (5). This control is easier to implement than the optimal control
ur = —Kyx; since the Kalman gain sequence K need not be stored. If we simulate this
suboptimal control, the suboptimal state trajectory in Fig. 2.4-4c results. This trajectory
is barely distinguishable from the optimal path in Fig. 2.3-11, except that the final val-
ues d(5) and v(5) are not quite equal to zero. It would probably be suitable for most
purposes.



‘G}» Lewis c02.tex VI - 107192011 3:38pm Page 79

2.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL FEEDBACK 79

——K(1) /\
ol K(2) |
1 | i
O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Iteration number k
(a)
0.4 T T - -
o k=N-3
- 02f k =N-2 © O 0 omlk=N-10 b
] k = N-1
-% ot % i
£ - N-
o2l P ]
k =N-3
0.4 L I L L
0.2 0.4 0.6 0.8 1
Real
(b)
20 T T - -
—+—d(1)
10¢ v(t) |
u(t)
O L .4 o
—10 } 4
-20 L L L L
0 1 2 3 4 5
Time [s]

(©)

FIGURE 2.4-4 Position and velocity weighting, Sy = 100/. (a) Optimal feedback gain
sequence. (b) Locus of the closed-loop poles. (c) Suboptimal state trajectory using steady-
state feedback gain K.

Let us now check our theorems. Since (A, B) is reachable, the solution Sj to the Riccati
equation converges to a finite So,. A root of Q is given by C = I. Since (A,C) is certainly
observable, S., is positive definite. Furthermore, A is asymptotically stable.

An important consequence of these facts is that if we use control law (8) and give the
system enough time, the state will always go to zero.

To show that (8) may not always be satisfactory, suppose we want to rendezvous in
2 sec, corresponding to a discrete interval of length N — i = 4. According to Fig. 2.4-4a,
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K has not yet reached steady state by four iterations backward from N = 10 (i.e., K¢ is
not yet equal to Ko = K,). Thus, we might anticipate problems in using the steady-state
control law (8). Figure 2.4-5 shows the optimal trajectories using uy = —Kyx; and the
suboptimal trajectories using (8). For this short rendezvous time, the steady-state gains
would not be satisfactory.

-30 : '

0 0.5 1 15 2
Time [s]
(b)

FIGURE 2.4-5 System trajectories for a short run time. (a) Trajectories using optimal
control. (b) Trajectories using suboptimal steady-state feedback gains.

|
An Analytic Solution to the Riccati Equation

The optimal control is given in terms of the Riccati equation (2.4-2) with bound-
ary condition Sy. One way to solve this equation is by iteration. We discuss here
a nonrecursive solution for S; with important theoretical uses that applies in the
case of time-invariant plant and cost-weighting matrices. These results are due
to Vaughan (1970). These results are for the case where A is nonsingular, as it
is whenever a continuous-time system is discretized. In some cases, however, A
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can be singular (e.g., system with pure delays). The solution of the discrete time
ARE for the case of singular A is covered in a subsequent subsection.

We wrote the LQ regulator Hamiltonian system as the backward recursion
(2.2-11), which is

Xk Xk+1
=H , 2.4-20
=) @420
with
Al A7 A-'BR™!BT
H= oAl AT+ oA-'BR-1BT | (2.4-21)

The final condition for (2.4-20) if the final state is free is Ay = Syxy. The initial
condition is xg.
We assumed that
)\k = Skxk (2.4-22)

for all k < N (cf. (2.2-50)), and based on this assumption derived the results in
Table 2.2-1. Matrix S; in (2.4-22) turned out to be given by (2.4-2). Let us now
demonstrate that the Riccati-equation solution S; can be computed in terms of
the eigenvalues and eigenvectors of H. Define

0 I
J:[_I o] (2.4-23)

Then, it can be shown with only a few lines of work that
HYJH = J. (2.4-24)

A matrix H satisfying (2.4-24) is called symplectic. Since H is symplectic, its
inverse is very easy to find, because by (2.4-24)

HYJ =JH !,
J'HY ) = H7!,

so that (since J~! = —J)
H'=—JH"J. (2.4-25)

Performing these multiplications yields

(2.4-26)

e A+BR'BTA"TQ —BR'BTAT
N —ATo AT

(Remember that Q and R are symmetric. A~T means (A~")T.) Now it can be

shown that if p is an eigenvalue of H, then so is 1/u. If u is an eigenvalue with

&
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eigenvector |:ch] partitioned comfortably with H, then

A A~'BR'BT
ot artonsm| 4]0l s

This can be rearranged to read

AT+ QA'BR™'BT —0A™!

Now note that the coefficient matrix on the left-hand side is just H~T. This
means that y is also an eigenvalue of H~T, and hence of H~'. Therefore, 1/
is an eigenvalue of H, as we wanted to show (see Appendix A).

What this means is that the 2n eigenvalues of H can be arranged in a matrix

D= [1‘04 MO_I} , (2.4-29)

where M is a diagonal matrix containing n eigenvalues outside the unit circle.
(Hence, M~ is stable.)
There is a nonsingular matrix W whose columns are the eigenvectors of H
such that
W 'HW = D. (2.4-30)

Define a state space transformation W~! so that for each k,
Xk | _ Wi
][]
_ [ Wi Wi | |wm
War W ||z |’

where W;; are partitions of W. Then the Hamiltonian system (2.4-20) takes on
its Jordan normal form

(2.4-31)

[Wk] =D [W"“} . (2.4-32)
k Tk+1
The solution to (2.4-32) in terms of the final conditions is
N—k
[Zk] N [ 0 M_(N_"):| |:ZNi| ’ (24-33)

The problem with this solution is that MY ~* does not go to zero as (N — k) —
00, since M is not stable. Therefore, rewrite (2.4-33) as

wy] M—(N—k) 0 Wi
=l ] 2439
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Now we consider the relations between x; and A (e.g., (2.4-22)) and between
wy and zx. According to (2.4-22) and (2.4-31), at the final time N

An = W Wy + Wazy = Syxny = Svn(Wiiwy + Wiazy).

Solving for zy in terms of wy yields

IN = TWN, (24-35)
where
T = —(Wa — SyWi2) " (Wa — Sy Wiy). (2.4-36)
Now, by (2.4-34)
=M NPy =M NPBTyy = M~ NOp N0y, | (2.4-37)
so that at each value of k
2k = Tewy, (2.4-38)
where
Ty = M~ NPy~ V-0, (2.4-39)

It remains to relate Sy in (2.4-22) to T} in (2.4-38). To do this, use (2.4-31)
to write
M= Warwr + Wnzp = Sixe = Sc(Wiiwe) + Wiaz),

so that by (2.4-38)
(W21 + W Ti)wk = Sk (Wit + WinTi)wi. (2.4-40)
Since this must hold for all xy, and hence for all trajectories wy, it implies that
Sk = (War + W T) (Wi + WiaTi) ™ (2.4-41)

Equations (2.4-36), (2.4-39), and (2.4-41) give a nonrecursive analytic solu-
tion to the Riccati equation for any k < N in terms of Sy and the eigenvalues
and eigenvectors of Hamiltonian matrix H. One important special case is the
following. As N — oo, the Riccati equation tends to the ARE (2.4-12). We have
seen that if (A, B) is reachable and (A, /Q) is observable, then the steady-state
feedback gain K, defined in terms of the ARE solution by (2.4-13) is often a
satisfactory choice as a suboptimal and easy-to-implement control law. One way
to find the positive definite solution S, to the ARE is to select any Sy and
iterate (2.4-2) until S; converges. Our new results provide an alternative way to
find Ss, which is important theoretically. If (N — k) — oo, then M~V=0 goes

&
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to zero since M1 is stable. This means that 7, — 0, so that in the steady-state
limit, (2.4-41), yields
Seo = Wa Wy, (2.4-42)

as an expression for the positive definite ARE solution. Thus, So, can be manu-
factured from the unstable eigenvectors

]
Wai
of H (or the stable eigenvectors of H~'). Hence, the optimal steady-state feed-

back K can be found (by (2.4-13)) without solving a Riccati equation.

Example 2.4-4. Analytic Solution to a Scalar Riccati Equation

This example is from Vaughan (1970). Let the plant and cost function be

Xk4+1 = Xk + Uk, )]
N—1
10 1
Ji = 7;@ +5 E(x,f +ul). )
Then
gt 3)
o2

has eigenvalues of 0.382, 2.618, so
M =2.618. )

The matrix of eigenvectors (the unstable one first!) is

1.0 1.0
W= . ©)
1.618 —0.618
Since Sy = 10,
T =—0.789 (6)
and
Ty = —0.789(0.382)>N =5 (7)

Therefore, (2.4-41) yields
1.618 + 0.488(0.382)2(N-K)

1 —0.789(0.382)2(N=k)

®)

S =

as the analytic solution to the Riccati equation (2.4-2). In the limiting case (N — k) — oo
this yields the ARE solution
Seo = 1.618, 9
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so the steady-state feedback is given by (2.4-13) as

1.618
Koo = —— = 0.618. 10
* 2618 (10
The control law
Up = —O.618xk (11)
results in a stable closed-loop plant of
all = (a — bK+) = 0.382. (12)

We point out now that the closed-loop pole of 0.382 is the stable eigenvalue of Hamil-
tonian matrix H. This is not a coincidence, and we shall have more to say about it in
Section 2.5. |

Analytic Solution to the Discrete Riccati Equation:
System Matrix A Singular

In several digital control problems the system matrix A may either be singular
or ill conditioned with respect to inversion. In that case the method described
previously may either fail or produce misleading results due to the fact the A is
ill conditioned with respect to inversion. This problem can be circumvented by
employing the generalized eigenvalue problem for the analytic solution of the
discrete Riccati equation presented by Pappas, Laub, and Sandell (1980).

In the previous section we defined the Hamiltonian matrix H as

g [A A~'BR™'BT
- loA™" AT+ QAT'BR'BT]’

associated with the backward recursion (2.4-20). By noting that the Hamiltonian
matrix H can be decomposed as the product of two matrices as

g_[A 011 BrRBT
-0 1 o AT |’

we can rewrite the backward recursion (2.4-20) as a forward generalized recur-

sion I BR'B™|[x A 0][x
k41| _ k
R | v ] | B

The key idea of this method is to study the generalized eigenvalue problem
Gz =uFz (2.4-44)
where

—1pT
F = [(I) BRATB ] and G = [_AQ (I)} (2.4-45)
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As before, we can extend the definition of a symplectic matrix H to the definition
of a symplectic pair of matrices (F, G). It is easy to show that (F, G) have the
following property:
GJG" = FJF' = [ 0 - A] , (2.4-46)
—-A" 0
where J is defined in (2.4-23). A pair that satisfies equation (2.4-46) is called a
symplectic pair.

We now show that the solution to the discrete algebraic Riccati equation can
be obtained from the eigenvectors of the Hamiltonian. Before we proceed, we
show that the Hamiltonian has n stable and n unstable eigenvalues. Under the
assumption of stabilizability of (A, B) and detectability of (,/Q, A), none of the
eigenvalues of the Hamiltonian H given by (2.4-21), which corresponds to the
discrete algebraic Riccati equation, lie on the unit circle. To see this, consider
the generalized eigenvalue problem

Gz = ukFz
where I BR!'BT A 0
Fz[o AT i| and G=|:_Q Ij|.

Suppose that || = 1, then there exists some z 7 0 such that
A 0][zi] _ [1 BR'BT|[z
-0 If|ln|THlo AT ||z

Az = pzi +uBR'BTz; and —Qz1 412 = pnA 2.

This implies

By premultiplying the first equation by ,u*zf and postmultiplying the conjugate
transpose of the second equation by z;, one gets

w2y Azy = |ulzh'z + InlPey BRT' B 2y, and 23z = p*zy Az + 2y Qzr.
By adding the above two equations and noting that |u?| = 1, we get
BRT'BTz, 4+ M0z, =0,
which, in turn, implies that
B2, =0 and /Qz; =0.
Note that under these conditions

Az =pz and ATz = (1/p)z2,
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which implies that the system is unstabilizable and undetectable, which is a
contradiction; so there are no eigenvalues on the unit circle.

Further, it is straightforward to show that det(uF — G) # 0. Note that if the
determinant were identically zero, it would also be zero for || = 1, which con-
tradicts the fact that the pair (¥, G) has no eigenvalues on the unit circle. Next
we show, as in the case of the Hamiltonian H, that if v £ 0 is an eigenvalue of
(uF — G), then 1/v is also an eigenvalue. To show this, assume that y is a left
eigenvector corresponding to eigenvalue v. Then

WG =vy"'F,
YGIG" = vy FIG,
YHFIFT = vyl FIGT,
A/v)xTFT = xHGT,
Gx = (1/v)Fx
(where x = yHFJ), which shows that if v # 0 is an eigenvalue of (uF — G),

then 1/v is also an eigenvalue. What this means is that there exist matrices V
and W such that the 2n eigenvalues can be arranged as (see Appendix A.5)

ul — Mo 0 0 0
0  ul—My 0 0 1Ng — My 0
0 0 ul —M;! 0o |- [ 0 1N, — MJ
0 0 0 1Ny — 1

where the n generalized eigenvalues of (N, = I, M) are stable, i.e., |u;| < 1, and
the eigenvalues of (N,, M,) are the reciprocals of the generalized eigenvalues
of (Ny, My), i.e., |u;| > 1; that is, the n generalized eigenvalues of (N,, M,)
are unstable. Note that in the case where A is singular some of the unstable
eigenvalues lie at infinity.

Let Vi be the 2n x n matrix corresponding to the stable eigenvalues, that is,
the first n columns of the matrix V. Then

GV, = FV, M, (2.4-47)

where M; is in Jordan canonical form, corresponding to all stable eigenvalues.
By substituting for /', G and conformably partitioning V;, equation (2.4-47) can

be rewritten as
A 0][vis] _[1 BR'BT][ViM,
—Q I||V| |0 AT Vos M

AViy = VigsM + BR™' BT Vo, M (2.4-48)
—QV), + Vay = ATVo M. (2.4-49)

or
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Since V| is nonsingular (see Appendix A), equation (2.4-48) can be rewritten as
A= ViuM V' + BRI BTV, MV = (Vig + BRI BTV MV (2.4-50)
and (2.4-49) can be written as
S =V, = ATVuM V! + 0. (2.4-51)

In the sequel it is shown that S described in (2.4-51) is a solution to the
discrete ARE. Note that using the inversion lemma, the ARE can be written as

S=ATS(I +BR'BTS)"'A + 0. (2.4-52)
Substituting (2.4-51), the ARE (2.4-52) becomes
ATVo MVt = ATV VN 4+ BRTVBT Y VD) T AL
Substituting A from equation (2.4-50), the ARE becomes
A"™Vou M, = ATV, (Viy + BRT'B™V,) " (ViyM, + BRT'BTV,, M),

or
ATVZSMS = ATVZS(VIS + BR_IBTVZs)_l(Vls + BR_lBTVZX)MSﬁ

which shows that (2.4-51) is a solution to the ARE.

It remains to show that S is the stabilizing solution to the ARE. That is, the
closed-loop system matrix (A — B(BTSB + R)~'BTSA) has stable eigenvalues.
The closed-loop matrix is

A—B(B'SB+ R)'B'SA= (I —B(B'SB+R)"'B'S)A
= +BR'B'S)"'A
= (I +BR BTV v H'A
= Vi;(Vi; + BRT'BTV,) 7' A
= VisM; VI;I >
which shows that the closed-loop system matrix (A — B(BTSB + R)~!' BTSA) and
M, have the same spectrum. Therefore, the closed-loop spectrum corresponds to
the stable eigenvalues of the symplectic pair (F, G).
The calculation of generalized eigenvectors has significant difficulties that
may lead to inaccurate results; in particular, in the case of multiple eigenvalues.

To avoid this problem, the solution to the ARE is computed by using the QZ
algorithm and the generalized Schur form. For more details on efficient and stable

&
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computations of solutions to algebraic Riccati equations see Laub (1979), Pappas,
Laub, and Sandell (1980), and Bittanti, Laub, and Willems (1991).

Example 2.4-5. Discrete Riccati Equation: System Matrix A Singular

This example is from Astrom and Wittenmark (1984). Let the plant be described by

1 1 0
Xk+1 = 0 0 Xk + | Uk
ye=[1 0]x,

and the cost function by

1 o0
J=§Z;ﬁm+ﬁw)

Then the matrices for the generalized eigenvalue problem are (see equation (2.4-45))

10 0 O 1 1 0 O

01 0 1 0O 0 0 O
F = , G =

0 0 1 0 -1 0 1 0

0 0 1 O 1 0 0 1

The finite eigenvalues of (F, G) are the roots of the equation
det(uF = G) = p(u? =3u+1) =0,

which are ) =0, pnp = 0.3820, and u3 = 2.6180. The fourth eigenvalue is an infinite
one. The eigenvectors corresponding to the two stable eigenvalues are

0.4777 —0.5774
. |:V1Si| | -02952 05774
' Vag 0.7730 —0.5774
0.2952  0.0000

Then the solution to the ARE is

0.7730 —0.577471] 04777 —0.57741""
0.2952  0.0000| | —0.2952  0.5774

S=ViV,,' = [

26180 1.6180
T 11.6180 1.6180]°

The feedback gain is

K = (B'SB+1)"'B"SA =[0.6180 0.6180].
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Design of Steady-state Regulators by Eigenstructure Assignment

The results of the previous subsection gave us an alternative design procedure
for the optimal steady-state LQ regulator that did not involve solving a Riccati
equation. It involved finding S, from the unstable eigenvectors of the Hamilto-
nian matrix H in (2.4-21). Let us now discuss a method for finding the optimal
steady-state gain K, directly from the eigenstructure of the Hamiltonian system.

We assume here that (A, B) is stabilizable and (A, v/Q) is detectable. First,
write the Hamiltonian system (2.4-20) as the forward recursion

xke1 | [A+BR'BTATTQ —BRTBTAT]| [x4 )
[uﬂ]_[ —A7TQ AT a (24-53)

where the coefficient matrix is H~' in (2.4-26). Let u be an eigenvector of
H~!. Then the eigenvectors of H~! corresponding to p are the eigenvectors
of H corresponding to 1/ (Appendix A). Hence, W, W5, in (2.4-42) can
alternatively be found by partitioning the stable eigenvectors of H~!. In terms
of the state vector only, the steady-state closed-loop system with the optimal
control u; = —Kqoxy 18

Xkt1 = (A — BKso)xg. (2.4-54)

Both (2.4-53) and (2.4-54) characterize the optimal closed-loop plant. We want
to demonstrate that the eigenvalues of the optimal closed-loop system (2.4-54)
are simply the stable eigenvalues of H~! and that the n eigenvectors of (2.4-54)
are given by the columns of Wj;.

Suppose that y; is an eigenvalue of the optimal closed-loop system (Kailath
1980). Then, if only the mode corresponding to u; is excited, the state, control,
and costate are described by

X = Xipk, (2.4-552)
ug = Uik, (2.4-55b)
M= Ak, (2.4-55¢)

for some vectors X;, U;, A;. But x;+; = Axy + Buy, or

Xipf ™ = AX;uf + BU,

so that
(u;I — A)X; = BU;. (2.4-56)
The optimal control is u; = —KsoX, so that
Ui = —KoX; (2.4-57)
and
(uil — A+ BKy)X; =0. (2.4-58)

Thus, X; is an eigenvector of the closed-loop plant (2.4-54) for eigenvalue w;.

&
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Now focus on the representation (2.4-53). Using (2.4-55a) and (2.4-55c¢)

we have
X; S [Xi
i =H . (2.4-59)

A; A;
X;
A;

is an eigenvector of H~! for eigenvalue u;.

According to Theorem 2.4-2, (A — BK,) is stable, so that ;| < 1. Hence,
the eigenvalues of (2.4-54) are the stable eigenvalues of H ! and the eigenvectors
of (2.4-54) are the top halves of the stable eigenvectors of H~!.

To see why this is useful, observe that H~! can be written down by inspec-
tion. Its stable eigenvalues and eigenvectors can be found, and these are the
desired pole locations and associated eigenvectors of the optimal closed-loop
plant.

If the plant is single input, we do not need to determine the eigenvectors of
H~!, since given only the desired closed-loop eigenvalues we can use Acker-
mann’s formula to find the required feedback K. According to this formula,
the state feedback K is required to assign a desired closed-loop characteristic
polynomial A4(s) is

Hence,

K=cUAYA), (2.4-60)

where ¢, is the last column of the n x n identity matrix, U, is the reachability
matrix (2.4-17), and A%(A) is the desired characteristic polynomial evaluated at
A (Franklin and Powell 1980).

In the multivariable case, the desired closed-loop eigenvalues are not suffi-
cient to determine the required feedback—the closed-loop eigenvectors are also
required. In general, we can compute K., from the eigenstructure of H~! as
follows.

Suppose the closed-loop eigenvalues are distinct. Then the optimal control is
ur = —R7'BTAi41, so that

U =—-R'BTu;A;. (2.4-61)
The optimal feedback satisfies (2.4-57), so that
KooX; = R7'BTu;A;. (2.4-62)

Let X be a matrix whose columns are the X;, and A be a matrix whose columns
are the corresponding A; (where

X;

A
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is an eigenvector of the stable eigenvalue p; of H™ Y. LetM = diag[puy, ..., mnl-
Then, evidently,
Koo = RT'BTAMX . (2.4-63)

Compare this with (2.4-42) (W11 = X, Wy = A).

If u; is complex, then so are X; and A;. In this event, there is a block in
(2.4-63) of the form
0 _
m] X, X717

l

x| Mi
(A A1 [0

By premultiplying and postmultiplying diag[u;, 1}] by

1[1 —j] [1 1]
I=— S A,
201 j Jo—J

we see that this block can be replaced by

Re(ui)  Im(p;)

[Re(A;) Im(A;)] [—Im(w) Re(u;)

] [Re(X;) Im(X)]1™",

which results in a real feedback gain K.

Note that | X| # O since the u; were assumed to be distinct. If this is not the
case, then generalized eigenvectors must be used in manufacturing X.

It is worth remarking that if the state-weighting matrix Q is zero, then

1 _|A —BR'BTATT
H'= T : (2.4-64)
0 A

In this case the eigenvalues of H~! are the eigenvalues of A plus those of A~!
(i.e., those of A~T). The optimal closed-loop poles are therefore found simply
by taking the stable poles of A, and the reciprocals of the unstable poles of A,
since this yields the set of stable eigenvalues of H~!. These are also the optimal
closed-loop poles in the case of infinite control weighting R — oo.

Example 2.4-6. Eigenstructure Design of Steady-state Regulator for Harmonic
Oscillator

Suppose our plant is the harmonic oscillator

. 0 1 0
e [—wg —25&),,:| e [10} ! )

with natural frequency w, = +/2 and damping ratio § = —1/+/2, so that

.| 01 0 5
X = _22x+ IOM’ )
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The plant is unstable with poles at 1 & j. Discretizing with 7 = 25 msec yields (we give
only three decimal places)

0999 0026 0003
U 0051 1.051 |7 T 0256 |

2 Axi + Buy. 3)

The open-loop poles are at
z = 1.025 £ j0.026. “)

Let us associate with (3) the infinite-horizon performance index

l o0
ho=5 gm,?xk +u?) (5)

(i.e., QO = gl), where the infinite time interval [0, co] means we are seeking the optimal
steady-state control.

a. Locus of Optimal Closed-loop Poles versus q

Here we investigate the effect of ¢ on the optimal closed-loop poles. To do this, we can
look at the eigenstructure of the Hamiltonian matrix (R = 1)

_, [A+BB"A™'q —BBTATT
H™ = (6)

_Aqu A*T

A program was written to plot the eigenvalues of H~! as ¢ varies. The resulting root-locus
is shown in Fig. 2.4-6. The poles of the optimal closed-loop plant

A
vt = (A = BKoo)xp = A%x )

are given by the stable poles of H~!. For ¢ = 0, these are
z=10.975+ j0.024, (8)

which are simply the poles of the original plant reflected inside the unit circle (i.e., their
reciprocals). As g — oo the optimal closed-loop poles tend to

z=0,0.975. )
We now discuss three ways to find the optimal steady-state feedback
up = —Kooxy (10)

for the case of ¢ = 0.07.
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FIGURE 2.4-6 Locus of eigenvalues of H~! as state weighting ¢ varies. (Values of ¢
are in parentheses. The increment in ¢ is 0.01.)

b. Solution of the Algebraic Riccati Equation

To solve the ARE (2.4-12), we use a final condition of S = I (any final condition will

do since (A, B) is reachable and (A, «/Q) is observable) in (2.4-2) and iterate until the
solution converges. This occurs after 200 iterations (5 sec) and yields

S 6.535 0.528 (1)
10528 2314
We now use (2.4-13) to find the optimal steady-state feedback gain

K =1[0.109 0.545]. (12)

The resulting closed-loop plant is

A — (A—BK,) — 0.999 0.024 (13)
© =1 -0.079 0911
which has stable poles of
z =0.962,0.948. 14

These correspond to g = 0.07 in Fig. 2.4-6.
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¢. Ackermann’s Formula
We can avoid solving the ARE as follows. If ¢ = 0.07, the optimal closed-loop poles are
the stable eigenvalues of H~!. These are found by the program that generated Fig. 2.4-6
to be 0.962, 0.948. Therefore, the desired closed-loop characteristic polynomial is
A%Z) = (z — 0.962)(z — 0.948) = zZ — 1.910z + 0.912. (15)

The reachability matrix is

0.003 0.010
U,=[B AB]= . (16)
0.256 0.269
According to Ackermann’s formula,
Koo =10 11U;'A%A), (17)

where A(A) = A2 — 1.910A4 + 0.9121 is just a 2 x 2 real matrix. This again results
in (12).

d. Eigenstructure Assignment

Another way to avoid solving the ARE is to use (2.4-63). The diagonal matrix of stable
eigenvalues of H~! for ¢ = 0.07 is

0.962 0
M= ; (18)
0 0.948

and the associated eigenvectors are the columns in

0.148 0.764
—-0.229 —1.640 | a[ X
0.849  4.130 [X] (15
—0.452 -3.392
Using these matrices in (2.4-63) yields exactly (12).
We can also check our analytic ARE solution (2.4-42). If we compute
Seo = Wo W' = AX 7, (20)
we get exactly (11). |

Time-varying Plant

If the original plant is time varying, we need to redefine observability and reach-
ability to discuss the asymptotic LQ regulator. Let the plant and cost function be
given by

X1 = Agxy + By, (2.4-65)
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N—1

1 1
J; = Ex;sNxN +3 kZ(kaQkxk + u} Reuy). (2.4-66)
=i

Define the discrete state transition matrix as
¢k, i) = A 1Ap_o---A; fork>i, with ¢(k,k) =1. (2.4-67)

Then we say the plant is uniformly completely observable if for every N the
observability gramian satisfies

N-1

al < )" ¢k, DOk, i) < il (2.4-68)

k=i

for some I < N, ap >0, and «; > 0. This guarantees the positive definiteness of
both the gramian and its inverse. Compare (2.4-68) with (2.2-24). We say the
plant is uniformly completely reachable if for every i the reachability gramian
satisfies

N—1
aol <> ¢(N.k+ DBR;'B{¢"(N.k+1) <ayl (2.4-69)
k=i

for some N > i, op > 0, and ¢ > 0. Compare with the time-invariant reachability
gramian (2.2-36).

If the plant is time varying, then there is, in general, no constant steady-
state solution to the Riccati equation. However, uniform complete observability
and reachability (and boundedness of Ag, By, Ok, Ry) guarantee that for large
(N — k) the behavior of S is unique, independent of Sy. They also guarantee
uniform asymptotic stability of the closed-loop plant (A — BKj). See Kalman
and Bucy (1961) and Kalman (1963).

2.5 FREQUENCY-DOMAIN RESULTS

In the steady-state case with time-invariant plant, the optimal closed-loop sys-
tem is also time invariant, and we can work in the frequency domain to derive
two important results. One of these yields further insight on the fictitious out-
put (2.4-15), and the other gives a frequency-domain approach to the design of
optimal regulators that is similar to the classical root-locus technique.

A Factorization Result

The optimal steady-state LQ regulator is given by the constant feedback

Up = —K_xk, (25-1)
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where
K = (BTSoB+ R)"'BTS A. (2.5-2)

(For notational convenience, we write K instead of K,.) S is the unique pos-
itive definite solution to the ARE

S = AT[S —SB(BTSB+ R)"'BTS]|A + Q (2.5-3)

(we assume (A, B) is stabilizable and (A, /Q) is observable). The resulting
time-invariant closed-loop system

Xr+1 = (A — BK)xg (2.5-4)

is asymptotically stable.

To derive a relation between the open-loop characteristic polynomial A(z) =
|zI — A| and the optimal closed-loop characteristic polynomial A°(z), note that
(Appendix A)

AYz) = |zI — A + BK)|
= |I +BK(zI — A7 |z] — A (2.5-5)
=1 +K(zI —A)7'B|- A2).
This identity will be useful shortly. According to Fig. 2.5-1, —K(zI — A)~'B
can be interpreted as a loop gain matrix, so that I + K (zI — A)~'B is a return

difference matrix.
To derive the result on which this section is based, note that

S—ATSA= ' T —ATS@I —A) + @ ' T —ATSA+ ATS(zI — A).
(2.5-6)

Uy xk

FIGURE 2.5-1 Optimal closed-loop system with control drawn as a state feedback.
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Use the ARE to write
@' T =ATS@I - A+ (7' - ATSA+ ATS (21 — A)
+ ATSB(B'SB + R)'B"SA = Q.
Premultiply this by BT(z='7 — A)~T and postmultiply it by (zI — A)~!B to get
BTSB+ BTSA(zI — A)"'B+ B (z7'1 — A" TATSB
+ BT (z7'1 — A TATSB(BTSB+ R)'BTSA(zI — A)"'B
=BTz '1-A)TQ@I - A)7'B.
Substitute from (2.5-2) to obtain
BTSB+ (B'SB+ R)K(zI — A)"'B+ BTz '1 — A)"TKY(BTSB+ R)
+ BT '1— A"k Y(BTSB+ R)K(zI — A)"'B
=BTz '1— ATl - A7 'B.
Finally, add R to both sides and factor to see that
BY''1T—A)TQ@I—A)'B+R

(2.5-7)
=[I+ K@ "I —A)"'BI"(B"SB+ R)[I + K(zI — A)"'B].

Let us briefly discuss this result to try to get a feel for it. From (2.4-6) and
(2.4-15) we can write the transfer-function relation in the plant from the control
input to the fictitious output as

CizI — A)~'B
Y(z) = b U(z), (2.5-8)

where Q = CTC and R = DTD. But

c'1—4)'B]" [c@zl — A)'B
D D

} =BTz 'T—A)TQGkI — A)'B+R;
(2.5-9)

evidently, then, (2.5-7) shows that we can factor this transfer-function product in
terms of the return difference matrix.
Another point of view is obtained from Figs. 2.5-1 and 2.5-2. Define

H(z)=C(zI — A~ 'B (2.5-10)
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Uk XK

. T
i T
e c

FIGURE 2.5-2 Optimal closed-loop system with control drawn as a costate feedback.

as the transfer function in the original state system from the control input to y,l,
which is the partition of the fictitious output corresponding to Cx; (see (2.4-15)).
Then it is evident that

H'zH=BT"¢"'"T1-A4)"TcT =BT '1 - A !cT (2.5-11)

is the transfer function of the costate system from y,} to the intermediate signal wy.
Therefore, (2.5-7) simply expresses an equivalence between a transfer-function
product in Fig. 2.5-2 and a transfer-function (i.e., return difference) product in
Fig. 2.5-1. It is simply another way of expressing the equivalence of the two
formulations of the LQ regulator (2.2-9) and Table 2.2-1.

We can use (2.5-5) and (2.5-7) to derive a frequency-domain method for
designing steady-state regulators, as we now show.

Chang-Letov Design Procedure for the Steady-state LQ Regulator

By using the characteristic polynomial relation (2.5-5) and the factorization result
(2.5-7) we can write the Chang—Letov equation

Az HAYN) = |H zHH @) + Rl - A YA®R) - IBYSB+ R|™!, (2.5-12)

where H(z) is defined in (2.5-10) (Q = CTC) (Chang 1961, Letov 1960). This
is a very useful result, since it provides an alternative frequency-domain method
for steady-state regulator design that is very similar to the classical root-locus
technique.

To see this, note that H(z) and the open-loop characteristic equation A(z)
can be computed immediately, given the plant and performance index. The term

&
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|BTSB + R| depends on the as yet unknown ARE solution S (i.e., S,), but
it is irrelevant since it only provides a normalizing constant. Thus, the entire
right-hand side of the Chang-Letov equation is known to within a multiplicative
constant.

The term A(z7')A°(z) on the left-hand side is a polynomial with quite
interesting properties. Its roots are the roots z; of A°(z) and their reciprocals
1/z; (which are the roots of A®(z!)). The closed-loop plant (2.5-4) is stable,
so that the optimal closed-loop poles can be determined by selecting the stable
roots of the right-hand polynomial in (2.5-12)!

The importance of the Chang—Letov equation is now clear. It allows us to
determine directly from A, B, Q, and R, which are all known, the optimal closed-
loop poles. Then, in the single-input case, Ackermann’s formula or an equivalent
pole-placement technique can be used to determine the required optimal feedback
K. (In the multivariable case we need to know the optimal closed-loop eigen-
vectors also before K can be uniquely determined. Chang—Letov cannot tell us
these, but the techniques of Section 2.4 can be used.)

In the single-input case with Q = ¢gl, we have

[adj(z]l — A)]B a N(z2)

H(z) = = , 2.5-13
(@ =4q A va A ( )

where N (z) is a column vector. Then (2.5-12) becomes

_ (¢/r)NTz )N + Az A®)
Az HAY () = . 2.5-14
@ HA%) T BTSE (2.5-14)
The roots of the right-hand side are the zeros of
Ntz HN

g N @ )N@) (2.5-15)

r Az DHA®R)

which is in exactly the form required for root-locus analysis. That entire body
of theory therefore applies here. Evidently, then, as ¢g/r varies from O (no state
weighting) to oo (no control weighting), the optimal closed-loop poles move
from the stable poles of

G EHTHYH () (2.5-16)

to its stable zeros. The ratio of cost weights ¢/r can therefore be selected to yield
suitable closed-loop poles.

The next example illustrates these ideas. Good references are Schultz and
Melsa (1967) and Kailath (1980).

Example 2.5-1. Root-locus Design of Steady-state Regulator for Harmonic Oscillator

To compare the Chang—Letov method with the steady-state regulator design methods in
Section 2.4, let us reconsider Example 2.4-6. The only thing we need to begin our design
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is the “fictitious” transfer function
H@z)=0GI—A)'B $))

Using A and B from Example 2.4-6, and Q = ¢/ and R =1 as in that example, this is
found to be (we show only three decimal places)

[o.omz +0.003
A N(z) 0.256z — 0.256
H = = . 2
©=VaxE = V92 2050 7 1051 @
The design is based on the rational function
Nz HN@)

Giz) = ———F—, 3

() ACTDAD 3)
since the zeros of

1+16@ @)

are the roots of A%'(z71)A®(z). This function is

0.003z~! +0.003]" [0.003z + 0.003
0.256z71 —0.256 | |0.256z —0.256
(z72 —2.050z=1 4+ 1.051)(z2 — 2.050z + 1.051) 3)

G(z) =

B —0.0662° 4 0.1312% — 0.0662
T 1.051z% — 4.205z3 + 6.30872 — 4.205z + 1.051°

Note the symmetric form of the coefficients of the numerator and denominator; this means
that if z is a root of either of these polynomials, then z~! is also.
G (z) can be factored as

—0.063z(z — 0.975)(z — 1.025)
(z —0.975)% + 0.0242][(z — 1.025)% + 0.0262]

G(z) = [ (0)

If we draw the root locus of (4) as ¢ varies from O to co, we obtain exactly Fig. 2.4-6!
Thus, the eigenvalues of the Hamiltonian matrix H~! in (2.4-43) are exactly the roots of
(@/r)NT@HN@) + ATHAR).

According to the Chang-Letov equation, the optimal poles of the closed-loop plant
(A — BK) with LQ regulator are the stable zeros of (4) for any given ¢ and r. When
q = 0, they are the original plant poles reflected inside the unit circle (i.e., unstable plant
poles z; are replaced by z; 1), and when q — 00, they are the zeros of H(z) reflected
inside the unit circle.

Suppose we examine the root locus and decide that the closed-loop poles corresponding
to ¢ = 0.07 are satisfactory for our purposes. Then we can use Ackermann’s formula to
find the required optimal feedback K as in part ¢ of Example 2.4-6. |
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PROBLEMS
Section 2.1

2.1-1. Optimal control of a bilinear system. Let the scalar plant

Xiep1 = Xgup + 1 ey
have performance index
N-1
1
J=3 > i, )
k=0

with final time N = 2. Given xg, it is desired to make x, = 0.
a. Write state and costate equations with u; eliminated.

b. Assume the final costate A, is known. Solve for Ay, A in terms of A, and
the state. Use this to express x, in terms of A, and x(. Hence, find a quartic
equation for A, in terms of initial state x.

c. If xo =1, find the optimal state and costate sequences, the optimal control,
and the optimal value of the performance index.

2.1-2. Optimal control of a bilinear system. Consider the bilinear system
Xi+1 = Axg + Dxguy + buy, (D

where x; € R", uy € R, with quadratic performance index

N—-1

1 1
J = SanSnan + 5 D (5 Qi +ru), 2
k=0

where Sy >0, QO >0, r>0. Show that the optimal control is the bilinear
state—costate feedback,
up = —(b + Dx) A1 /1, 3)

and that the state and costate equations after eliminating u; are
X1 = Axg — (b + Dx) (b + Dx) "hgsr /1, )
M= Oxx + AThs1 — (b + Dxi) A1 D Ay /7 5
2.1-3. Optimal control of a generalized state-space system. Rederive the

equations in Table 2.1-1 to find the optimal controller for the nonlinear general-
ized state-space (or descriptor) system

Expi1 = (o, wp), (©6)

where E is singular. These systems often arise in circuit analysis, economics,
and similar areas.

&
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Section 2.2
2.2-1. Writing the Lyapunov equation as a vector equation. Show that the
Lyapunov equation (2.2-21) can be written as the vector equation

s(SK) = (A} ® AD)s(Sk1) +5(Qp), (1)

where the Kronecker product and stacking operator are defined in Appendix A.

2.2-2. Solutions to the algebraic Lyapunov equation.
a. Find all possible solutions to (2.2-26) if

11
A=[2 |- c=1r 0 o=cC'c
0 —3

(Hint: Let
P = [Pl Pz] ’
P3 P4
substitute into (2.2-26), and solve for the scalars p;. Alternatively, the results

of Problem 2.2-1 can be used.)
b. Now find the symmetric solutions.

2.2-3. Prove that (2.2-57) and the Joseph-stabilized Riccati equation (2.2-62)
are equivalent to (2.2-53).

2.2-4. Control of a scalar system. Let x; 1 = 2x; + ug.
a. Find the homogeneous solution x; for k =0, 5 if xo = 3.

b. Find the minimum-energy control sequence uj; required to drive xo = 3 to
x5 = 0. Check your answer by finding the resulting state trajectory.

c. Find the optimal feedback gain sequence Kj; to minimize the performance
index

4
1
Jo = 5)652 + E Z(X;% + u,%)
k=0
Find the resulting state trajectory and the costs to go J;* for k =0, 5.

2.2-5. Comparison of different discrete controllers

1 1
-5 3 2 1 8
e ] E R R

a. Find the open-loop control ug, u#; to drive the initial state to x, = 0 while
minimizing the cost
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Check your answer by “simulation” (i.e., apply your ug, u; to the plant to
verify that x, = 0).
b. Find a constant state-variable feedback to input component one of the form
u,l( =-K Xy
where u; = [u,i uz]T, to yield a deadbeat control (all closed-loop poles at
the origin). Find the closed-loop state trajectory.
c. Let
Je = 10x)x3 + J,,

with J, as in part a. Solve the Riccati equation to determine the optimal
control ug, u;. Find the optimal cost.

d. Compare the state trajectories of parts a, b, and c.

e. Now suppose xo = [1 2]T. How must the controls of parts a, b, and c be
modified?

2.2-6. Linear performance index. Let

Xi+1 = Axg + Bug,

N—-1

J = Snxy+ Y (Qxi + Ruy),
K=0

with J a scalar. Write state and costate equations and stationarity condition.
What is the problem? (We shall learn how to deal with linear cost indices in
Section 5.2.)

2.2-7. Cubic performance index. Let
X1 = axg + buy,

where x; and uy; are scalars, and

N-1
1 1
J = §SNX2’+ 3 g(qxlz + rui).

a. Write state and costate equations and stationarity condition.

b. When can we solve for u;? Under this condition, eliminate u; from the state
equation.

c. Solve the open-loop control problem (i.e., xy fixed, sy =0, g = 0).

2.2-8. Optimal control with weighting of state-input inner product
a. Redo Problem 2.2-4c if the cost index is
=
J = 5x52 + 3 Z(x,% + u,% + 2xpuy).
k=0
b. Redo Problem 2.2-5c if the term 2xguk is added to J,.
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2.2-9. Information formulation of the Riccati equation. If Sy is very large,
then it is convenient to use the information formulation of the discrete Ric-
cati equation, which propagates S, !instead of ;. (The name derives from the
filtering application of the Riccati equation.)
Separate the Riccati equation into two parts by defining the intermediate

matrix

< A T —1pT

Sk41 = Sk+1 — Sk+1B(B " Sg+1B + R)™ " B Spt1- (D

Then B
Sy = ATSi 1A+ 0. (2)

The first of these equations incorporates the effect of the control input on the
performance index Ji; note that Sy,; < Sy,;. The second equation shows the
effects of the plant dynamics and state weighting Q on Ji; these effects generally
make Sy larger than Kiq1.

a. Show that input update (1) can be written

——1 _ _
Ser1 = Sii +BRT'BT. )
b. Assume |A| # 0, Q > 0, and define
11
Frp=A"'S, AT (4)

Show that the state update (2) can be written
S;t = Fip1 — Fis1(Fisr + QY7 Ryt 5
If the information Kalman gain is defined as

Gi = (Fiy1 + QY7 Ry, (6)

this becomes
S¢' = Fep (I = Gp). @

The information update is given by (3), (4), (6), and (7).

2.2-10. Square-root Riccati formulations. Split the Riccati equation into two
parts as in Problem 2.2-9 and define the roots P, Py by Sy = PkT Py, Sp = Fz P..
The following results show how to propagate Py, P, instead of Si, S; and yield
numerically stable algorithms. See Schmidt (1967, 1970), Businger and Golub
(1965), Dyer and McReynolds (1969), Bierman (1977), Morf and Kailath (1975),
and Kaminski et al. (1971).

a. Show that the state update is equivalent to

P Al | Pe
n|"et]= 18] 0
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where Q = CTC, and T is any orthogonal transformation (i.e., TlTTl =1)
selected so that P, has n rows.
b. Show that the input update is equivalent to

T 12
TZ[ D 0 }z[(B Sii1B + R) Kkﬂ} o

PryiB o Pry 0 Py

where R = DTD, and T is any orthogonal matrix such that P has n rows.
c. Show that both updates can be expressed together in square-root form as

D 0 (BTSi41B+R)'? Ky A
T3 | Piy1B PpA| = 0 P |, (3)
0 C 0 0

where T3 is orthogonal.

Section 2.3

2.3-1. Digital control of harmonic oscillator. A harmonic oscillator is

described by
X] = X2
, ) (M)
Xy = —w,X| + U.
a. Discretize the plant using a sampling period of 7.
b. With the discretized plant, associate a performance index of
1 | V-l
J =3[ + 00071+ 5 ) [0’ + @) +rug, @)
k=0

where the state is x; = [x,: x,f]T. Write scalar equations for a digital optimal
controller.

c. Write a MATLAB subroutine to simulate the plant dynamics, and use the time
response program Isim.m to obtain zero-input state trajectories.

d. Write a MATLAB subroutine to compute and store the optimal control gains
and to update the control u; given the current state x;. Write a MATLAB
driver program to obtain time response plots for the optimal controller.

2.3-2. Digital control of an unstable system. Repeat the previous problem for

X1 = X2,
3)

%2 = a’x; + bu.



‘@» Lewis cO2tex VI - 10/19/2011 3:38pm Page 107

PROBLEMS 107

2.3-3. Digital controller with weighting of state—input inner product. Mod-
ify your controller in Problem 2.3-1 to include terms like

lelluk + vzx,?uk

in the performance index, where v; and v, are scalar weightings.

2.3-4. General digital control subroutine. For a general time-invariant plant
and performance index as in Table 2.2-1, use MATLAB to write m-files to com-
pute and store the optimal feedback gains K.

Section 2.4

2.4-1. Steady-state behavior. In this problem we consider a rather unrealistic
discrete system because it is simple enough to allow an analytic treatment. Thus,

let the plant
0 1 0
e PN R R L (1)

have performance index of
1 I ([0 @
Jo= —xtxy+ = (xT |: i| Xp + ruz) . )
272 ; “loo @ ¢

a. Find the optimal steady-state (i.e., N — 00) Riccati solution S, and show that
it is positive definite. Find the optimal steady-state gain K% and determine
when it is nonzero.

b. Find the optimal steady-state closed-loop plant and demonstrate its stability.
c. Now the suboptimal constant feedback

Uup = —K:Oxk (3)

is applied to the plant. Find scalar updates for the components of the sub-
optimal cost kernel S;. Find the suboptimal steady-state cost kernel S, and
demonstrate that Soc = S..

2.4-2. Analytic Riccati solution. Let

A= b B = 0 Sy =1 =
[ o] o
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a. Let r = 0.1. Find the Hamiltonian matrix H and its eigenvalues and eigenvec-
tors. Find the analytic expression for Riccati solution Si. Find the steady-state
solution Sy, using (2.4-42). Find the optimal steady-state gain K., using
(2.4-63) and also using Ackermann’s formula.

b. Let r = 1. Find the Hamiltonian matrix and its eigenstructure. Find the steady-
state solution Sy, and gain K. (Hint: See the discussion following (2.4-63).)

2.4-3. Software for plotting optimal closed-loop poles
a. For the LQ case, write a computer program to
1. Compute the Hamiltonian matrix H .

2. Find eigenstructure of H. You can use MATLAB routine eig.m.
3. Compute the steady-state Riccati solution S.
4. Compute the steady-state gain Ko, and closed-loop system A°'.

b. Modify your program to find the optimal steady-state closed-loop poles as a
function of r, the control weighting. (Note that you only need to do 1 and
2 for this.) You now have a design tool to select the cost-weighting matrices
Q =gl and R = rI to yield desired closed-loop performance at steady state.

Section 2.5

2.5-1. Chang-Letov design.

a. For the system in Problem 2.4-2, use the Chang—Letov procedure and Ack-
ermann’s formula to find the optimal steady-state feedback gain K., and
closed-loop plant if r = 0.1.

b. Plot a root locus of the closed-loop poles as r varies from oo to 0.

2.5-2. Reciprocal polynomials. Let ¢(z) = z> + 20z + w?. Find and sketch
the roots zi, z» of ¢(z). Define the reciprocal polynomial as z>¢(z™") = w?z* +
20z + 1. Show that the roots of z2¢(z~!) are the roots of ¢(z) reflected about
the unit circle. That is, they are equal to 1/z; and 1/z5.

2.5-3. Decomposition of polynomials using a reciprocal polynomial.
a. Show that any polynomial P(z) of degree n with real coefficients can be
decomposed as

P(z) = Pi(2) + P (2), ey
where the mirror-image and anti-mirror-image polynomials are defined by

Pi(z) = 3(P(2) +"P(z7 1Y), )
Py(z) = 3(P(2) + " P(z71)). 3)
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b. Show that

Pi(z) ="Pi(z7"), “)
Py(z) = —2"P2(z7 ). )
(Compare this with the decomposition of a real matrix into symmetric and

antisymmetric matrices. Hence, note that the reciprocal polynomial z" P(z~")
plays a role similar to that of the transpose of a matrix.)



‘@» Lewis cO3.ex VI - 10/19/2011 3:46pm Page 110

3

OPTIMAL CONTROL
OF CONTINUOUS-TIME SYSTEMS

We shall now discuss optimal control for systems with a continuous time index.
From a glance at the table of contents, it is apparent that this chapter will follow
the development of Chapter 2.

There are several distinctions between the optimal control problems for con-
tinuous and discrete systems, the most noticeable of which is that the continuous
control laws are based on equations of a simpler form than their discrete coun-
terparts. That will allow us to obtain some analytic solutions in this chapter.
Another distinction arises in the initial stages of the derivation of the control
law. For continuous systems, we must distinguish between differentials and vari-
ations in a quantity, which we did not need to do in Chapter 2. This means
that we shall need to use the calculus of variations, which is briefly reviewed in
Section 3.1.

The continuous dependence on time also makes it fairly simple to talk about
minimum-time problems, which we do in Chapter 5. The derivations in this
chapter are for the most part similar to those for discrete systems, and we shall
attempt to set them down in a manner that makes clear what is going on without
duplicating too much of our work from Chapter 2.

3.1 THE CALCULUS OF VARIATIONS

Only a few ideas from the calculus of variations will be needed, so our review will
be short. For an in-depth discussion, see Athans and Falb (1966) or Kirk (1970).
In Section 3.2 we shall be concerned with minimizing an augmented performance
index J' exactly as we were in Chapter 2. To perform this minimization, we need

110
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to find the change induced in J' by independent changes in all of its arguments
(cf. (2.1-6)). Unfortunately, we shall run into a slight problem. The change in
J' will depend on the time and state differentials dt and dx. However, these
quantities are not independent. The purpose of this section is to clear up this
point and to derive a relation that will soon be useful.

If x(¢) is a continuous function of time 7, then the differentials dx(¢) and
dt are not independent. We can, however, define a small change in x(z) that is
independent of df. Let us define the variation in x(t), §x(t), as the incremental
change in x(#) when time ¢ is held fixed.

To find the relations among dx, §x, and dt, examine Fig. 3.1-1. Here we show
the original function x(¢) and a neighboring function x (¢) + dx(t) over an interval
specified by initial time 7 and final time 7 (Bryson and Ho 1975). In addition to
the increment dx(¢) at each time 7, the final time has been incremented by dT . It
is clear from the illustration that the overall increment in x at 7, dx(7T'), depends
on dT. According to our definition, the variation §x(7") occurs at the fixed value
of t = T, as shown and is independent of dT'. Since x(¢) and x(¢) + dx(t) have
approximately the same slope x(7") at t = T, and since d7T is small, we have

dx(T) = 6x(T) + x(T)dT. (3.1-1)
This relation is the one we shall need later.

Another relation we shall need is Leibniz’s rule for functionals: if x(z) € R"
is a function of ¢ and

T
J(x) = / h(x(), 1) dt, (3.1-2)
T

x(t)

Nx(t) + dx(t)

daT

-—

to T T+dT

FIGURE 3.1-1 Relation between the variation dx and the differential dx.
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where J () and h(-) are both real scalar functionals (i.e., functions of the function
x(1)), then
dJ =h(x(T), T)dT — h(x(ty), ty) dty
T

- / [hy(x(2), )8x] dt. (3.1-3)

)

Our notation is
A 0h

hy=—.
0x

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME
OPTIMIZATION PROBLEM

The philosophy in this chapter is to derive the solution to the continuous optimal
control problem in the most general case. This is accomplished in the present
section. Then, in subsequent sections, we consider various special cases of the
general solution. The discussion at the beginning of Chapter 2 and the comments
in Section 2.1 also apply here; they provide some insight on the formulation of
the optimal control problem.

Problem Formulation and Solution

Suppose the plant is described by the nonlinear time-varying dynamical equation
X() = f(x,u,t), (3.2-1)

with state x(#) € R" and control input u(¢) € R™. With this system let us asso-
ciate the performance index

T

J(ty) =d(x(T), T)+ / L(x(t),u(t),t)dt, (3.2-2)

fo

where [?g, T] is the time interval of interest. The final weighting function
¢ (x(T), T) depends on the final state and final time, and the weighting function
L(x, u,t) depends on the state and input at intermediate times in [#¢, T].

The performance index is selected to make the plant exhibit a desired
type of performance. Some different possibilities for J(¢g) are discussed in
Example 2.1-1, which carries over to the continuous case.

The optimal control problem is to find the input u*(¢) on the time interval
[0, T] that drives the plant (3.2-1) along a trajectory x*(¢) such that the cost
function (3.2-2) is minimized, and such that

Y(x(T), T)=0 (3.2-3)

for a given function ¥y € R”. This corresponds to the function-of-final-state-fixed
discrete problem solved in Section 4.5.

&
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The roles of the final weighting function ¢ and the fixed final function
should not be confused. ¢ (x(T), T) is a function of the final state, which we want
to make small. An illustration might be the energy, which is [xT(T)S(T)x(T)1/2,
where S(7) is a given weighting matrix. On the other hand, ¥ (x(T),T) is a
function of the final state, which we want fixed at exactly zero. As an illustration,
consider a satellite with state x = [r706]T, where r and 6 are radius and angular
position. If we want to place the satellite in a circular orbit with radius R, then
the final state function to be zeroed would be

~T) — R
(T
v, =] )M ,
o(T) = F

with W = GM the gravitational constant of the attracting mass M .

To solve the continuous optimal control problem, we shall use Lagrange mul-
tipliers to adjoin the constraints (3.2-1) and (3.2-3) to the performance index
(3.2-2). Since (3.2-1) holds at each ¢t € [#y, T], we require an associated mul-
tiplier A(t) € R", which is a function of time. Since (3.2-3) holds only at one
time, we require only a constant associated multiplier v € R”. The augmented
performance index is thus

J =¢(T), T) +v 'y x(T), T)

T
+ / [LCe,u, ) + 2T (F () (x,u, 1) — 5)] dt. (3.2-4)
To

If we define the Hamiltonian function as
H(x,u, 1) = L(x,u,t)+ AT f(x,u, 1), (3.2-5)
then we can rewrite (3.2-4) as
J' = (), T) +v Y (x(T), T)

T
+/ [H (e u, 1) — 2T5] dtr. (3.2-6)
fo

Using Leibniz’s rule, the increment in J' as a function of increments in x, A, v,
u,and ¢ is

dJ = (p + ¥V dx |7 + (¢ + ¥ v)dt |7 + T |rdy
+ (H =A%) dt|r — (H — 2 %) dt |y,

T
+ / [H]8x + H, su — A"6% + (H, — x)781] dt. (3.2-7)

1o
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To eliminate the variation in x, integrate by parts to see that

T T
— / AT8x dt = —2"8x|r 4+ AT8x |y, + / AT8x dr. (3.2-8)
Iy

T

If we substitute this into (3.2-7), there result terms at t = T dependent on both
dx(t) and 5x(T). We can express x(7') in terms of dx(¢) and dT using (3.1-1).
The result after these two substitutions is

dl = (s + v =0T dx|r + (¢ + v v+ H 2" +2T0)de |7

+ T dv — (H — 2T% + ATh) dt |,y + 2" dx |,
T .
+ / [(H, + )7 8x + Hy 8, + (Hy, — %)"61] dt. (3.2-9)
To

According to the Lagrange theory, the constrained minimum of J is attained
at the unconstrained minimum of J'. This is achieved when dJ' =0 for all
independent increments in its arguments. Setting to zero the coefficients of the
independent increments dv, 8x, du, and §1 yields necessary conditions for a
minimum as shown in Table 3.2-1. For our applications, ¢ and x(t¢) are both
fixed and known, so that dry and dx(t() are both zero. The two terms evaluated
at t = to in (3.2-9) are thus automatically equal to zero.

The final condition (3.2-10) in the table needs further discussion. We have seen
that dx(T') and dT are not independent (Fig. 3.1-1). Therefore, we cannot simply
set the coefficients of the first two terms on the right-hand side of (3.2-9) sepa-
rately equal to zero. Instead, the entire expression (3.2-10) must be zero att = 7.
Compare it with (2.7-7). The extra term in (3.2-10) arises in the present situation
since we have allowed for possible variations in the final time 7. This will allow
us to deal with minimum-time problems, which we shall do in Chapter 5.

For convenience, we have shown the conditions in the table both in terms of
H and in terms of L and f. Compare these results with Table 2.1-1 and see the
associated discussion for further insight. Note that the discrete and continuous
costate equations are both dynamical equations that develop backward in time. In
the continuous case, this amounts to making the rate of change (i.e., 1) negative.
The costate equation is also called the adjoint to the state equation.

As in the discrete case, the optimal control in Table 3.2-1 depends on the
solution to a two-point boundary-value problem, since x(¢) is given and A(T) is
determined by (3.2-10). It is, in general, very difficult to solve these problems.
We do not really care about the value of A(¢), but it must evidently be determined
as an intermediate step in finding the optimal control ©*(¢), which depends on
A(t) through the stationarity condition.

An important point is worth noting. The time derivative of the Hamiltonian is

H=H +Hx+H4+\"f=H +HGi+ H + WS (3.2-11)
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TABLE 3.2-1 Continuous Nonlinear Optimal Controller with Function of Final
State Fixed

System model:
X =f(x,ut), t>t, 1 fixed
Performance index:
T
J(to) = $(x(T). T) +f Lerou, b dr
fo
Final-state constraint:
Y(x(T), T)=0
Optimal controller
Hamiltonian:
Hx,u,t) = Lx,u, 0) + 27 f(x,u, 1)
State equation:
. 0H
x=-—=f 1>t
o i 0
Costate equation:
. dH  ofT L
“A=—=—"—A+_—, t=T
dx dx ox

Stationarity condition:
aH L  ofT
0=—=—+4+ A
ou du ou

Boundary conditions:

x(tp) given

(Px + v = V)T |r dx(T) + (¢ + ¥ v+ H)|r dT =0 (3.2-10)

If u(z) is an optimal control, then
H = H,. (3.2-12)

Now, in the time-invariant case, f and L are not explicit functions of ¢, and so
neither is H . In this situation

H=0. (3.2-13)

Hence, for time-invariant systems and cost functions, the Hamiltonian is a con-
stant on the optimal trajectory.

Let us begin to develop a feel for the continuous optimal controller by looking
at some examples.
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Examples

The first two examples make the point that the solution to the optimization
problem given in Table 3.2-1 is very general; it does not only apply in system
theory. The next examples illustrate the computation of the optimal controller
for dynamical systems, the last example emphasizing that the optimal control
equations apply for general nonlinear systems.

Example 3.2-1. Hamilton’s Principle in Classical Dynamics

Hamilton’s principle for conservative systems in classical physics says that “of all possible
paths along which a dynamical system may move from one point to another within a
specified time interval (consistent with any constraints), the actual path followed is that
which minimizes the time integral of the difference between the kinetic and potential
energies” (Marion 1965).

a. Lagrange’s Equations of Motion

We can derive Lagrange’s equations of motion from this principle by defining (Bryson
and Ho 1975)

q 2 generalized coordinate vector,
u=q 2 generalized velocities,
U(q) = potential energy,
T(q,u) 2 Kinetic energy,

L(g,u) 2 T(g,u) — U(q), the Lagrangian of the system.

The “plant” is then described by
. A
qg=u=f(q,u), (1)

where the function f is given by the physics of the problem. To find the trajectories of
the motion, Hamilton’s principle says that we must minimize the performance index

T
J(O):/ L(q,u)dt. 2)
0

Therefore, the Hamiltonian is
H=L+"u. (3)

According to Table 3.2-1, for a minimum we require

. 0H oL
)\, = — = —
dg g

“

and
0H 0L
0 = =

— = — 4. 5
ou 8u+ ©)
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Combining these equations yields Lagrange’s equations of motion
————=0. (6)

It is worth emphasizing that in this context, the costate equation and the stationarity
condition are equivalent to Lagrange’s equation. In the general context of variational
problems, (6) is called Euler’s equation. The costate equation and stationarity condition
in Table 3.2-1 are, therefore, an alternative formulation of Euler’s equation.

In the context of this example, condition (3.2-13) is nothing more than a statement of
the conservation of energy!

b. Hamilton’s Equations of Motion

If we define the generalized momentum vector by

aL

A=——,
aq

)

then the equations of motion can be written in Hamilton’s form as

. 0H
1= 5
. 9H
=21

dq

®)

€))

Hence, in the optimal control problem, the state and costate equations are a generalized
formulation of Hamilton’s equations of motion! |

Example 3.2-2. Shortest Distance between Two Points

The length of a curve x(¢) dependent on a parameter ¢ between t =a and t = b is

given by )
J=/ V14 x2(1) dr. (1)

To specify that the curve join two points (a, A)(b, B) in the plane, we need to impose
the boundary conditions
x(a) = A, 2)
x(b) = B. 3)
See Shultz and Melsa (1967).

It is desired to find the curve x(¢) joining (a, A) and (b, B) that minimizes (1). To put
this into the form of an optimal control problem, define the “input” by

X=u. 4

This is the “plant.” Then (1) becomes

b
sz V1+u?dr (5)
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The Hamiltonian is

H=+1+u?+u. (6)

Now, Table 3.2-1 yields the conditions

X=H,=u, @)
—A=H, =0, (8)
0=H, = A+ —0 ©)

«/1+u2’

To solve these for the optimal slope u, note that by (9)

u= ﬁ (10)
but according to (8), A is constant. Hence,

u = const (11)

is the optimal “control.” Now use (7) to get
x(t) =c1t + 3. (12)

To determine c; and c;, use the boundary conditions (2) and (3) to see that
(1) = (A — B)t + (aB — bA). (13)
a—>b

The optimal trajectory (13) between two points is thus a straight line. |

Example 3.2-3. Temperature Control in a Room

It is desired to heat a room using the least possible energy. If 6(¢) is the temperature in
the room, 6, the ambient air temperature outside (a constant), and u(¢) the rate of heat
supply to the room, then the dynamics are

0 =—a(® —6,) + bu 1)

for some constants @ and b, which depend on the room insulation and so on. By defining
the state as N
x(1)=0(1) — 0, 2

we can write the state equation
X = —ax + bu. 3)

See McClamroch (1980). To control the temperature on the fixed time interval [0, T'] with
the least possible supplied energy, define the performance index as

1 T
J(0) = 5 / u*(t) dr. )
0
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We shall discuss two possible control objectives in parts a and b below. The Hamilto-
nian is
w2
H = X + A(—ax + bu). 5)

According to Table 3.2-1, the optimal control u(¢) is determined by solving

x = H, = —ax + bu, (6)
A=—H, =a), 7
0=H, =u+bxr. ®)

The stationarity condition (8) says that the optimal control is given by
u(t) = —ba(t), )

so to determine u*(¢) we need only find the optimal costate A* ().
Substituting (9) into (6) yields the state—costate equations

X = —ax—b*x, (10a)
A=ahr, (10b)

which must now be solved for A*(¢) and the optimal state trajectory x*(#). We do not yet
know the final costate A(T"), but let us solve (10) as if we did. The solution to (10b) is

A1) = e T=D)(T). (11)
Using this in (10a) yields
X =—ax— b*A(T)e T, (12)

Using Laplace transforms to solve this gives

x(0) b2a(T)e T

X(s) = -
s+a (s+a)s—a)
2 _

_ x(0) B b—A(T)e_”T< 1/2 n 1/2 ) 13)

s+a a s+a s—a
so that
b2
x(1) = x(0)e™ — ;k(T)e_aTsinhat. (14)

Equations (11) and (14) give the optimal costate A*(f) and state x*(¢) in terms of the as
yet unknown final costate A(7"). The initial state x(0) is given.

Now we consider two possible control objectives, which will give two ways to deter-
mine A(T).

a. Fixed Final State

Suppose that the initial temperature of the room is equal to 8, = 60°. Then

x(0) =0°. 5)
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Let our control objective be to drive the final temperature 0(T') exactly to 70° at the given
final time of 7 seconds. Then the final state is required to take on the fixed value of

x(T) = 10°. (16)
Note that since the final time and final state are both fixed, dT and dx(T) are both zero,
so that (3.2-10) is satisfied.

Using (15) and (16), we must determine A(7); then we can find A(¢) by using (11) and
the optimal control by using (9). To find A(T), use (14) to write

2
x(T) = x(0)e™ T — ;’—aA(T)(l — 72Ty, (17)

Taking into account (15) and (16) shows that the final costate is

20a

MT) = ————, 18
(D) = =2 (18)
and so the optimal costate trajectory is
A0 10 ae (19)
= ————aT.
b? sinh

Finally, the optimal rate of heat supply to the room is given by (9) or

=229 o7 (20)
u = — .
bsinhaT -

To check our answer, apply u*(¢) to the system (3). Solving for the state trajectory yields

sinh at
sinhaT’

x*(1) =10 21

Indeed x*(T') = 10 as desired.

b. Free Final State

Now suppose that we are not so concerned that the final state x(T') be exactly 10°. Let
us demand only that the control u(#) minimize

T
J(0) = ls(x(T) —10)> + 1/ u*(t) dt (22)
2 2 Jo

for some weighting s (i.e., some real number s) to be selected later. If s is large, then
the optimal solution will have x(7T) near 10°, since only then will the first term make a
small contribution to the cost.

According to Table 3.2-1, the state and costate equations are still given by 10, and the
optimal control by (9). Therefore, (11) and (14) are still valid.
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The initial condition is still (15), but the final condition must be determined by using
(3.2-10). The final time T is fixed, so dT = 0 and the second term of (3.2-10) is auto-
matically equal to zero. Since x(7') is not fixed, dx(T') is not zero (as it was in part a).
Therefore, it is required that

AMT) =

99
| =s&(T) - 10). (23)
ox |

(Note that there is no function v in this problem.) This is our new terminal condition,
and from (15) and (23) we must determine A(7). To do this, note that

_MT)
x(T) = — + 10, 24)

and use this and (15) and (17). Solving for the final costate gives

MT) = —20as 25)
T 2a+b2s(1 — e 2Ty’
Using (11) gives the optimal costate trajectory
—10ase™
A= ———. 26
© ae?T + sb? sinhaT (20)
Finally (9) yields the optimal control
10 abse™
W) = ——42% 7)

ae™ + sb? sinhaTl”

To check our answer, we “simulate” the control by using u*(¢) in the plant (3). Solving
for the optimal state trajectory yields

10 sb* sinh ar
W) = — (28)
ae?T + sb” sinhaT
At the final time,
10 sb* sinh aT

aeT + sb? sinhaTl”

x*(T) = (29)

c. Discussion

The final value x*(T) in (29) is not equal to the desired 10°. It is a function of the
final-state weighting s in the performance index. As s becomes larger, we are making it
more important relatively for x(7) to equal 10° than for u%(¢) to be small on [0, T]. In
fact, in the limit s — o0, the costate (26), control (27), and state trajectory (28) tend to
the expressions found in part a. In this limit, the final state x*(7") in (29) does indeed
become exactly 10°.

By examining (29), we can determine x*(7") for various values of s and select a
value that gives a good compromise between driving x(¢) to the desired final value and
conserving control energy. Using this value of s in (27) yields the optimal control that
we would actually apply to heat the room. |
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Example 3.2-4. The Intercept and Rendezvous Problems

a. Problem Formulation

In Example 2.3-2 we constructed a digital controller for the rendezvous problem. Let
us now find an analytical expression for the continuous-time optimal control. In the next
subsection we show an easy way to program the continuous optimal controller on a digital
computer that does not require the analysis done here.

The geometry of the problem is shown in Fig. 3.2-1, where y(¢) and v(¢) are the
vertical position and velocity of the pursuit aircraft A relative to the target aircraft A,
which we can assume is at rest. Its initial horizontal distance from the pursuer is D. The
horizontal velocity of the pursuit aircraft relative to A; is V; so the final time 7', at which
the two aircraft will have the same horizontal distance, is fixed and known to be

T =1ty+ b (1)
=t + -
The line-of-sight angle is o(t). See Bryson and Ho (1975).

v(t)

y(t)

alt)

D =

FIGURE 3.2-1 Intercept and rendezvous geometry.
In the rendezvous problem it is desired that final position y(7") and velocity v(T') both
be zero. In the intercept problem we are not concerned with final velocity, and it is only

desired that the final position y(7) be zero.
The vertical dynamics are described by the state equations

y=v, 2
v =u, 3)

where u(t) is the vertical control input acceleration. Let the performance index be

2 2 T
Tty = 22 @ + 20 @) + 1/ u?(t) dt. 4)
fo

2 2 2

For intercept, s, = 0 and s is made large so the optimal control will make y2(T) small.
For rendezvous, s, and s, are both selected large.

b. Problem Solution

The optimal control must now be selected to minimize (4). Each state component
. o A
must have an associated scalar Lagrange multiplier; hence let )L=[)\y}\v]T. Then the

&
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Hamiltonian is
H = 1u® + vy + uh,. 5)

The costate equations are therefore

. oH
Ay=——=0, (6)
7 ay
: oH
Ay = ——— = —Ay. @)
av
The stationarity condition is 5
H
O0=——=u+hy, (®)

ou
so the optimal control is the negative of the velocity multiplier
u(t) = —xr,(1). O]

The initial conditions are
y(10), v(tp) given. (10)

The final conditions are determined by (3.2-10). Since the final time is fixed, d7 = 0 and
so only the first term gives binding conditions. They are

96

() = G2 = 5,5, (11

hn(@) = 221y = sy0(T). (12)
v

We must now solve the two-point boundary-value problem defined by the state and
costate equations, with u as in (9) and with boundary conditions (10)—(12). To do this,
we proceed as we did in Example 3.2-3, assuming at the outset that A, (7") and A,(T') are
known. The costate equation is first solved backward in time (i.e., in terms of A(7')), and
the state equation is then solved forward in time (i.e., in terms of x(fp)).

Integrating both sides of (6) from ¢ to T yields the constant costate component

A
Ay(t) = Ay (T) = A,. (13)
Integrating (7) then gives
)\U(T) - )\v(t) = _(T - t))\y

or
Ay(t) = 2 (T) + (T — 1)Ay. (14)

Now, to simplify things, let us assume for a few moments that 7y = 0. Substituting the
control (9) into (3) gives
U= —Xy(1). (15)
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Using (14) and integrating both sides from O to ¢ yields the quadratic expression
2
v(t) =v(0) — t (A (T) + TAy) + E)»y. (16)
Taking this into account and integrating (2) yields the cubic expression
2 3

Y(#) = y(0) + 1v(0) — %(AU(T) +Thy) + %,\y. a7

The state and costate equations have now been solved in terms of A(7) and the given
v(0), v(0). Unfortunately, the final costate is unknown. To find it, we must use the relations
(11) and (12) between the final state and costate. Thus, use these relations and (16), (17)
to get

T2 T3
Ay =5y |:y(0) + Tv(0) — 7(AU(T) +Thy) + ?/\y} (18)

and -
M(T) =5, [U(O) =T (T)+Thy) + 7)»},] . (19)

These two equations can be written as

3 2
1_'_syT syT

3 ) Ay sy syT |:y(())i|
= . 20
5, T2 |:A,,(T):| [0 svi| v(0) e
T

Solving this yields the final costate

T
sv+T T(sy+ =
[M } _ ! ( 2) [y<0> o
w(TY | A 3 v(0) |’
o ~T2/2 E},—T—
where
A(T) = (5, +T3/3)(5,+T) - T*/4 (22)
and the reciprocal final weights are
1
Sy =—, (23a)
TSy
_ 1
Sy =—. (23b)
Sy

The initial time is, in fact #¢ not 0. Since the state and costate equations are linear, all
we need do to correct this is to substitute (T — fy) for T on the right-hand side of (21).
Before we do this, however, consider the following. At the current time t+ < 7 we know
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y(t) and v(¢), so we can take the current time ¢ as the initial time. This corresponds to
minimizing J (t), the remaining cost on the interval [z, T].

Substituting (7" —¢) for T in (21) yields an expression for the final costate in terms
of the current state:

5o+ (T —1) (T—z)[—+u]
SO I v [y(r)
2 (T) AT —1) (T —1)? _ (T -1 v(t)
ST 5, - 0

i| . (24)

We are finally in a position to compute the optimal control, for according to (9) and
(14),

Ay
u(ty=—[T—1t 1][' } (25)

A(T)
Taking into account (24) therefore yields the optimal control

(T — )5, + (T —1)*)2

u(t) = — AT -0 y(®)
= _ \2< 3
5+ (T i)(;v_t)(T 1) /3v(t). 26)

This is a feedback control law since the current control is given in terms of the current
state.

c. Proportional Navigation

For the intercept problem, we select s, = 0 and s, — oo. Taking the limit in (26) yields

3 3
u(t) = t)zy(t) - v(r) 27

(T - (T —1)

as the optimal control for intercept. To make this look neater, note that for a small
line-of-sight angle

Y@
~t =" 2
o(t) ~tano (1) TV’ (28)
so that (1) ©
p— A - (29)
(T—1)V (T —0n*V
Therefore, the optimal control is
u(t) = =3Ve. (30)

This is the proportional navigation control law. Every pilot knows that for an intercept
it is necessary only to keep the angle to the target constant so that there is no relative
bearing drift!

See Bryson and Ho (1975) for further discussion. |
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Example 3.2-5. Thrust Angle Programming

This example emphasizes that the optimal controller in Table 3.2-1 applies to general
nonlinear systems.

a. The Bilinear Tangent Law

A particle of mass m is acted on by a constant thrust F applied at a variable angle of
y(t). Its position is (x(1), y (1)), and its x and y velocities are u(¢) and v(¢). See Fig. 3.2-2.
The nonlinear state equations X = f (X, y, t) are

X =u, (1)
y=u, (2)
Il =acosy, €]
v =asiny, 4)

. A . .
where the state is X =[x yu v]T, a= F/m is the known thrust acceleration, and thrust
angle y(¢) is the control input.

v xq + Vit
4 >~—
h o]
v F
14_’
m u -
0 X

FIGURE 3.2-2 Thrust angle programming.

Let the performance index be a function only of the final time and state, so that
J=¢X(T),T) &)
(i.e., L(X, y,t) = 0). Suppose that a given function ¢ of the final state must be zeroed,
so that

v (X(T), T) =0. (6)

The form of the control y(¢) required to minimize J and satisfy (6) is easy to determine.
The Hamiltonian is

H=L+ATf=)Lxu+)\yv+)\,4acosy+Avasiny, 7

where the Lagrange multiplier A(f) = [Ac Ay A, p]T has a component associated with
each state component.
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According to Table 3.2-1, the costate equations are A = — ;A or
he=—fir=0, 8)
Ay =—fir=0, ©9)
A = —fih = —hy, (10)
ho = — I = —h,. (11)

(Note that subscripts on f indicate partial derivatives, while subscripts on A indicate the
costate components.) The stationarity condition is

0= Hy = —Ayasiny + Ayacosy, (12)
or
(1)
t t) = . 13
an y (1) o) (13)

Integrating the costate equations backward from the final time 7 yields

ha(t) = (1) = A, (14)
Ay (1) = Ay(T) 22, (15)
a(6) = O (T) + Thy) — thy 2 — thy, (16)
Do (6) = O (T) + Thy) — thy =y — 1Ay, (17)

Substituting into (13) yields the optimal control law

Z}»y —

. 18
tAy — C1 (18)

tany (1) =

This is called the bilinear tangent law for the optimal thrust direction y (¢).

To determine the constants A, Ay, 1, and ¢», we may substitute for y(¢) into the state
equations using (18), solve them, and then use the boundary conditions. To determine the
boundary conditions, we need to specify ¢ and i, which depend on the particular control
objectives. There are many possible objectives we might have in mind for the behavior
of the particle m. See Bryson and Ho (1975). One that leads to an interesting and fairly
simple solution is discussed next.

b. Minimum-time Intercept

Suppose m represents an aircraft that wants to intercept a target P in minimum time. P
has an initial position of x; and a constant velocity in the x direction of V1, so that its x
position at time 7 is x; + Vt. Its y position & is constant.

The minimum-time objective can be expressed by demanding that the optimal control
minimize

T
J=T=/ Ldt. (19)
0
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Since L = 1, the Hamiltonian is now
H(@) =1+ Au+ Ay +Ajacosy + Ayasiny; (20)

however, since L is constant, the other results in part a remain valid.
If m starts out at 7o = O at rest at the origin, the initial conditions are

x(0)=0, y0)=0, u)=0, v =0. (21)

The final-state function is

x(T) = (x1 +WiT)
Y(X(T), T) = |: j| =0, (22)
y(T)—nh
so that
x(T)=x;1+ VT, (23)
y(T) =h. (24)

To find the remaining terminal conditions, we need to use (3.2-10). Both the final state
and the final time are free (i.e., different choices of y(¢) will result in different values
for T and the state components u(T), v(T)). Therefore, dx(T) # 0 and dT # 0. In this
problem, however, dx(T) and dT are independent so that (3.2-10) yields the two separate
conditions

(@ + ¥ v—=Wlr =0 25)
and

@+ ¥l v+ HIr =0, (26)

where v = [v, vy]T is a new constant Lagrange multiplier.
Taking into account (22) (note that ¢ (x(T), T) = 0), (25) becomes

10
MT) = 0 1 |:vxi|
0 0f]wvy
00
or
2 (T) = vy, (27)
My(T) = vy, (28)
*u(T) =0, (29)
2o (T) = 0. (30)

Note that the components of A(T") corresponding to the fixed final state components x(7°)
and y(7T') are unknown variables, and the components of A(T) corresponding to the free
final state components (7)) and v(T) are fixed at zero.
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Using (20) and (22), the final condition (26) becomes

Uy
H(T) = -y vlr =—[-Vi 0] [v }

or
I+ vu(T) + vyu(T) = Vyv,. 31

We have used (27)-(30).

Now we need to solve the state equations (1)—(4), taking into account (18) and the
costate solutions (14)—(17) and the boundary conditions (21), (23), (24), and (27)—(30).
We also need condition (31) to allow us to solve for the unknown optimal final time 7*.

First, note that in light of (27)—(30), the costate solutions are

de () = vy, (32)
Ay() = vy, (33)
A1) = (T = Dy, (34)
Mo(t) = (T — vy, 35)

where the terminal multipliers v, v, still need to be determined. The bilinear tangent
law (18) therefore takes on the simple form

tany = v, /vy. (36)

For this minimum-time intercept problem, the optimal thrust angle is a constant!

To find the optimal control y* (), all that remains is to find v, and v,. We shall see
that this still requires a little work.

Since y is a constant, it is easy to integrate the state equations forward from 7o =0
to get

v(t) = at siny, 37

u(t) = at cosvy, (38)
ar®

y(t) = E3 siny, (39)

x(t) = % cosy, (40)

where we have used the initial conditions (21). Evaluating (39) and (40) at t = T yields

_ ¥

tany = TT), (41)

and final conditions (23) and (24) then give an expression for the control in terms of the
final time: h

tany = ————. 42
any=_"TvT (42)
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We still need to determine the optimal final time 7* to use in (42). The role of equation
(31) is to allow us to solve for 7%, but to use it we would first need to find v, and v,.
In this particular problem, we can use a shortcut that does not require v, v,.

Indeed, note that (39), (40), (23), and (24) imply that

. 2y(T) 2h
siny = = —, 43
v al? ar? “3)
2x(T) 2(x1+WiT)
cosy = 272 = ) . (44)
Hence, sin® y + cos? y=1,or
4h% + 4(x) + VIT)? = a®T*, (45)
which is
a*T*
- + VET? +2Vixi T + (x7 +1h*) = 0. (46)

This is a quartic equation, which can be solved for 7* given the initial information x,
V1, h about the target. Only one solution to (46) will make physical sense. The optimal
control is determined by simply solving (46) for 7* and then solving (42) for the optimal
thrust angle y*.

It is not difficult to see what our solution means intuitively. See Fig. 3.2-3, where the
hypotenuse can be expressed in terms of the motion of the target as

d* =n*+ (x; + V| T*)?, (47)

or in terms of the motion of the pursuit aircraft as
d* = (La(T)?)’ . (48)
Equation (45) is just an expression of the requirement that the two aircraft be at the
same point at the final time! Of course, if we had not gone through our rigorous derivation

of (45), we could not be sure from Fig. 3.2-3 that its solution yields the optimal final
time (courtesy of E. Verriest).

y

0 xq *V1T'

FIGURE 3.2-3 Interpretation of minimum-time intercept control law.



‘G}» Lewis cO3.ex VI - 10/19/2011 3:46pm  Page 131

3.2 SOLUTION OF THE GENERAL CONTINUOUS-TIME OPTIMIZATION PROBLEM 131

Solution of Two-point Boundary-value Problems

There are many computational methods for solving the optimal control problem.
Our purpose is not to provide a survey of methods, for this would occupy more
space than we have available. Instead, we present a few approaches that have
immediate practical appeal.

Suppose it is desired to solve the optimal control problem for the nonlinear
plant (3.2-1) with quadratic performance index

T
J (1) = %(x(T) — r(T)HTS(T)Y(x(T) = r(T)) + %/ (xTOx + uTRu) dt,
fo

(3.2-14)
where S(T) >0, O > 0, R>0, and the desired final-state value r(T) is given.
Thus, we want to find the control u(z) over the interval 7o, T] to minimize J ().
The final state is constrained to satisfy (3.2-3) for some given function ¥ € R”.
For simplicity, let the final time 7 be fixed.

According to Table 3.2-1, we must solve the state equation (3.2-1) and the
Euler equations

. 9fT
=Y o (3.2-15)
ax
9 T
0=Rut L5 (3.2-16)
u

In general, the Jacobians df/dx and df/du depend on the control u(z), so that
(3.2-16) is an implicit equation for u(¢). If df/du is independent of u(¢), then

we have ofT
i,
u

u=—R"! (3.2-17)

which we can use to eliminate u(?) in the state equation and the costate equation
(3.2-15), obtaining the Hamiltonian system

9 T
i=f (x, Y, t) , (3.2-18a)
u
. ofT
_i= %/\ +Ox (3.2-18b)
X

The Hamiltonian system is a nonlinear ordinary differential equation in x(z) and
A(t) of order 2n with split boundary conditions, which are

n conditions: x(fg) = r(ty) given, (3.2-19)
p conditions: ¢ (x(T), T) = 0, (3.2-20)
. oy’
n — p conditions: A(T) = S(T)(x(T) — r(T)) + s v. (3.2-21)
Ar
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The undetermined multipliers v € R? allow some freedom, which means that
(3.2-21) provides only the required number n — p of final conditions.

There are several ways to solve the Hamiltonian system numerically. An excel-
lent discussion is provided in Bryson and Ho (1975). One method is the following
algorithm:

1. Guess the n unspecified initial conditions A(t¢).
2. Integrate the Hamiltonian system forward from #( to 7.
3. Using the resulting values of x(7') and A(T'), evaluate

Y(x(T), T) (3.2-22)

and

oyt
MT) = S(T)(x(T) — r(T)) — <l v (3.2-23)
X7

4. If there is no v € R” that makes (3.2-22) and (3.2-23) equal to zero, deter-
mine changes in the final state and costate §x(7") and §A(T) to bring these
functions closer to zero.

5. Find the sensitivity matrix

3u(T) [
|:3)~(f0)} o Where 1) = [MT)]
and
C[sx(D)] (T
o) = [am)} = o) )

(Several ways of doing this are given in Bryson and Ho (1975). See also
our discussion of unit solutions.)

6. Calculate the change in A(#g) required to produce the desired changes in
the final values x(7), A(T) by solving (3.2-24).

7. Repeat steps 2 through 6 until (3.2-22), (3.2-23) are close enough to zero
for the application.

Another way to solve the two-point boundary-value problem (3.2-18)—
(3.2-21) for linear systems is first to solve several initial-condition problems
and then solve a system of simultaneous equations. This unit solution method
proceeds as follows:

1. Integrate the Hamiltonian system using as initial conditions A(#) =0
and x(#p) = r(tp), where r(t¢) is the given initial state. Call the resulting
solutions x(t), Ao(?).
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2. Suppose A € R", and let e; represent the ith column of the n x n identity
matrix. Determine n unit solutions by integrating the Hamiltonian system
n times, using as initial conditions

x(to) = 0,
My=e¢, i=1,...,n. (3.2-2)
Call the resulting unit solutions x;(¢), A;(t) fori =1,...,n.

3. General initial conditions can be expressed as

x(ty) = r(ty) given, (3.2-3)

n

Mig) = Z cie;

i=1

for constants ¢;. The overall solutions for these general initial conditions
are

xX(1) = xo(t) + Y eixi (1),

i=1

A(t) = ho(t) + ) cidi(®).

i=1

Evaluate these solutions at the final time ¢ = 7', and then solve for the initial-
costate values c¢; required to ensure that the terminal conditions (3.2-20) and
(3.2-21) are satisfied. The unit solutions show the effect on x(7"), A(T) of each
of the n individual components of A(fp), and so they can be used to find the
sensitivity matrix in (3.2-24).

The next example illustrates this approach.

Example 3.2-7. Unit Solution Method for Scalar System

The scalar plant
X =ax+bu (D

has performance index of

_ 2 T
g = S =r@” l/ (@ + rd) dr. ?)
2 2/,

The desired final-state value r(7') is given. The initial state x(0) = r(0) is known, the
final time is fixed, and the final state is free. To determine the optimal control u(f) on
[0, T] by the method of unit solutions, we proceed as follows.
From Table 3.2-1, the Hamiltonian is
gx> ri?

H:7+7+A(ax+bu). (€))



‘G}» Lewis cO3.ex VI - 10/19/2011 3:46pm Page 134

134 OPTIMAL CONTROL OF CONTINUOUS-TIME SYSTEMS

The Euler equations are

. oH
A=——— = —qgx—aha, 4
dx
oH
0=—=ru+bxr. 5)
du
Therefore, the optimal control is
b
U=——Ax. (6)

r

Eliminating u(¢) in (1) yields the Hamiltonian system

X a —b/r||x X
— / 24 )
A —q —a A A
The split boundary conditions are

x(0) = r(0) given, )
MT) = s(x(T) —r(T)). ©

Instead of solving the split boundary-value problem (7)—(9), we solve two (i.e., n + 1)
initial-value problems, one with initial conditions x(0) = r(0), A(0) = 0, and one with
x(0) =0, 2(0) = 1. Then we solve for the 1(0) required to make (9) hold.

If x(0) = r(0), A(0) = 0, then the solution can be found by Laplace transforms to be

xo(t 0) |a—a 0) |a+a

o(t) — Q e~ + Q eaf’ t >0, (10)

Ao (1) 20 | g 20 | —q

qb*
where o = /a? + =—. If x(0) = 0, A(0) = 1, the unit solution is
r
2 2
x1(t) 1 b w1 _r .

= — r e 4+ — r e , t>0. (11)

A () 2o o+a 20 oa—a

Now consider the general initial condition x(0) = r(0), A(0) = ¢ for some constant c.
The solution with these initial conditions is

[x (t)} |:x0(t):| [m(t)}
= +c
) Ao (1) A (f)
2

1 roe-a+ |
2o r0)g + c(a +a)

ch?
_,_L ”(0)(0!4‘0)—7 —at

5 e, t>0. (12)
« —r(0)g + c(a —a)
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Now it remains only to determine the initial-costate value ¢ so that boundary condition
(9) holds. Evaluating (12) at + = T, and substituting x(7) and A(T) into (9) yields the
required initial-costate value of

r(0)[(g + sa) sinhaT + sacoshaT] — r(T)sa

A0)=c= 5 -
(sb*/r —a)sinhaT + o coshaT

(13)
Note that the initial costate is a linear combination of the initial and final states.

Using this value of ¢ in (12) yields the optimal state and costate trajectories. Then (6)
yields the optimal control. This method yields the optimal control as on open-loop control
law, that is, as a function of time, not of the current state. ]

3.3 CONTINUOUS-TIME LINEAR QUADRATIC REGULATOR

Table 3.2-1 provides the optimal controller for general nonlinear systems, but
explicit expressions for the control law are hard to compute. In this section we
consider the linear time-varying plant

%= At)x + Bu, (3.3-1)

where x € R", u € R™ with associated quadratic performance index
[ Lrfop T
J(ty) = 7% (T)S(T)x(T) + 3 (x" Q®)x +u R(t)u)dt (3.3-2)
fo

The time interval over which we are interested in the behavior of the plant is
[to, T']. We shall determine the control u*(¢) on [t(, T'] that minimizes J for two
cases: fixed final state and free final state. In the former case, u* will turn out to
be an open-loop control, and in the latter case a feedback control.

We assume in this section that the final time 7T is fixed and known, and that
no function of the final state ¥ is specified. The initial plant state x(¢g) is given.
Weighting matrices S (7)) and Q(7T') are symmetric and positive semi-definite, and
R(t) is symmetric and positive definite, for all 7 € [ty, T].

Let us use Table 3.2-1 to write down the solution to this linear quadratic
regulator problem.

The State and Costate Equations

The Hamiltonian is

H(t) = 2(x"0x + u"Ru) + AT(Ax + Bu), (3.3-3)
where A(t) € R" is an undetermined multiplier. The state and costate equations
N '—aH—A +B (3.3-4)

¥ = =Ax+Bu, .
. 0H T
-1 = e Ox+ A" A, (3.3-5)
X
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and the stationarity condition is

OH .
0= =Ru+B". (3.3-6)
u

Solving (3.3-6) yields the optimal control in terms of the costate
u(t) = —R7'BTA®). (3.3-7)

The control structure defined by these equations is identical to Fig. 2.2-1; how-
ever, the continuous LQ regulator cannot be implemented in this noncausal
state—costate form.

Using (3.3-7) in the state equation yields the homogeneous Hamiltonian

system.
X A  —BR'BT|[x
| = . (3.3-8)
A -0 —AT A

The coefficient matrix is called the continuous Hamiltonian matrix, which we
discuss further in Section 3.4.

To find the optimal control, we must take into account the boundary conditions
and solve (3.3-8). We shall presently do this for two special cases: fixed and free
final state. First, it is instructive to investigate the value of the performance index
J (tp) when the control input u(¢) is zero.

Zero-input Cost and the Lyapunov Equation

We want to determine the value of the performance index J if the plant control
input u(t) is zero. Suppose the n x n matrix function S(¢) is defined as the
solution to the continuous Lyapunov equation

—S=ATS+S4A+0, r<T, (3.3-9)

with final condition S (7") as given in (3.3-2). This equation is integrated backward
in time from ¢ = T. Then it is easy to show that the cost to go on any interval
[, T] is given by

J(1) = 3xT0)S0)x (1), (3.3-10)

where x(¢) is the current state .
To wit, note that

1

_/Ti(Ts dt—lTTST (T)—th)St) 1) (3.3-11)
2 ), o X) —zx()()x 2x(o (to)x (20)- .3-
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Now add zero, in the form of the left-hand side of (3.3-11) minus its right-hand
side, to J(¢¢) in (3.3-2) to see that (u(z) = 0)

1 1 (7 .
J(ty) = 5xT(zo)S(tO)x(rO) +3 / (xTSx + xTSx + xTSx + xTOx) dr.
0]
(3.3-12)

Taking into account the state equation (3.3-1) results in
I ¢ L og '
J(t) = 7% (to) S(to)x (to) + 3 x (A"S+S+SA+ Q)xdt; (3.3-13)
To

but S (¢) satisfies the Lyapunov equation, so that (3.3-10) follows since the current

time ¢ can be interpreted as the initial time of the remaining interval [z, T].
This result allows us to compute, in terms of the known current state, the cost

to go till time 7 of failing to apply any control to the plant. Note that S(¢) does

not depend on the state, so it can be precomputed off-line and stored. Because

of the form of (3.3-10), we call S(¢) the cost kernel function. The cost is just

one-half the semi-norm squared of the state with respect to the weighting S ().
The solution to (3.3-9) is given by

T
S(t) = AT T0§(T)eAT—D 4 / ATT=0AT=D) gp (3.3-14)

t

which can be verified by Leibniz’s rule. According to the Lyapunov stability
theory, this converges to the steady-state value as (T —t) — oo of

o0
S = / AT Qe dt (3.3-15)
0

if the plant is asymptotically stable. In this event, the cost over any interval
[#, oo], is given by the steady-state cost (3.3-10) with S () replaced by S, which
is finite. If A is unstable and (A, \/Q) is observable, where Q = /QT+/Q, then
the cost tends to infinity as the time interval grows.
In the steady-state case, S = 0, so that (3.3-9) becomes the algebraic Lyapunov
equation
0=A"S+5A+ Q. (3.3-16)

If A is stable, then (3.3-15) is a positive semi-definite solution to (3.3-16). If
(A, /Q) is observable, the steady-state solution S, is positive definite and is
the unique positive definite solution to the algebraic Lyapunov equation.

See the discussion on the discrete time counterparts to these results in
Section 2.2.

We shall soon see that the optimal closed-loop control depends on an equation
like (3.3-9), but with an extra term to account for the effect of the input.
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Example 3.3-1. Propagation of Cost for Uncontrolled Scalar System

Let
X =ax (D

be an uncontrolled scalar system with cost on [#, T'] defined by

1 1 [T
J@p:iﬂTn%Ty+§/ gx* (1) dr. )
t
The Lyapunov equation is
—§ =2as+q, 3)
with solution -
s@):ehﬂ>”sav+1/ 2Ty qr (4)
t
or q q
= (s(T)+ L) p2ar-00 _ 4
s(1) (S( )+ 2a> e > >

If a <0, then as (T —t) — 00, s(¢) converges to the steady-state value of

M:—%>0 (6)

Note that this is the solution to the algebraic Lyapunov equation
0=2as+q. @)

If a is unstable, then s(#) grows without bound as the time interval of interest grows.
The steady-state cost on [0, oo] of applying no control input to the plant (1) is

oo = %soox%m = —%x%m ®)

when a < 0; otherwise it is infinite. In neither case does it depend on the final-state
weighting s(7). |

Fixed-final-state and Open-loop Control

Let us now return to the problem of determining the control required in (3.3-1)
to minimize the cost (3.3-2). The state and costate equations are given by (3.3-8)
and the optimal control is given by (3.3-7). It remains only to solve (3.3-8) given
the boundary conditions.

Suppose that the initial state is known to be x(#() and that the control objective
is to drive the state exactly to the given fixed reference value of r(7') at the final
time. Then the final condition is

x(T) = r(T). (3.3-17)

Since dx(T) = 0 and dT = 0, condition (3.2-10) is automatically satisfied.
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Since x(T') is fixed at r(T), it is redundant to include a final-state weighting
in the cost index, so let S(7") = 0. To allow us to get an analytic solution, let
Q = 0 also. Then the cost function is

1 T
J(t) = = / u"Ru dt, (3.3-18)
2 i

and so we are trying to find a control that drives x(#y) to x(7) = r(T) using
minimum control energy.
The state and costate equations are now

% =Ax — BR™'BT), (3.3-19)

A=—ATh. (3.3-20)
Setting Q@ = 0 has decoupled the costate equation from the state equation, so its
solution is just .

A1) = e T, (3.3-21)
where A(T) is still unknown. Using this expression in the state equation yields

% = Ax — BR™'BTeA T (T), (3.3-22) {]}

whose solution is

t
x(t) = A0 x(1p) = / AT BR=I BTeA (=) () . (3.3-23)

T

To find A(T), evaluate this at t = T to get
x(T) = AT x(10) — Gy, T)MT), (3.3-24)

where the weighted continuous reachability gramian is
T
Gy, T) = / AT=0 gR=1 BT AN T=1) 4o (3.3-25)
)
According to final condition (3.3-17), then,
MT) = =G 1y, T) [r(T) — e*T0x(1)] . (3.3-26)
Finally, the optimal control can be written using (3.3-7), (3.3-21), and (3.3-26)

as
w (1) = RTIBTeA T=DG (1, T)[r(T) — AT x(1)]. (3.3-27)
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This is our result; it is the minimum-energy control that drives the given initial
state x(t) to the desired final reference value of x(7) = r(T'). Note that

x(T) = AT x (1) (3.3-28)

is the final state in the absence of an input, so the optimal control is proportional
to the difference between this homogeneous solution and the desired final state.

Since u*(¢) is found by using G (¢, T'), the optimal control exists for arbitrary
x(tp) and r(T) if and only if |G(#y, T)| # 0. This corresponds to reachability
of the plant. If (A, B) is reachable, there exists a minimum-energy control that
drives any x(fo) to any desired r (7).

The control (3.3-27) is an open-loop control, since u*(t) does not depend on
the current state x(¢). It depends only on the initial and final states, and it is
precomputed and then applied for all ¢ in [z¢, T]. If, for some reason, the state
is perturbed off the predicted optimal trajectory, then such an open-loop control
will not, in general, result in x(7") = r(T) as desired.

To compute the reachability gramian in practice, we do not need to do the
integration (3.3-25), which can be very messy. The solution to the Lyapunov
equation is

P=AP+PA"+BR'BY, t>1, (3.3-29)

t
T T
P (1) = A0 p(gy)ed 17100 4 / eAUTIBRTIBT A D) gy,

fo

Hence, if P(ty) = 0, then G (19, t) = P(¢).

To determine u*(¢), then, we would first solve (3.3-29) off-line to get G(t¢, T').
This can be done numerically using a Runge-Kutta integrator (Appendix B.1).
Then for each ¢ € [fy, T], we would use (3.3-27) to find u*(¢), which is then
applied to the plant (3.3-1).

Compare the “reachability Lyapunov equation” (3.3-29) to the “observability
Lyapunov equation” (3.3-9). The former describes the interaction between plant
and input, and the latter describes the interaction between plant and cost function
when u(t) = 0.

It is a simple matter to determine the value of the cost index (3.3-18) under
the influence of the optimal control (3.3-27). Representing the final-state differ-
ence as

d(ty, T) = r(T) — e*T"x (1), (3.3-30)

we have
1t T, ~—1 AT 1 1 T AT(T 1
J*(t) = 5/ dTG1eATDBRTIRR™'BTeA T-DG1d dt,
fo

where we have used the symmetry of G~!(fy, T) and R~'. Realizing that d(t, T)
and G~!(ty, T) do not depend on ¢ and using the definition of the gramian yields

J*(to) = 2d"(to, T)G (1o, T)d (10, T), (3.3-31)
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or
J*(to) = 2d"(to, T)P~N(T)d (10, T), (3.3-32)

where P(t) satisfies (3.3-29). Compare this with (3.3-10).

Example 3.3-2. Open-loop Control of a Scalar System

Let the scalar plant be
X = ax + bu, t>0, (D)

with cost

1 T
J(0) = = / ru dt. )
2 Jo

The Lyapunov equation (3.3-29) is

b2
p =2ap+ - p0) =0, 3

so the reachability gramian on [0, 7] is

b2 t
G, = p@t) = —/ X0 gt
rJo

or
b2
G0,1) = — (™ —1). )
2ar

Compare this to the solution of the Lyapunov equation in Example 3.3-1.

According to (3.3-27), the optimal control taking x(0) to x(7) = r(T) for a given
r(T) is
2ar

m("(n —eTx(0))

u(t) = éea(T_') .
r

a e—al‘

- b sinhaT

(r(T) — " x(0)). )

Interestingly enough, this is independent of the control weighting . Compare (5) to the
control (20) in Example 3.2-3, which was found by direct solution of the state and costate
equations. |

Example 3.3-3. Open-loop Control of Motion Obeying Newton’s Laws

A particle obeying Newton’s laws satisfies

~Jo1 0 1
x—00x+1u (D
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where x = [d v]T with d(r) the position, v(r) the velocity, and u(¢) an acceleration input.
It is easy to find an analytic expression for the control required to drive any given x(0)
to any desired x(7"), while minimizing

1 T
J(0) = - f ru? dr. )
2 Jo

To find the reachability gramian, we solve the Lyapunov equation (3.3-29). Let

pi1(t)  pa(d)
P(t) = 3
© |:l72(t) P3(f)i| )

Then (3.3-29) is

. 0 1 0 0 0 0
P = P+ P + , )
0 0 1 0 0 1/r
which yields the scalar equations
P1=2pa, (5)
P2 = p3, (©)
p3=1/r. (7N
For the gramian, we integrate (7), (6), and then (5) with P(0) = 0 to get
t
p3= -, (8)
r
2
=_, 9
p2= 5 )
3
= -, 10
pr=z (10)
so that s
Go.n=prn=|>" | (11)
2t
2r r

The state transition matrix is

1 1t
At
e [0 1] (12)

To find the optimal control, we use (3.3-27), which becomes

12r 6r
1 FE ) LT
u(t) = ;[T —t 1] o 4 (x(T) — |:O 1:|x(0)) , (13)
T2 T
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or

6T — 12t —2T + 6t 1 T
u(t)=|: 73 72 ] x(T) — o 1 x(0)]. (14)

Once again, since u(t) is a scalar, it is independent of r. Note also that the control
magnitude decreases as the control interval [0, T'] increases. More control is required to
move the system more quickly from one state to another. |

Free-final-state and Closed-loop Control

We can find an optimal control law in the form of a state feedback by changing
our control objectives for the plant (3.3-1). Instead of fixing the final state at a
desired final value, let us require only that the control minimize the performance
index (3.3-2). Thus, the final state is free, and its value can be varied in the
optimization process implicit in the solution presented in Table 3.2-1.

The state and costate equations (3.3-8) are reproduced here for convenience:

%x =Ax — BR™'BT, (3.3-33)
—A=0x+ AL (3.3-34)

The control input is
ut) =—R'BTA. (3.3-35)

The given initial state is x(z¢), and the final state x(7') is free. Thus, dx(T) # 0,
and dT = 0 (the final time is fixed and known here) in (3.2-10), so the coefficient
of dx(T) must be zero:

MT) = — S(T)x(T). (3.3-36)

d¢
ax |
This is the terminal condition.

To solve the two-point boundary-value problem specified by (3.3-33) and
(3.3-34), given x(tp) and (3.3-36), we shall use the sweep method (Bryson and
Ho 1975). Thus, assume that x(¢) and A(z) satisfy a linear relation like (3.3-36)
for all ¢ € [#y, T'] for some as yet unknown matrix function S (z):

A(t) = S(0)x(1). (3.3-37)

If we can find such a S(¢), then this assumption is valid.
To find the intermediate function S(¢), differentiate the costate to get

A= Sx + Sx = Sx + S(Ax — BR™'BTSx), (3.3-38)
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where we have used the state equation. Now, taking into account the costate
equation, we must have

—Sx = (ATS +SA — SBR™'BTS + O)x (3.3-39)

for all . Since this holds for all state trajectories given any x(#¢), it is necessary
that
~S=ATS+SA—-SBR'BTS+Q, 1<T. (3.3-40)

This is a matrix Riccati equation, and if S(z) is its solution with final condition
S(T), then (3.3-37) holds for all # < T'. Our assumption was evidently a good one.
In terms of the Riccati-equation solution, the optimal control is given by

(3.3-35) and (3.3-37) as
u(t) = —R7'BTSx(r). (3.3-41)

Defining the Kalman gain as
K(t) = R7'BTS(r), (3.3-42)

we have
u(t) = —K(@)x(1). (3.3-43)

The optimal control is determined by solving the Riccati equation (3.3-40)
backward in time for S(¢). This can be done offline before the control run since
x(t) is not required to find S(¢). The gain K () can be computed and stored.
Finally, during the control run, u*(¢) is found using (3.3-43) and applied to the
plant.

The continuous optimal LQ regulator is summarized in Table 3.3-1. A block
diagram of this scheme has the same structure shown in Figure 2.2-3.

In terms of the Kalman gain, the Riccati equation can be written

—S=ATS+SA— KTRK + Q. (3.3-44)

The control (3.3-43) is a time-varying state feedback, since even if A, B, O, and
R are time invariant, K (¢) varies with time. The closed-loop plant is

x = (A — BK)x, (3.3-45)
and this equation can be used to find the optimal state trajectory x*(¢) given any
x(l()).

In terms of the closed-loop plant matrix, the Riccati equation can be written
in the Joseph-stabilized formulation

—S=(A—-BK)'S+S(A—BK)+ K'™RK+Q, t<T. (3.3-46)
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TABLE 3.3-1 Continuous Linear Quadratic Regulatory (Final State Free)

System model:
x=Ax+Bu, t>1

Performance index:

1 T 1 ’ T T
J(to) = ¥ (T)S(T)x(T)+§/ xTOx + uTRu) dt
I

Assumptions:

S(T)>0,0>0,R>0, with all three symmetric

Optimal feedback control:
—S=ATS+SA—SBR'BTS+Q, 1<T, given S(T)
K =R"'B'S
u=—Kx

T*(t0) = $x"(10) S(t0)x (t0)

By a derivation like the ones leading to (3.3-10) and (2.2-69) we can show that
the coast on any interval [¢, T'] satisfies

L r U et pr 2
J(0) = Zx OSOx(@) + 5 |R'B Sx +ul, dt, (3.3-47)
t

where S(7) is the solution to the Riccati equation.
If we now select the optimal control (3.3-43), then the value of the performance
index on [¢, T] is just
J(t) = LT ) S)x ). (3.3-48)

This result is important since, if we know the current state x(¢), then by solving
the Riccati equation we can determine the optimal cost of controlling the plan on
[, T'] before we apply the control or even compute it! If this cost is too high, we
should select another control scheme, or at least change the weighting matrices
S(T), Q, and R and find a new feedback gain K (t).
If B = 0, then the Riccati equation reduces to the zero-input Lyapunov
equation (3.3-9).
Note from (3.3-47) that
77 R 3.3-49
u2 (3:3-49)

so that the curvature matrix in the continuous case is R. Since R >0, the
optimal control minimizes J(ty). In the discrete case, the curvature matrix is
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(BTS 1B+ R), where S satisfies the discrete Riccati equation. This accounts
for the simplicity of the continuous LQ regulator as compared to the discrete LQ
regulator.

By selecting S(7) very large, we can guarantee that the optimal control will
drive x(7T') very close to zero to keep J(¢¢p) small. In the limit as S(T) — oo, it
can be shown that the control scheme in Table 3.3-1 tends to the fixed-final-state
scheme (3.3-27) for the case (T') = 0. See the discussion in Section 2.2.

It should be clearly realized that reachability of the plant is not required for
the free-final-state L.Q regulator. Even if (A, B) is not reachable, u*(¢) will do
its best to keep J(¢p) small. If (A, B) is reachable, it can be expected to do a
better job. In fact, we shall see in Section 3.4 that reachability results in some
very desirable properties as the control interval [#(g, 7] becomes large.

A few examples will impart some intuition on the LQ regulator. First, let us
briefly discuss a software implementation of Table 3.3-1.

Software Implementation of the LQ Regulator

In the discrete case, the Riccati equation is a simple backward recursion that
can easily be programmed, as we have seen. In the continuous case, however,
the Riccati equation must be integrated backward. Most Runge-Kutta integration
routines run forward in time. The best policy is therefore to convert (3.3-40) into
an equation that is integrated forward. This is easy to do.

Changing variables by

t=T—1, (3.3-50)
we have dt = —dt, so the Riccati equation becomes (in the time-invariant case)
Sp = ATS, + S,A — S,BR'B'S, + Q, (3.3-51)
where
S(t) = Sp(T —1). (3.3-52)

All we must do to solve (3.3-40) is to integrate it forward from t = 0 without
the minus sign on its left-hand side, then reverse the resulting solution and shift
ittor=T.

The control scheme in Table 3.3-1 has two parts. The first is the control law
computation by backward integration of the Riccati equation to find S(¢) and
then K(¢). Only K (¢) must be stored. This integration we have just discussed.

The second part is the simulation of the control law found in part one by
applying u = —K (t)x to the plant. This is accomplished by a forward integration
of the state equation x = Ax + Bu.

The complete simulation procedure is shown in Fig. 3.3-1. The simulation
portion can be compared with Fig. 2.3-1.

&
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START
TIME = to

TIME =

(T~t0)
?
Runge - Kutta
Integrator K(T—t) = n“‘estm
TIME=TIME+*TR

Pl

$pATSy* SpA
-s,8R"'8Ts,+Q

TIME = 10

Runge - Kutta
Integrator U= —=K(t)x
TIME=TIME+TR

[

PLANT DYNAMICS
F(TIME X XP)

FIGURE 3.3-1 Continuous LQ regulator simulation procedure.

Examples and Exercises
Example 3.3-4. Optimal Feedback Control of a Scalar System

This is the continuous counterpart of Example 2.2-3. Let the scalar plant be

X =ax+ bu (H
with performance index
1 I
J(t0) = =s(T)x*(T) + = / (gx* + ru?) dt. )
2 2 Ji
a. Analytic Solution
The Riccati equation is
bs?
—s=2as+q— ——, t<T. 3)
r
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Using separation of variables we have

/S(T) ds /T
= dt,
s(1) (172/'")52 —2as—q t

and integrating yields

s(t) = 2+ S @)
TG + 50 /(5(T) — 52)1e2PT=0 — 1
where -
B=la+ qu 5)
s1=§<ﬁ—a), 522%(,34-61) ©6)

The steady-state value as (7' —t) — oo is given by s or, if a >0,

sw=1<1+‘/1+1> @)
Y a

y = bzq/ar (8

where

is a control-effectiveness-to-plant-inertia ratio. If a < 0, a similar expression holds. The
steady-state value is independent of the final-state weighting s(7). It is also bounded
if b # 0, which corresponds to reachability, even if a is unstable. Contrast this with
Example 3.3-1.

b. No Intermediate-state Weighting
Let us consider the rather interesting special case of ¢ = 0. Then 8 = |a| and

s(T)
b2s(T)/2ar + (1 — b2s(T) /2ar)e=2aT =D’

s(t) = &)

If we want to ensure that the optimal control drives x(7) exactly to zero, we can let
s(T) — oo to weight x(7') more heavily in J (¢¢). In this limit we have

2ar/b?
s(t) = 1 — o—2a—0)" (10)
so the optimal control is (K(t) = bs(t)/r)
2a/b
u(t) =—K@)x () = —mx(l)
or
a  eT-D
u(t) = x(1). (11

~ bsinha(T —1)
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Compare this with the fixed-final-state control in Example 3.3-2 for the case r(T') = 0.
We have just discovered a feedback formulation of that control law.

If the plant isstable, a < O, then the steady-state value ((T — 1) — oo) of the cost
kernel is

500 =0, (12)
so that the steady-state closed-loop system

x = (a — bK)x = ax (13)

is stable. On the other hand, if a > 0, then

2ar
Soo = ?, (14)
and the steady-state closed-loop system is
b2
X = (a — —soo> X = —ax. (15)
r

This is still stable.
Figure 3.3-2 shows the behavior of the general solution (4) for the case of stable and
unstable plant.

s(t)

F- s(T)

FIGURE 3.3-2 Limiting behavior of the Riccati-equation solution.

c. Simulation

To implement the LQ regulator, none of the analysis subsequent to (3) is required. The
Kalman gain is

b
K@) = s, (16)

and the complete LQ regulator is shown in Fig. 3.3-3. First, the Riccati equation (3) is
integrated backward to get s(¢). This is accomplished by integrating

§p = 2asy, +q — bs}/r (17)
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x(t)
1/s
b
u(t)
— b/r
s(t)
Sb(O)
1 STORE
sp(t) =s(T—1)
qQ 1/s b
- 2a
b2

r

—{ P

FIGURE 3.3-3 Scalar continuous LQ regulator.

forward from zero with s,(0) = s(7') and then using
s(t) = sp(T —1t).
The kernel s(¢) is stored and then used to compute u(¢) that takes

u=—K()x

(18)
the form

19)

as the plant dynamics are integrated in the simulation. Note that the Riccati-equation

system is a sort of “doubled” or “squared” version of the plant.

Example 3.3-5. Optimal Feedback Control of a Damped Harmonic Oscillator

Let the plant be
0 1

2
—wy

|

1
J(to) = EXT(T) [

J<L)

:|
x(T)
s3(T)

—28w,

with performance index

s1(T)
0

1 (T g1 O
+ 5 / xT
2 Ji 0 ¢

:| X+ ru2> dt.

ey

@)
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If we let
AlS1() s2()
1= (3)
s2(0)  s3(1)
and simplify the Riccati equation, we get the coupled scalar differential equations
b2
—$1 = 2wy — TS% +q1, )
b2
—32 =51 — 25(1),,5‘2 — wﬁs_g — — 8253, (5)
r
. b ,
—§3 = 2850 — 48w, 53 — —s3 + q2. (6)
r

Writing the optimal feedback gain as

K@) =[k(t) k(@)], @)
we have K = R™'BTS or
ky = éf%, (8
r
ky = bﬁ 9)

function [x, u, Sf, tf] = ex3_3 5(a, b, r, x0)
% Control of a Harmonic Oscillator

% Compute the solution to Riccati Equation

[tb, S]=ode45(@fex3_3 5,[-10:0.1:0],zeros(3,1));
% Compute Optimal Feedback Gains

Sf=flipud(S);

tf=-flipud(tb);

K=-b/r*Sf(:,2:3);

X(:,1)=x0;

u(1)=K(1,:)*x(:,1) ;

% compute Closed-loop Response

for k=1:length(tf)-1,

% Harmonic Oscillator System State Equations
X(:,k+1) =expm((a+[0; b]*K(k,:))* (tf(k+1)-tf(k)))*x(:,k);
u(k+1)=K(k+1,:)*x(:,k+1);

end

function sd=fex3_3 5(t,s)

g=1*eye(2); om=0.8; del=0.1; b=1; r=1;

sd =[-2%om " 2*s(2)-b"2*s(2) “2+q(1, 1);
s(1)-4*del*om*s(2)-om "~ 2*s(3)-b"2*s(2)*s(3);
2%5(2) -4*del*om*s(3)-b " 2*s(3) “2+q(2,2)];

FIGURE 3.3-4 MATLAB code to use for the control of a harmonic oscillator.
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The optimal control is then

u=—Kx= —k1x1 - k2x2, (10)

where x = [x;  x2]7.

a. Software Implementation
To implement the optimal LQ controller, we need subroutines to describe the Riccati-
equation dynamics (4)—(6) (without the minus signs on the left-hand side of the equalities)
and to compute the gains (8)—(9). These are used in the control law computation. For the
forward integration to simulate the control law, we need subroutines to compute the control
(10) and provide the plant dynamics (1). The MATLAB code is shown in Fig. 3.3-4.

Using this software, the optimal state trajectories and controls for several values of
q = q1 = g2 were plotted (see Fig. 3.3-5). Also shown are the cost kernel elements for

two values of g.

20 State x4 5 Control u
—q-o001 PN
7 _.----\-s
r . Ve,
0
K]
o
5t
]
]
[}
101!
]
I
] ——q=0.01
_15 { ..... q=0.1
———g=1
15 . . . . , _o0 . . . . ,
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]
(a) (b)
=0.01 =1
0.06 d 1.8 d
........ _ 5(1)
oosl e | s(2) 16
o0 5(3) 14
0.04 pof T —
1 [—s(n)
0.03 '... 1 osl | 5(2)
;.' O [awnns 5(3)
0.02} 1 06
04}
0.01 } 1
T 02}
0 ' — 0 '
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]
() (d)

FIGURE 3.3-5 Results of a harmonic oscillator simulation using MATLAB. (a) State
trajectories. (b) Optimal control inputs u(z). (c) Riccati solutions s(t) for ¢ = 0.01.
(d) Riccatti solutions for g = 1.0.
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b. Steady-state Riccati Solution

Equations (4)—(6) are difficult to solve, but a steady-state solution is easy to obtain. Letting
51 = 5o = s = 0, three algebraic equations are obtained. These can be solved to give

sz(oo)=q—‘(/1+y—‘2—1), (11)

yl a)”

s300) = 2 142 <1+&>—1 , (12)
2 28(011 q>2

b2
51(00) = — (%52 + q—lss +S253> , (13)
r\n” Vi
where b2
A 07q1
= (14)
(l)nl’
A b242
= 15
v2 28wy r (15)

are “control effectiveness” ratios. In solving for the steady-state kernel, we select positive
square roots, since S(oco) > 0. | ]

Exercise 3.3-6. LQ Regulator with Weighting of State/Input Inner Product

This is the continuous-time counterpart to Exercise 2.2-4. Let the plant
X =Ax+ Bu H

have the modified performance index

1 1 T o Vifx
J(to) = =x"(T)S(T)x(T) + = f ERENT : 2)
2 2 Jy vl R||u

where the block matrix is positive semidefinite and R > 0.
a. Define a modified Kalman gain as
K =R"'(V'+B'Y), 3)
where S (¢) is the solution to the Riccati equation
—$=ATS+ 5S4 - KTRK+ Q. 4)
(Compare (4) with (3.3-44).) Show that the optimal control is

u(t) = —K@®)x(1). (@)

&
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b. Show that the optimal remaining cost on any subinterval [¢, T] is
J(1) = 3xT () S(0)x(1). (6)

In summary, if the cost index contains a weighting V that picks up the state-input
inner product, the only required modification to the LQ regulator is that the Kalman gain
must be modified, and the Riccati-equation formulation (4) should be used. [ |

3.4 STEADY-STATE CLOSED-LOOP CONTROL AND SUBOPTIMAL
FEEDBACK

In this section we present the continuous counterparts to the results in Section 2.4.
It would be a very good exercise to fill in the derivations of these equations, both
to become more familiar with them and to compare the continuous and discrete
situations, which have subtle and interesting distinctions.

Suboptimal Feedback Gains

If the plant
X = Ax + Bu (3.4-1)

has the feedback
u = —Kx, (3.4-2)

then the closed-loop plant becomes
x = (A — BK)x. (3.4-3)

The optimal feedback gain K(¢) is time varying and depends on the Riccati-
equation solution as in Table 3.3-1.
If the gain K in (3.4-2) is arbitrary, then the resulting cost on [#, 7] for any ¢ is

J(t) = 3xT(OS®)x (1), (3.4-4)
where S (1) satisfies
—S=(A—BK)TS+S(A—BK)+ K'TRK+ Q, t<T, (3.4-5)

with S(T') equal to the final-state weighting.

If K(¢) is given, then (3.4-5) is a Lyapunov equation in terms of the closed-
loop plant matrix. If K(¢) is the optimal gain in Table 3.3-1, then (3.4-5) is the
Joseph stabilized Riccati equation.

If K in (3.4-2) is selected as a constant matrix, then the cost given by (3.4-4)
can be examined to see if it is reasonable. If it is, and if the plant behavior is
satisfactory in a simulation run, then the constant feedback can be used on the
actual plant.
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The Algebraic Riccati Equation

In this subsection we assume time-invariant plant and weighting matrices.

As (T —t) goes to infinity, the solution to the Riccati equation can exhibit
several types of behavior. It can be unbounded, or it can converge to a limiting
solution S (oc0), which can be zero, positive semi-definite, or positive definite.

If S(¢) does converge, then for t < T, S = 0, so that there results in the limit
the algebraic Riccati equation (ARE)

0=ATS+SA—SBR'BTS + 0. (3.4-6)

The ARE can have several solutions, and these may be real or complex, positive
definite, negative definite, etc. If S(7") is symmetric, then the Riccati solution S (¢)
is symmetric and at least positive semi-definite for all # < 7. §(o0) is always a
solution to the ARE, but all ARE solutions are not limiting Riccati solutions for
some S (7).

It is worth mentioning that a real solution to

0=ATST + 54 — SBR™'BTST + 0, (3.4-7)

where S is not required to be symmetric, is given by

S = \/AT(BR*IBT)—IA + QL\/(BR”BT)—l +A"BR'B)™, (34-8)

where L is any orthogonal matrix (i.e., LLT =1 ). Of course, this assumes
IBR~'BT| # 0. See Schultz and Melsa (1967). In the scalar case, this reduces to
the well-known formula for solving a quadratic equation! (Show that for S to
be symmetric, the matrix L must satisfy a Lyapunov equation.)

If S (c0) exists, then the corresponding steady-state feedback gain is

K (00) = R™'BTS(0). (3.4-9)

Under some circumstances it may be acceptable to use the time-invariant
feedback law (3.4-2) with a gain of K(co) as an alternative to the time-varying
optimal feedback. The suboptimal cost associated with this control law is given
by (3.4-4), where K in (3.4-5) is K(c0).

To examine the consequences of this simplified control strategy, let us discuss
the limiting behavior of the closed-loop system (3.4-3) using the optimal feedback
in Table 3.3-1.

Limiting Behavior of the Riccati-equation Solution

This subsection applies only for time-invariant plant and cost matrices. It is
worthwhile reviewing the discrete case discussed in Section 2.4, as we shall
not repeat the comments designed to impart some insight and motivation for
our work.
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The plant is (3.4-1) with cost index in Table 3.3-1. By defining a fictitious
output
HERH
y(t) = x(t) + u(t), (3.4-10)
0 D

where C and D are defined as any matrices such that Q = CTC and R = D™D,
we can write the cost as

1 . 1 [
T (1) = 56" (D)S(T)x(T) + Ef YTy dt. (3.4-11)

fo

We should first like to know when there is a finite limiting solution S (co) to the
Riccati equation. The next theorem gives us the answer.

Theorem 3.4-1. Let (A, B) be stabilizable. Then for every S(7) there is a
bounded limiting solution S (co) to the Riccati equation. Furthermore, S(o00) is a
positive semi-definite solution to the ARE. |

The proof of this theorem is similar to that of Theorem 2.4-1. Note that,
in general, S(oo) is different for different S(7°). Remember that the free-final-
state LQ regulator does not require any controllability assumptions on the plant.
However, such assumptions guarantee desirable properties as the control interval
[0, T] becomes large.

If we intend to use the simplified suboptimal control law (3.4-2) with a gain
of K(0co), we should certainly like for the resulting closed-loop system to be
stable! The next theorem tells when we can be sure of this. It is a strengthened
version of the previous result and depends on the observability of the plant by
the fictitious output.

Theorem 3.4-2. Let C be any matrix so that Q = CTC.
Suppose (A, C) is observable. Then (A, B) is stabilize if and only if

1. There is a unique positive definite limiting solution S(co) to the Riccati
equation. Furthermore, S (c0) is the unique positive definite solution to the

ARE (3.4-6).
2. The closed-loop plant (3.4-3) is asymptotically stable, where K = K (co)
is given by (3.4-9). |

The comments following Theorem 2.4-2 are relevant here. The observability
condition in the theorem is not really needed. If (A, C) is detectable, the result
still holds, but then S (0c0) can be guaranteed only to be positive semidefinite.

What these theorems tell us is that if the plant is stabilizable and if we select
Q so that (A, \/Q) is observable, then the suboptimal feedback grain (3.4-9)

&
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results in a stable closed-loop plant. Note that (3.4-9) is the optimal control law
for the infinite horizon performance index

1 o0
Joo = 5 / (xTOx + uTRu) dt. (3.4-12)
0

Thus, as the control interval [fo, T] gets larger, it makes more and more sense
to use a constant feedback with gain of K(00).

A useful side result of these theorems is that we have a way of stabilizing
any multivariable plant. Let Q and R be any positive definite matrices with the
correct dimensions. Then u = —Kox, where Ko, = R™'BTS, with S the positive
definite solution to (3.4-6), will result in a stable closed-loop plant. Different O
and R will result in different closed-loop poles for (A — BK(c0)), but these poles
will always be in the open left half-plane. Later we show examples of how the
closed-loop poles move as Q and R vary.

Example 3.4-1. Steady-state Control of a System Obeying Newton’s Law

0 1 0
i = X+ u (D
0 0 1
have the infinite-horizon cost

J(0) = 1/00 (xT [qd O}x + ruz) dt )
=3 :
0 0 qv

We could do a computer simulation using MATLAB, and such a simulation would have
results similar to those of Example 2.4-3. However, let us instead capitalize on the simple
form of the continuous LQ regulator to get some analytic solutions.

Using A, B, Q, r in the ARE (3.4-6) yields the three coupled scalar algebraic equations:

Let the plant

2
0=— 72 +qa, (3)
0=s5 — 22, @)
r
$2
02252_73"'51117 (%)
where
S1 52
S = : (6)
S2 83
These are easily solved to yield
$2 = /qar, )

§3 =/ qur +2r\/qar, (8

&
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S1=1/qaqv + 2q4~/qar, 9

where we have selected the positive definite solution S(c0). (Show this.)
The optimal feedback gain is

K(00) = R~ BTS(00) = \/Clrz ‘/"r—”+2\/"rz . (10)

Since this depends only on the ratios g;/r and g, /r, let us now assume that r = 1. The
closed-loop plant is

0 1
a® = (A — BK(c0)) =[ } (1
V94 =@ + 2494

whence the optimal closed-loop characteristic equation is

5%+ \/qv + 2445 + /44 = 0. (12)

Comparing this to s> + 28wns+wg, we conclude that the optimal closed-loop poles are a
complex pair with a natural frequency and damping ratio of

Wy = (Qd)l/“s (13)

L] qv
d=—1]1 . 14
V2 * 2./q4 (1

In particular, if no velocity weighting is used (g, = 0), the damping ratio is the familiar
1/+/2! Note that the natural frequency depends only on the position weighting, and the
damping ratio only on the ratio of the velocity to the square root of the position weighting.

Knowing the relations (13) and (14), we can now pick the weights g4 and g, that
result in desirable closed-loop behavior. These values can even be used in a finite-horizon
(i.e., finite final time 7) performance index to design optimal time-varying feedbacks with
a prescribed steady-state behavior.

It is worth remarking that if ¢; = 0 so that (A, /Q) is not detectable, then one of the
closed-loop poles is at s = 0 and the closed-loop plant is not stable. |

An Analytic Solution to the Riccati Equation

The LQ regulator Hamiltonian system is

X X
|::| = H|: :|, (3.4-13)
A A
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where the Hamiltonian matrix is

[ A —BR‘IBT:|
H = . (3.4-14)
) —AT
By assuming
At) = St)x (1), (3.4-15)

we were able to derive the formulation in Table 3.3-1, wherein S(¢) satisfies
the Riccati equation. Instead of solving the Riccati equation, S(¢) can be found
analytically in terms of the eigenvalues and eigenvectors of H .

To find an analytic expression for S(7), it is first necessary to show that if p
is an eigenvalue of H, then so is —u. Define

5
J= . (3.4-16)
1 0

Then by direct multiplication we see that
H=JH'J. (3.4-17)

Therefore, if p is an eigenvalue of H with eigenvector v,

Hyv = pv,
so that
JH v = pv,
H )y = —uJv
(note J = —J). Hence,
UNWTH = =), (3.4-18)

and (Jv) is a left eigenvector of H with eigenvalue —pu.

Now we merely repeat the steps leading up to (2.4-41). The results are as
follows.

Order the eigenvalues of H in a matrix

o
D = , (3.4-19)
0 M
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where M is a diagonal matrix containing the right-half-plane eigenvalues. Let
the modal matrix of eigenvectors, arranged in order to correspond to D, be

Al Wi Wi
wa , (3.4-20)
Wa Wa

Wi
Wi
are the n eigenvectors of the stable eigenvalues of H.
If S(T) is the Riccati-equation boundary condition, define

Thus,

V(T) = —(Wy — S(TYWi2) ™ (Wa1 — S(T)Wiy) (3.4-21)

and
V() = e MTDy(T)yeMT—1, (3.4-22)

Then an analytic solution to the Riccati equation is given by
S(t) = (Way + Wy V(D) (Wyy + WiV (1)~ (3.4-23)

In the limiting case (T —t) — oo, a bounded positive definite solution S (c0)
exists if (A, B) is stabilizable and (A, »/Q) is observable. In this limit, V() — 0
since —M is stable, so

S(00) = Wy W, (3.4-24)

The ARE solution is thus constructed by using the stable eigenvectors of the
Hamiltonian matrix.

Design of Steady-state Regulators by Eigenstructure Assignment

We have just discovered a way to determine the optimal steady-state cost kernel
S(00) in terms of the eigenstructure of the Hamiltonian matrix H. By pursuing
this line of thought a little further, we can find a way to determine the optimal
steady-state feedback gain K (co) directly from the eigenstructure of H .

We assume that (A, B) is reachable and (A, /Q) is detectable. The optimal
steady-state closed-loop plant is

X = (A — BK(00))x. (3.4-25)
This and the Hamiltonian system (3.4-13) are both ways of characterizing the

optimal state trajectories. We can demonstrate that if u; is a stable eigenvalue of
H with eigenvector [Xl.TAiT]T, where X; € R", then p; is also an eigenvalue of

&
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(A — BK(00)) with eigenvector X;. The argument is a straightforward modifica-
tion of the discrete-time argument in Chapter 2.

H can be written down by inspection. Therefore, in the single-input case we
can use this result by finding the eigenvalues of H and then realizing that the
stable eigenvalues are the poles of the optimal closed-loop plant. Given these
desired poles, a technique such as Ackermann’s formula can be used to find the
optimal feedback gain K (c0).

In the multi-input case, the optimal feedback is not uniquely specified by the
closed-loop poles, so it is necessary to find the eigenvectors of H as well. A
derivation virtually identical to the one for the discrete case in Chapter 2 leads
to the following result.

Let the eigenvectors of the stable eigenvalues of H be placed into the 2n x n
matrix [XTAT]T, where X € R". (We called this

Wi
Wai
in (3.4-20).) Then the optimal steady-state feedback is given by

K(co) = R7'BTAX . (3.4-26)

Compare this result to the corresponding result in Chapter 2, which, interestingly
enough, includes in addition a matrix of stable eigenvalues M. (Why?)

Example 3.4-2. Eigenstructure Design of Steady-state Regulator for Harmonic

Oscillator
0 1 0
X = X+ u (D
-2 0 1

o0 0
J(0) = % / (xT |:qd i|x + ru2> dr. (2)
0 0 g

a. Optimal Closed-loop Poles

Let the plant

have a cost index of

The Hamiltonian matrix is

H= , 3
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whence we can compute

|s1—H|=s4+(2w§—qr—”)s2+(w3+qr—d). )

Note the even form of the characteristic polynomial of H. This means that if s is a root,
then so is —s. Since only the ratios ¢,/r and ¢4/r appear, we can assume that r = 1.

Letting Eé 52, (4) becomes
5%+ Qwy — qu)5 + (@ + qa), ®)
which has a pair of complex roots 51, 5o with natural frequency of
@, = (@) +a0'? 6)
and damping ratio of

wz —qy/2

§= 1
(@ +4qa)'?

(N

The roots of (4) are given by £+/5| and £4/5,. If the roots of (5) are represented as

51 = wpel, (8a)

5 = w2, (8b)
where 6, = —6,, then the roots of (4) are

@) eI, (%)

@) 27, (9b)

If § = —cos 6 is the damping ratio of a pole pair at angles of 0 (i.e., 01 and 05), then

VI=3
V2

== (10)

are the damping ratios of the two pole pairs at angles of 46 /2 and +6,/2. These four
poles are symmetric about the imaginary axis, and the pole pair corresponding to +4 is
stable, whereas the pole pair corresponding to —§ is unstable. Equation (10) follows from
the trigonometric relationship

o v/ 1+ cosa
CoS — = ——— (11)

2 V2

In our case the stable poles of H thus have a damping ratio of

1 w?—q,/2
8= — 1 — T (12)
V2V (@ 4qa)'?
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The natural frequency of the stable poles of H is
o = (0f +q0)"*. (13)

Since the stable poles of H are the optimal closed-loop poles, we can write down the
characteristic polynomial of (A — BK(00)):

A(s) = 57 +28%0s + (wh)?

= + V2, @} + 40" + (g0/2 — D)5

+ (@ +qa)"?. (14)

b. Optimal Feedback Gain

According to Ackermann’s formula

K(0)=[0 1]U; 'A% A). (15)
The reachability matrix is
0 1
U,=[B AB]= . (16)
10

and substituting A%, A, and I for s2, s', and s° in (14) yields

AC](A)
—w, + (0 +qa)'? V2 (@f + 4" + (qu/2 — )
= . (17
~opV2/(@f + 40P + (qu/2 — ) —wp + (@ +q0'?
The optimal feedback gain is thus
K(c0) = [—wﬁ + @+ V2 @+ a1+ (qo/2 w%)] (18)
If w, = 0, these results agree with Example 3.4-3. |

Time-varying Plant

If the plant is time varying, then we must redefine observability and reachability.
Suppose the plant is (3.4-1) with cost index in Table 3.3-1, where A, B, Q, and
R are time dependent. Let ¢(, t() be the state transition matrix of A.

We say the plant is uniformly completely observable if for every final time T
the observability gramian satisfies

T
aol < / ¢ (z, 1) Q()p(z, to)d, < oy ] (3.4-27)
to
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for some ty) < T, a9 >0, and o] > 0. Compare this with (3.3-14). We say the
plant is uniformly completely reachable if for every initial time ¢ the reachability
gramian satisfies

T
aol < / o, BRI )BT (1) (¢, 1)dt < o1 ] (3.4-28)

for some 7' > 19, g >0, and «; > 0. Compare this to the gramian (3.3-25).

Uniform complete observability and reachability (and boundedness of A(t),
B(t), O(t), R(t)) guarantee that for large ¢ the behavior of P(¢) is unique, inde-
pendent of P(0). They also guarantee the uniform asymptotic stability of the
closed-loop plant (A — BK(?)).

3.5 FREQUENCY-DOMAIN RESULTS

Several methods for designing steady-state continuous regulators have been dis-
cussed. Here we present an approach that amounts to a root-locus design method.
The plant and weighting matrices are assumed time invarant, with (A, B) reach-
able and (A, \/Q) observable.

A Factorization Result

The optimal steady-state regulator is given by a constant feedback (3.4-2), where
K = R™'BTSand S is the unique positive definite solution to the ARE (3.4-6).
The resulting closed-loop system (3.4-3) is asymptotically stable.

As in Section 2.5, we can show that

As) = |1 + K(sI — A)"'B|A(s), (3.5-1)
which relates the closed-loop characteristic polynomial A®(s) = |s] — A + BK|
to the open-loop polynomial A(s) = |sI — A|. According to Fig. 2.5-1 (with z~!
replaced by 1/s), I + K(sI — A)~'B can be interpreted as a return-difference

matrix (return difference = I-loop gain).
We can also show the factorization result

BY(—sI— A)~TQ(sI— A" 'B+R
=+ K)(—=sI— A 'BTRUI + K(sI— A)~'B), (3.5-2)

which can be interpreted as follows. Let
H(s) =C(sI— A)"'B (3.5-3)

be the transfer function from u(f) to y'(¢) = Cx(t), the “top portion” of the
fictitious output y(¢) in (3.4-10). Now examine Fig. 2.5-2 (with z !, z replaced

&
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by 1/s, —1/s, respectively). It is clear that H T(—s) is the transfer function from y'
to the intermediate signal w. Therefore, (3.5-2) simply expresses the equivalence
between a transfer-function product in the continuous version of Fig. 2.5-2 and
a transfer-function product in the continuous version of Fig. 2.5-1. It is just
another way of expressing the equivalence between the state—costate (3.4-13)
and the closed-loop (3.4-3) formulations of the optimal LQ regulator.

Chang-Letov Design Procedure for the Steady-state LQ Regulator
According to (3.5-1) and (3.5-2) we can write

A (=5)AYs) = |HT (—s)H(s) + R| - A(—s)A(s) - |R|™", (3.5-4)

where H (s) is given by (3.5-3). This is the Chang-Letov equation (Kailath 1980).
It can be used to design optimal steady-state LQ regulators by a root-locus
approach. Note that the entire right-hand side is known if the plant and weighting
matrices are given, so we can use the Chang-Letov equation to determine the
optimal closed-loop poles; since (A — BK) is stable by Theorem 3.4-2, they are
just the stable roots of the right-hand side. The roots of A (—5)A(s) are always
symmetric with respect to the imaginary axis; that is, if s is a root, then so is —s.
In the single-input case with Q = gl, we have

_ /qladj(sI — A)]B A N(s)

H , 3.5-5
(s) AG) NG ( )
where N (s) is a column vector. Then (3.5-4) becomes
AN —5)A(s) = INT(—5)N(s) + A(=5)A(s). (3.5-6)
r
The roots of the right-hand side are the zeros of
g\ N'(=s)N(s) q .7
1 =)———F=1+-H (-s)H 3.5-7
+(7) aimany = H COHE), (357)

which is exactly the form required for a root-locus analysis as a function of the
parameter ¢/r. This shows that as ¢/r varies from zero (no state weighting) to
oo (no control weighting), the optimal closed-loop poles move from the stable
poles of

G(s) = HT(—s)H (s) (3.5-8)

to its stable zeros. We can therefore select the ratio of cost weights ¢/r to yield
suitable closed-loop poles.

It is worth remarking that the stable poles of H(—s)H(s) are the poles of
H (s) with unstable poles reflected into the left half-plane (i.e., 5| = —s;). The
stable zeros of HT(—s)H (s) are the zeros of H (s) with unstable zeros reflected
into the left half-plane.
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The next example illustrates these ideas. For a good discussion, see Kailath
(1980) or Schultz and Melsa (1967).

Example 3.5-1. Chang-Letov Design of Aircraft Longitudinal Autopilot

The short-period longitudinal dynamics for a medium-sized jet with center of gravity
unusually far aft might be described by the state equations

a —1.417 1.0 o 0
= + B, (1)
0 2.860 —1.183| [ p —3.157
where « is the angle of attack, p the pitch rate, and . the elevator deflection (Blakelock
1965). (We shall show only three decimal places.) The open-loop characteristic

polynomial is
A(s) = |sI — A = s> +2.65 — 1.183, (@)

so the open-loop poles are
s = —2.995, 0.395. 3)

Evidently, the center of gravity is so far aft that the short-period poles, which usually
constitute a lightly damped complex pair, have become one stable and one unstable pole.

To stabilize the plant and keep the pitch rate small, we might select the performance
index

um—lfﬂ 28]
= qp” +ré;)dt, )
2 Jo
so that
0 0
0= [ } (5)
0 ¢
and a root of Q is
c=[0 Jql (6)

Since (A, B) is reachable and (A, C) is observable (if ¢ # 0), we know the steady-state
LQ regulator results in a stable closed-loop plant.
Transfer function (3.5-3) is

_ —/q(3.157s +4.473)

H(s) = 7
= =2 e -8 @

The Chang-Letov design procedure is based on the rational function
G(s) = H(—s)H(s). (8)
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